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heterogenicity analysis of
multicenter scRNA-seq datasets
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Lung adenocarcinoma (LUAD) is themost common type of lung cancer and the

leading cause of cancer incidence and mortality worldwide. Despite the

improvement of traditional and immunological therapies, the clinical

outcome of LUAD is still far from satisfactory. Patients given the same

treatment regimen had different responses and clinical outcomes due to the

heterogeneity of LUAD. How to identify the targets based on heterogeneity

analysis is crucial for treatment strategies. Recently, the single-cell RNA-

sequencing (scRNA-seq) technology has been used to investigate the tumor

microenvironment (TME) based on cell-specific changes and shows

prominently valuable for biomarker prediction. In this study, we

systematically analyzed a meta-dataset from the multiple LUAD scRNA-seq

datasets in LUAD, identified 15 main types of cells and 57 cell subgroups, and

revealed a series of potential biomarkers in M2b, exhausted CD8+T, endothelial

cells, fibroblast, and metabolic patterns in TME, which further validated with

immunofluorescence in clinical cohorts of LUAD. In the prognosis analysis, M0

macrophage and T cell activation were shown correlated to a better prognosis

(p<0.05). Briefly, our study provided insights into the heterogeneity of LUAD

and assisted in novel therapeutic strategies for clinical outcome improvement.
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Introduction

Lung cancer is the leading cause of cancer death globally,

and the most prevalent subtype of lung cancer is lung

adenocarcinoma (LUAD) (1). Despite the great endeavors in

traditional and complementary treatments, the clinical

outcomes are still not satisfactory (2, 3). The process of

oncogenesis and cancer development is influenced by the

tumor microenvironment (TME) and the tumor cells through

mutual and dynamic crosstalk. The TME is consisted of immune

cells (like lymphocytes, macrophages, and microglia), tumor

stromal cells (including stromal fibroblasts and endothelial

cells), the non-cellular components of the extracellular matrix,

and the tumor cells (4, 5). And a growing number of therapeutic

strategies were focused on TME, such as cancer-associated

fibroblasts (CAFs), tumor-associated macrophages (TAMs),

and CTLA-4/PD-1/PD-L1 immune checkpoints (6–8). Due to

the heterogeneity of LUAD, patients given the same treatment

regimen had different responses and clinical outcomes.

Therefore, the identification of targets based on intratumoral

heterogenicity analysis is extremely crucial for novel and precise

therapeutic strategies in LUAD.

The TME was so complex that essential to study further for

clinical outcome improvement in LUAD (5, 9). RNA sequencing

(RNA-seq) had already been independently made to predict the

prognosis-related genes and assessment their correlation with

clinical outcomes in TME. Reports showed immune subtypes in

LUAD TME with prognostic and therapeutic implications (10).

Currently, single-cell RNA sequencing (scRNA-seq) is widely

used to identify biomarkers in diagnosing, treating patients, and

studying the heterogeneity in TME. Intratumoral heterogeneity

could be analyzed by scRNA-seq at the cell-type level; in

contrast, the conventional bulk RNA-seq obtained the average

expression of genes, and difficult to study the heterogeneity in

TME. And due to the cancer heterogeneity, patients’ response is

different significantly to certain treatment. Recently the

heterogeneity of stromal cells and tumor-infiltrating immune

cells associated with immunotherapy responses had been widely

reported (11). The knowledge about the mechanism responsible

for the LUAD heterogeneity was still poor, even if many

scientists were devoted to elucidating these issues. To date,

although numerous scRNA-seq studies on LUAD had been

reported, most of these studies were limited by small sample

sizes and imperfect controls. In this study, we constructed a

meta-dataset from multiple scRNA-seq datasets (GSE131907,

GSE134355, and GSE148071) and analyzed the immune and

non-immune diversity clusters in TME, dug out targets for

treatment, and assessed their prognostic value in LUAD.

Briefly, our study systemically provided insights into the

heterogeneity of LUAD and assisted in precise and novel

strategies for prognosis and target treatments.
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Materials and methods

Acquisition of data

The expression matrix and patients’ clinical information from

three datasets (GSE134355, GSE131907, and GSE148071), which

contained 19 normal and 53 LUAD samples, were downloaded

from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). The

GSE134355 dataset was generated from Illumina HiSeq X Ten and

GPL20795 platform. The GSE131907 dataset was generated from

Illumina HiSeq 2500 and GPL16791 platform. The GSE148071

dataset was generated from Illumina HiSeq X Ten and

GPL20795 platform.
QC and cell type recognition

Using Seurat (version 4.2.0) performed the QC process (12).

We excluded cells with a mitochondrion-derived UMI count of

more than 10% or less than 200 UMIs as low-quality cells.

ScaleData was used to remove the influence of UMI counts and

mitochondrion-derived UMI counts. The quality control (QC)

process used the Seurat R package. The QC parameter setup and

candidate cells filter by the following criteria: nFeatue_RNA>200

& <7000 percent.mt<25. We also used the VlnPlot function of

the Seurat package to generate the QC figure (Figure S1A) and

show the value (nFeaure_RNA, nCount_RNA, mito_RNA, and

ribo_RNA) after QC. The Harmony R package was used to

correct batch effects (Figure S1A down). The next step was using

Seurat’s FindClusters function (resolution = 1.1) to identify the

main cell clusters and utilizing 2D tSNE or UMAP to visualize

(13). Currently, for data dimension reduction, these algorithms

were most commonly used. The downstream analysis did not

perform on the primary cell cluster due to the difference in the

cell cycle. Each cell cluster’s markers were listed using the

FindAllMarkers function. Based on the CellMarker database,

the major cell types were identified and annotated (14).
Immune checkpoint gene analysis

To represent the gene expression levels in different cell

clusters, we calculated the mean normalized immune

checkpoint gene expression levels from cell clusters and then

normalized them into row Z scores. The immune checkpoint

gene heatmap analyses were performed using the

ComplexHeatmap R package. We used the ComplexHeatmap::

pheatmap function and set-up parameters: scale = “row” to

calculate the Z-score of genes mRNA expression level, then the

heatmap was colored according to this Z-score.
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Core transcription factors regulatory
network analysis

The core regulatory transcription factors and their

regulatory network were predicted using the R package

SCENIC. The R software (version 4.0.2) was used to

reconstruct the regulatory networks and display the

transcriptional characterization (15). The value of the area

under the curve (AUC) was estimated by SCENIC, then the

Limma was used to identify differences in AUC among cell

clusters or between normal and tumor-derived cells of each

module. Regulators were investigated further through the adj.

p val< 0.01.
Pseudotime trajectory analysis

We used Monocle 2 for single-cell trajectories analysis, an R

package developed by Qiu et al. (16). We revealed the alteration

of the CD8+ T cell during tumor-educating. We optimized the

input parameters as following: mean expression ≥ 0.125,

num_cells_expressed ≥10, and in the differentialGeneTest

function qval < 0.01 was considered as significant. 2D tSNE

plots were used to visua l ize the tra jec tor ies and

plot_pseudotime_heatmap was used for constructing the

dynamic expression heatmaps.
InferCNV

The InferCNV R package was used for CNV analysis.

Through InferCNV, you could visualize CNV in cells

according to RNA-Seq expression data. Genes were analyzed,

including their relative expression levels and chromosomal

locations to estimate CNVs (17, 18). Cell types were initially

classified by using the Seurat package. CNV was calculated for all

euchromosome types using InferCNV. For 10× Genomics

single-cell data, the cut-off value was 0.1.
Functional enrichment analysis

The FindMarkers function of Seurat was used to identify

DEGs. The cut-off thresholds were adj. p value <0.01 and fold

change (FC) >1.5. Then, GO enrichment analysis was carried out

using clusterProfiler (19) on these DEGs. An enrichment adj. p

val <0.05 was considered statistically significant.

Gene set was enrichment in each specific cell cluster and was

performed by GSEA analysis. Only gene sets were significantly

enriched with false discovery rate (FDR) p values <0.05 and

nominal p values <0.05.
Frontiers in Immunology 03
The GSVA package was adopted for performing gene set

variation analysis (GSVA) and using default configuration

parameters. The cytokine pathway gene sets or 50 hallmark

gene sets were downloaded from the GSEA molecular

signature database.
Cell-cell communication analysis

The CellChat R package provided a means for analyzing cell-

to-cell communication at the molecular level through R

software. First, 16 types were clustered from 24,550 single cells

as described above. Analysis of 16 subclusters and major cell

types was carried out using CellChat to examine molecular

interaction networks. The CellChat estimated the ligand-

receptor pairs. And the result with p values <0.05 would be

retained for evaluating the cluster-by-cluster analysis.
Correlation to public datasets

The deconvolution analysis was performed on the integrated

bulk RNA-seq data (TCGA-LUAD) against our scRNA-seq

dataset, which was conducted using the BisqueRNA package

with default settings (20). We labeled our cells into 15 categories,

including macrophages, B cells, NK cells, DC cells, fibroblasts,

CD8+ T cells, CD4+ T cells, epithelial cells, endothelial cells,

Mast cells, smooth muscle cells, neutrophils, plasma cells, and

myeloid. The group comparisons were then made using the

composition of deconvolution cell types in each bulk sample.

The Cox regression analysis to assess the prognostic value of

different cell clusters. Visualization of Cox regression results was

achieved using Z scores. To determine if the relative abundance

of cell clusters’ dynamical alteration was associated with the

LUAD progression (WHO clinical stage).
Immunofluorescence assay on human
LUAD tissue

Sections of tissue containing 25 pairs of para-tumors and

tumors were obtained from the Affiliated Hospital of Qingdao

University (NO: QDU-HEC-2022227). Patient information was

listed in Figure S2. The immunofluorescence was performed on

the same type of tissue sections for the analysis to be consistent.

The antibodies were applied to validate the specific markers

were identified in this study as follows: anti-FGFBP2 (R&D

system, catalog. AF9349-SP), anti-PRF1(abclone, catalog.

A0093; RRID: AB-2749981), anti-CD163 (abclone, catalog.

A8383; RRID: AB-10687227), anti-ATP5F1E (abclone, catalog.

A7645; RRID: AB-2768505), RRID: AB-853002), anti-LAG3
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(Abcam, catalog. 209236; RRID: AB-2162568), anti-CLDN4

(Abcam, catalog. ab53156), anti-CLDN1 (Abcam, catalog.

ab211737), anti-ACTA2 (Abcam, catalog. ab264014), anti-

RALA (Abcam, catalog. ab236314). Data analysis was

performed with GraphPad Prism (version 9) software.
Flow cytometry

We mechanically separated and enzymatically digested the

collected tumor tissue to prepare a single-cell suspension

(collagenase (Solarbio), DNase I (Solarbio), and Dispase I

(Solarbio); prepared in DMEM) at 37°C for 1 h. Filter with a

40 mm cell strainer. The lymphocytes are then isolated with a

tumor-infiltrating lymphocyte isolation solution kit. The isolated

cells are washed once with PBS at 4°C and stained with

antibodies from 3 different channels for 1 h. The antibodies

were applied as follows: anti-CD8 (Abcam, catalog. 233300; anti-

TIM3(Abcam, catalog. ab28522), anti-PD 1 (Abcam, catalog.

ab52587). Data analysis was performed with FlowJo (version

10) software.
Statistical analysis

Our analysis was conducted using the R software and

package, Spearman correlation analysis was performed, and

heatmaps and scatterplots were generated as a result. We also

used the online tool GEPIA, which analyzes pan-cancer tissue-

specific expression. The immunofluorescence results were

statistically analyzed by ImageJ software and the flow

cytometry results were statistically analyzed by CytExpert

software. It was considered statistically significant if p < 0.05.
Results

The LUAD cell types and normal
lung tissues

Three GEO datasets (GSE134355, GSE131907, GSE148071)

were involved in this study. Of these, the dataset (GSE134355)

originated from normal lung tissues, the dataset (GSE148071)

was tumor-derived cells, and the dataset (GSE131907) originated

from both normal and tumor-derived cells (Figure 1A). A total

of 15 main cell types were identified in these cells (Figure 1B).

Eleven major immune cell types (CD45+) were identified,

containing CD4+ T cell, CD8+ T cell, natural killer (NK) cell,

B cell, regulatory T cell (Tregs), dendritic cell (DCs), plasma,

myeloid, macrophages mast cell, and neutrophil, as well as the

four non-immune cell types (CD45-), including epithelial,

smooth muscle cells, fibroblasts, and endothelial cells

(Figures 1B, C). Furthermore, the known markers mentioned
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in the CellMarker database were also investigated (Figure S1B).

The differences in the cell cycle stages at the level of the single

cells were not analyzed in the downstream analysis (Figure S2A).

A bubble chart was created to visualize the top five cell-type

markers (Figure 1D). We performed an irGSEA analysis in

Figure S2F, in this figure, we demonstrated the situation of the

top 50 signaling pathways in different cell clusters.

These major cell types were divided into two subclusters

(immune and non-immune cells) to further identify their cell

subclusters (Figures S2B, C). In total, 57 different cell clusters

were identified, including 41 clusters of immune cells and 16

clusters of non-immune cells in the TME of LUAD. Several

points were worth noting in Figure 1D. First, tumor tissues had

high levels of CD4+FOXP3+ Treg cells. Second, CD8+ T (C3)

cells were tumor-specific. Additionally, epithelial enriched in

several different cell clusters and mainly existed in LUAD tissues

(Figures 1A, B, E).

In the comparison of differentially expressed genes (DEGs)

between LUAD and normal tissues, three genes (FGFBP2,

CRIP1, and PRF1) were mainly expressed in normal tissues

but not in tumor-derived cells (Figure 1F). For verification, we

conducted immunofluorescence at the protein level (Figure 1F).

The results highlighted the upregulation of FGFBP2, CRIP1, and

PRF1 for potential clinical application in LUAD.
M2b polarization in the TME of LUAD

We investigated the interaction network among the 214799

cells in the TME of LUAD. To estimate potential ligand-receptor

pairs, we adopted the CellChat R package to analyze and

visualize cell-cell communication molecules in normal or

tumor-derived tissues. Notably, the interaction pairs between

macrophages and other cells were significant revealing the

macrophages with critical regulatory function in the

TME (Figure 2A).

To investigate the heterogeneity of macrophages, we divided

45760 macrophages into four subclusters (Figure 2B). The cluster

1 (C1) and cluster 4 (C4) cells were mainly derived from normal

tissue, while cluster 2 (C2) and cluster 3 (C3) were mainly derived

from tumor tissue (Figure S3A). TMEs in LUAD were examined

for immune checkpoint distribution. Figure 2C showed that the

C1 cells expressed a relatively higher CD274 (PD-L1) and

PDCD1LG2 (PD-L2) than other clusters. These molecules

might bind to PD-1 and inhibit CD8+ T cell activity. Moreover,

a major LAG3 ligand, FGL1 (21), was major expressed in C2

macrophages. Since C1 and C2 macrophages were more

immunosuppressive than others, the cytotoxic T lymphocyte

(CTL) function could be suppressed. Next, we found that cells

from C1 (CD68+CD163+FABP4+) enriched in the TGF-b
pathway from Figure S3D, which was characteristic of the M2a

cluster. To determine whether FABP4 was associated withM2-like

TAMs, we performed the spearman correlation analysis between
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FABP4 and other identified markers; all spearman correlation

coefficients were higher than 0.3 (Figure S3C). In Figure 2D, the

cells from C2 exhibited the CD68+CD163+ATP5F1E+ MMP12-

phenotype and demonstrated a high IL-10 pathway and low IL-12

pathway. The gene set variation analysis (GSVA) exhibited that

the Th2-related inflammation pathways were enriched from C2
Frontiers in Immunology 05
(Figure 2E), which were the M2b-like TAMs hallmarks, as

depicted according to an earlier study (22). These results

indicated that the C2 cells have an M2b-like TAMs phenotype

(Figure S3D). In recent studies, a high level of expression of TAM

markers was also observed in C2 cells (Figure 2F). To determine

the presence of C2 cells, we did immunofluorescence and the
A B

D

E F

C

FIGURE 1

Comprehensive scRNA-seq analyses of cells derived from LUAD or normal tissues. (A–C) UMAP plot of single-cell transcriptome data with cells
colored based on (A) tissue type origin (normal or tumor), (B) 15 major cell types, and (C) the immune cells or the non-immune cells. (D) The
dot plot showed the top five markers of 15 major cell types. (E) The 57 subsets were identified in this study: the relative proportion of cells
derived from the normal or tumor specimens (left); and the relative proportion of cells derived from each of the three different datasets (right).
(F) The expression status of three normal-specific proteins, immunofluorescence and statistical analysis of RPF1, CRIP1, and FGFBP2 in tissue
sections. The scale bar represented 20 µm, **p<0.01, ***p<0.001.
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result showed that the CD163+TATP5F1E+ macrophages were

mainly enriched in LUAD tissue (Figure 2G). The ATP5F1E and

MMP12 genes involved in the energy metabolism pathway were

specifically expressed in the C3 cells (Figure 2D). The GSVA

showed that the C3 cells could play a pro-inflammatory and

antitumor role in LUAD (Figure 2H). This result revealed that the

C3 cells tend to have an M1-like phenotype. The macrophages

from C4 showed that KIAA0101 and FABP4 were preferentially

upregulated (Figure 2D and Figure S3B). Combining the GSVA

analysis and the above results, we inferred that C4 tended to have

an M0-like TAMs phenotype. We also performed Psuedotime

analysis of the macrophage cluster, and the results showed a
Frontiers in Immunology 06
population of M2b cells enrichment at a terminal branch of tumor

tissue. Taken together, M2b (C2) and M1 (C3) were the main

subgroups of macrophages in the TME in LUAD.

The SCENIC analysis demonstrated that the activity of

transcription factors including STAT1, NFEIL1, MAF, MAFB,

JUN, BHLHE41, EGR2, MITE, USF2, and NR1H3 was

upregulated in C2 cells, while the JUND, FOSL1, FOSL2, FOS,

and STAT4 transcription factors activity were downregulated

(Figure 2H). It was reported that NFE2L1 played a vital role in

the carcinogenic process (23), and EGR2 was M2-exclusive (24).

Furthermore, a study on murine sarcoma also demonstrated that

tumorigenesis and progression were associated with STAT1
A B

D E F

G H

C

FIGURE 2

The macrophage cells demonstrated M2b polarization in LUAD. (A) The cell interaction network generated by CellChat; normal and tumor (left to right);
the nodes size and color represented the counts of interaction; the larger size and brighter color correspond to more frequent interactions for different
cell types. (B) The UMAP plot showed all four types of macrophage cells. (C) The heatmap showed the expression level of the immune checkpoint gene
on macrophages and represented by a row Z score. (D) Violin plots of marker genes for four subgroups. (E) The Heatmap demonstrated the expression
of the famous M2-like TAM markers. The expression level of the cell cluster was represented by a row Z score. (F) Immunofluorescence staining
analyzed the expression of CD163 and ATP5F1E in LUAD or normal specimens. The CD163+ ATP5F1E+ macrophages exclusively appeared in tumor
specimens. The scale bar represented 20µm. (G) The heatmap showed the differences in the activities of 50 hallmark pathways using GSVA. (H) The
heatmap showed the differences in expression regulation by transcription factors, and the AUC scores were estimated by SCENIC.
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pathway activation (22). The results supported the M2b

polarization in LUAD, and also shed light on the candidate

transcription factors and potential mechanisms.
Exhausted CD8+ T cells enriched in the
TME of LUAD

A total of 13670 CD8+ T cells were analyzed in this study.

And the CD8+ T cells were the predominant cell type in the

LUAD compared with the normal tissue-derived cells. And the

CD8+ T cells were then segregated into four subgroups. The cells

from C2 (MALAT1hi), C3 (HBBhi), and C4 (IGKChi) almost

specially originated from tumor tissues, while C1 (TMSB4Xhi)

was almost entirely derived from normal tissue (Figures 3A, B,

and Figure S4A). Furthermore, unlike the above groups, we

simultaneously divided the T cells into four groups (Tn, Naive T

cell; Tcm, Central Memory T cell; Tem, Effective Memory T Cell;

Te, Effector T cell) and visualized them. The biomarkers

expression by FeaturePlot function (Figure S3D) to represent

these four subtype groups CD8+ T situation.

Subsequently, the immune checkpoints were examined in all

the cell clusters (Figure 3C). The expressions of checkpoints,

CTLA-4, CD27, TIGIT, PDCD1 (PD-1), LAG3, TNFRSF9, and

HAVCR2 (TIM3), were upregulated in cells from C2. Based on

the knowledge of their role as exhaustion markers of T cells,

these data implied that C2 cells tended to be exhausted in the

TME of LUAD. We then verified this phenomenon through flow

cytometry. As exhibited in Figure 3D, the exhausted molecules

were highly enriched in the tumor tissues. Currently, the

treatment targets CTLA-4, PD-1, and PD-L1 as the most

popular immunotherapy were wildly used in the clinic. Since

the expression of CTLA-4 and PD-1 were the highest in the

exhausted T cell subgroup (C2) and the C2 cells were mainly of

tumor origin. Hence our data further confirmed that CTLA-4

and PD-1/PD-L1 might be significant targets for immune

therapies in LUAD.

We inferred cell differentiation trajectory using Monocle 2

pseudotime analysis. And t-Distributed Stochastic Neighbor

Embedding (tSNE) plot was utilized to visualize the trajectory

(Figure 3F). Interestingly, a subgroup of CD8+ T cells from C1

was obtained from normal tissue and transformed into tumor-

infiltrating T cells. At the terminal of the differentiation

trajectory was the exhausted T cell cluster (C2) (Figure 3E). In

this process, the immune checkpoints of promoting immune cell

activation and antitumor immune responses (CD160,

TNFRSF14) tended to be downregulated, while the immune

checkpoints (TIGIT, TNFRSF9, CTLA-4, LAG3, PD-1)

associated with exhausted T cell tended to be upregulated

(Figure 3F). A total of three modules of DEGs were identified,

and the CD8+ T cells were sorted into three subgroups based on

their expression profile (Figure S4B). In exhausted CD8+ T cells,

the cell adhesion, the ubiquitin-mediated proteolysis, and the
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histone modification gene set were highly enriched according to

a Metascape enrichment analysis. In addition, we noted that T

cell activation and cytokine production existed at the earlier

stage of CD8+ T differentiation. These results suggested that the

CD8+ T cells were activated in the early stages and then

exhausted after continuous antigen stimulation. The TOX was

the critical regulator of the differentiation of tumor-specific T

cells, which also showed a constant upregulation during this

process (Figure S4C) (25).

The SCENIC analysis was conducted to determine

transcriptional activity in LUAD-specific T cells (Figures 3G,

H). Four members (FLI1, TBX21, XBP1, and MAFF) involved in

the inflammatory response, cell proliferation, and activation

function were significantly activated in C1 (Figure 3G, H).

Furthermore, the CTL pathway also was enriched in C1

(Figure 3I). In contrast, these transcription factors’ activity was

significantly suppressed in C2, such as TGF- b (Figures 3G–I).

Addit ional ly , the STAT3 pathway associated with

immunosuppression was upregulated in C2 cells (Figure 3I).

These results suggested that the exhausted CD8+ T (C2) was

intimately related to an immunosuppressive microenvironment

(26). Additionally, these data provided clues for identifying new

candidate transcription factors involved in dysfunctional T cells

in LUAD patients.
Extremely abnormality in the metabolism
of LUAD

The malignant epithelial cells and non-malignant normal

epithelial cells were evaluated from scRNA-seq data using the

InferCNV algorithm. The DEGs between malignant epithelial

cells and non-malignant epithelial cells were identified. There

were 89 DEGs, including 29 up-regulated and 60 down-

regulated genes (Table S1). Astoundingly, the DEGs were

significantly associated with energy metabolic processes,

including upregulated and downregulated DEGs (Figure 4A).

Therefore, we analyzed the upregulated and downregulated

DEGs by Gene Ontology (GO) enrichment. As shown in

Figure 4B, catabolism was enriched in malignant cells, while

ATP and protein anabolism were suppressed. This result may

explain the immunosuppressive properties of LUAD TME.

As we had described in Figure 4C, the GSEA demonstrated

that the cell adhesion molecules pathway was enriched in

malignant cells. Figures S5A and B showed that three

members (CLND1, SDC1, and ALCAM) were upregulated in

malignant epithelial cells. At the same time, nearly all CLDN

family genes were involved in the cell adhesion molecules

pathway and expression in LUAD-derived cells (Figures S5A,

B). Notably, malignant cells especially expressed both CLDN1

and CLDN4, while CLDN18 was mainly expressed in the non-

malignant epithelial cells (Figures S5A, B). Additionally, samples

from the TCGA database showed CLND1 expression relatively
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1046121
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fan et al. 10.3389/fimmu.2022.1046121
A B

D E

F

G

IH

C

FIGURE 3

The CD8+ T cells in tumor TME preferred to be exhausted state. (A) The CD8+ T cells were subdivided into 4 clusters and represented on the tSNE
plot. (B) The top five markers of the four major cell clusters were shown on the dot plot; the color represented expression level, while the sizes of
dots represented abundance. (C) The heatmap demonstrated the downregulated or upregulated immune checkpoints in exhausted T cells. The
expression level was represented by a row Z score. (D) The exhausted T cells in LUAD were analyzed by flow cytometry. The PD1+CD8+ and TIM3
+CD8+ T cells demonstrated specifically enrichment in LUAD specimens. Gate from CD8+T cell, ****p<0.0001.. (E) The CD8+ T cells’
differentiation trajectory in LUAD and normal tissue and the color represented for clusters (up) or pseudotime (down). (F) The pseudo-heatmap
showed the variation of immune checkpoint genes expression with the CD8+ T cells differentiation in LUAD, which could be subgrouped into three
subcategories. (G) The tSNE plot represented the expression level of the indicated transcription factors (left) and the estimated AUC for these
transcription factors’ activity (right). (H) The heatmap showed the transcription factors’ activity through SCENIC estimated AUC scores. (I) Heatmap
of differences in activities of immune-related signaling pathways scored by GSVA.
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FIGURE 4

The metabolic abnormality was a specific characteristic of LUAD. (A) Volcano plot showed DEGs between malignant and non-malignant
epithelium. Upregulated and downregulated genes (FC >2 and FDR <0.01) were colored in red. (B) Analyzed upregulated and downregulated
DEGs using Gene Ontology. The brighter red color was considered a smaller FDR value (FDR <0.01). (C) The malignant epithelium was
significantly enriched in the ADHESION pathway by GSEA. (D) Immunofluorescence staining of CLDN1 and CLDN4 in LUAD or normal tissue.
CLDN1 and CLDN4 only emerged in LUAD tissues. The scale bar represented 20 µm. (E) The heatmap showed the transcription factors’ activity
through SCENIC estimated AUC scores. The value was implicated into a row Z score. (F) The bubble plot showed selected ligand-receptor pairs.
The CellChat R package investigated ligand-receptor interactions between malignant cells and other TME-infiltrated cell clusters.
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specific to cancer types (Figure S5C). The results indicated that

LUAD was characterized by a unique role in the cell adhesion

molecules pathway. To confirm their expression of CLDN4 and

CLDN1, immunofluorescence was performed using the laser

scanning confocal microscope (Figure 4D). As shown in Figures

S5B, CLDN1 and CLDN4 as conventional tumor markers were

expressed in malignant epithelial cells, while they were nearly

absent in non-malignant epithelial cells. Thus, we recognized

that CLDN1 or CLDN4 could be the potential therapeutic

targets for LUAD. Malignant LUAD cells were found to have

abnormal transcriptional regulatory networks using SCENIC

analysis. Notably, some transcriptional factors closely related

to LUAD tumorigenesis, such as HDAC2, were upregulated in

malignant cells. In comparison, the transcriptional activation

factors, such as FOXA2 (inhibiting tumor growth), were

downregulated in malignant epithelial cells (Figure 4E). These

data revealed the new regulatory networks controlled by

transcriptional activation factors and provided novel insights

into the mechanism of LUAD.

Finally, we investigated the interaction between cell subgroups

in the TME and the cancer cells using CellChat. The LUAD cells

demonstrated higher levels of midkine (MDK) interacting with

receptors expressed on the other TME cells (Figure 4F). The MDK

encoded protein promoted cancer cell growth, metastasis, and

angiogenesis. And the MDK interaction with the LRP1 receptor

was associated with immunosuppressive macrophage (M2)

differentiation (27). These ligand-receptor pairs (including

MIF − (CD74 or CXCR4), MIF − (CD74 or CD44), MDK–NCL,

and MDK-LRP1) were more frequently occurring in tumors (28).

And they served to regulate tumor growth and immunomodulatory

processes. These data were similar to previous studies and indicated

that abnormal energy metabolism was an important pathway for

LUAD progression (29).
Enrichment and heterogeneous
expression profile of fibroblasts in LUAD

As demonstrated in Figure 5A, fibroblasts were clustered

into four subclusters, and most C1 and half of the C3 fibroblasts

originated from tumor tissues. As shown in Figure 5B, the

majority of fibroblasts expressed a-SMA (ACTA2), a

conventional marker of fibroblasts. Bubble charts were used to

visualize the top five markers of the different clusters

(Figure 5C). We saw that ACTA2 was highly expressed mainly

in C1 and C3. To confirm the phenotype, we stained ACTA2

with immunofluorescence (Figure 5D). In addition, RGS5 was

known to promote cancer differentiation and metastasis in

NSCLC (30), which was also enhanced in C3.

The SCENIC analysis revealed that the transcriptional

activity of TCF12, CREB3L1, and STAT1, which were

associated with malignant progression, proliferation, and
Frontiers in Immunology 10
migration, were upregulated in cells from C1 (Figure 5E).

According to our data, tumor-associated fibroblasts exhibited

the promoting tumor growth phenotype.
Endothelial cells derived from tumors
contributed to the progression of LUAD

According to the present study, 8430 endothelial cells were

detected from the tumor or normal tissues. Six clusters were

identified among these cells (Figure 5F). Our subsequent analysis

identified each cluster’s markers and showed that most endothelial

cells in LUAD (C2) were blood endothelial cells (FLT1+,

Figures 5F, S6A). Four clusters, including C1, C5 (CCL5+), C4

(CCL21+), and C6 (COX4I2+), were enriched in normal tissues,

respectively. While C2 (VWA1+) and C3 (IL13RA2+) were nearly

derived from tumor tissues (Figures 5F, G). Numerous reports

had shown that the IL13RA2+ endothelial subgroup played

important roles in immunosuppression in the LUAD TME (31).

No marker was detected in C1 cells, which were mainly derived

from normal tissues. Nevertheless, their role in the biological

process couldn’t ignore.

To further identify biomarkers associated with tumors, the

endothelial cells’marker genes and the upregulated genes in tumor-

derived endothelial cells were overlapped. Then we obtained one

gene, RALA (Figure 5H; Figures S6B, C). Almost all cancer types

showed an increase in RALA, which was well-known as an

endothelial activation marker (32) (Figure 5I). However, the

TCGA bulk RNA-seq data showed the expression of RALA to be

downregulated in LUAD (Figure S6D). Despite this, our single-cell

RNA sequencing analysis further revealed that the RALA was the

tumor-derived endothelial cell marker in LUAD. It could serve as a

potential therapeutic target for LUAD.

Based on the result of the GSVA pathway analysis on

Hallmarker sets, it was found that two endothelial cell clusters

(C1 and C3) appeared prominent and significant differences

from each other (Figure 5J). Remarkably, C1 cells exhibited an

enriched inflammatory response. Instead, C3 exhibited an

enriched immune inhibitory pathway, which indicated that a

high suppression phenotype was derived from the cells from C3.

Furthermore, an increased proliferation phenotype (MYC

pathway) was strongly enriched in C3. The above observations

confirmed that tumor-derived endothelial cells contributed to

the progression of LUAD.
Antitumor immune cells were associated
with advanced prognosis in LUAD

As shown in Figure 6A, the two clusters (macrophage C4

and CD8+ T cell C1) were associated with better overall survival

(OS), disease-specific survival (DSS), or disease-free interval
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FIGURE 5

Fibroblasts and endothelial cells demonstrated high heterogeneity in LUAD. (A) UMAP plot of four fibroblast clusters and tissue type origin
(normal or tumor). (B) UMAP plot of the expression level of ACTA2. (C) The top five markers of four clusters were shown on the dot plot; color
represented expression level, and sizes represented abundance. (D) Immunofluorescence of ACTA2 in tissue sections. The scale bar represented
20 µm. (E) The heatmap showed the transcription factors’ activity through SCENIC estimated AUC scores in fibroblast. (F) The endothelial cells
were color-coded (left) for six endothelial clusters and (right) for tissues of normal or tumor origin. (G) The marker gene for different endothelial
clusters. (H) The Venn diagram intersected the endothelial-specific markers and the DEGs between different endothelial cell types (tumor and
normal). One overlapped gene was identified (left). The expression level of RALA was visualized by the violin plots (right). (I) The
immunofluorescence of RALA in LUAD or normal tissue sections. The RALA was upregulated in LUAD tissue. The scale bar represented 20 µm.
(J) The GSVA estimated the 50 hallmark pathway activities in the different cell clusters.
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(DFI) (p < 0.05). The proportion of these cells in the LUAD was

significantly lower compared with that of the normal tissue

(Figure 1E). Based on these results, we deduced the M0-like

macrophages and CD8+ C1 cells with normal functions may be

involved in the antitumor function of the TME in LUAD. NK

cells C1 and C3 had a better DSS (p = 0.006, p = 0.011), implying

that unidentified mechanisms may contribute to the antitumor

process in LUAD via NK cells.

Notably, a significant reduction in the proportion of the

macrophage C4 and CD8+ T cells was significantly decreased in

advanced tumor stage samples (Figures 6B, C). To determine the

independent prognosis of macrophage Cluster 4 or CD8+T

Cluster 1, we performed multivariate Cox regression analysis

for OS, including clinical features (Stage, T, M, N) and the

estimated proportion of cell-types (Figure S7). We found only

the macrophage Cluster 4 was an independent predictor for

better OS. Our research demonstrated that macrophage C4 and

CD8+ T cell C1 exerted antitumor activities in LUAD. The

number of these two clusters decreased as the LUAD progressed,

confirming their antitumor function.
Discussion

Nowadays, the treatment of LUAD is still a challenge to

clinicians. Although immunotherapy is considered a first-line

treatment for patients with LUAD, the effectiveness and drug

resistance of anti-PD-1 treatment remain notable problems
Fonties in mmunolo 12
despite the possibility of benefit to a few patients. According

to a recent study, both the tumor-infiltrating cells and the cancer

cells contribute to therapeutic non-response or drug resistance

(33), and the underlying mechanisms need to be closely

investigated. In the present study, our analysis of multiple

LUAD scRNA-seq datasets unveiled an in-depth analysis of

immune and unimmune cells, and we also utilized the

immunofluorescence technique to identify the markers of the

crucial cell subgroups in clinical cohorts. In the present work, the

tumor-specific altered pathways, a series of novel cell subgroups,

and novel transcriptional activation factors-driven regulatory

networks were identified in LUAD. The results would provide

novel targets for prognosis and treatment and contribute to

better understanding of intratumoral heterogeneity in LUAD.

Although several observations had been reported for

intratumoral heterogeneity, much work still needed to be done

due to the highly intricated TME in LUAD. Several findings need to

note . F i r s t , M0- l ike macrophages (C4) exhib i ted

KIAA0101+FABP4- phenotype, M2a-like macrophages (C1)

exhibited KIAA010-FABP4+ phenotype and M2b-like

macrophages (C2) exhibited the ATP5F1E+MMP12- phenotype,

while another ATP5F1E+ MMP12+ (C3) subgroup similar to M1

macrophages exhibited pro-inflammatory properties. Notably, in

the TCGA cohort, patients in the M0 subgroup had advanced

outcomes, while the ATP5F1E+ subgroup (C2 and C3) showed the

opposite. In the analysis of immune checkpoints and pathways,

results indicated that the M2b-like TAMs had immunosuppressive

properties in the TME via downregulation of Th1 cytokines and
A B

C

FIGURE 6

Study of the prognostic effect in the TCGA cohort. (A) The lollipop plot showed the correlation between the different cell clusters and disease-
free interval (DFI), disease-specific survival (DSS), or overall survival (OS). The risk was measured in Z score with a Cox regression model. The
clusters with better outcomes (p < 0.05). (B, C) Line charts showed TAM C4 and CD8 C1 enriched in early-stage LUAD tissues, but showed
opposite properties in the late-stage. Measured with the one-way ANOVA test.
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upregulation of Th2 cytokines, which could induce a shift from Th1

to Th2 dominance. Through SCENIC analysis, we identified several

transcriptional factors (such as JUN) related to the

immunosuppressive properties of LUAD, and we firstly found

that JUN could be a novel immunotherapy target in LUAD.

Second, we found that the exhausted CD8+ T cells were highly

enriched in LUAD (C2, C3, and C4), whereas the C1, mainly

derived fromnormal tissue, showedabetter prognosis in theTCGA

cohort. This resultwas consistentwith the study that the infiltration

of exhausted CD8+ T cells contributed to a worse prognosis in

recent studies (34). Pseudotime and differentiation trajectory

analysis revealed the T cell exhausted in LUAD and showed the

signalingpathways involved in thisprocess.Wededuced that itmay

be possible to reverse T cell dysfunction by intervention in these

pathways to revive CD8+ T cells against tumor activity (such as

TIGIT, TNFRSF9, CTLA-4, LAG3, PD-1), and this approach

maybe represented new strategies for immunotherapy against

LUAD. Previous studies had demonstrated that TGF- b was

highly expressed in LUAD, which could block the efficacy of PD-

1 and promote tumor growth andmetastasis, whichwas associated

with poor prognosis (35–37). This was consistent with the high

expression of TGF- b in exhausted CD8+ T cells (C2) in our study.

Therefore, it was suggested that simultaneous blockade of TGF- b
and PD-1 signaling pathways would obtain a better antitumor

effect. Furthermore, we discovered novel transcriptional factors

alterations FLI1, TBX21, XBP1, and MAFF that may contribute to

the exhaustion ofT cells. Thesefindingswould further enhance our

understanding of the LUAD pathological condition Based on our

deconvolution results, we found that the patients with a high

proportion of macrophage C4 exhibited better clinical outcomes.

Meanwhile,CD8+C1with the activatedTcells enrichedwas related

to a better prognosis. In contrast, the M2b polarization and T cell

exhaustion may gradually increase from low to high grades of

LUAD,which implied thatM2b polarization and T cell exhaustion

played a critical role in LUAD progression. Because immune

checkpoints mediated M2b polarization and T cell exhaustion, it

was confirmed that blocking immune checkpoints provided a

credible approach to LUAD intervention. Consequently, we

further confirmed the important role of exhausted T cells in

LUAD in this study.

Third, we demonstrated abnormal energy metabolism in

LUAD malignant cells. We found LUAD tumorigenesis was

significantly correlated with the adhesion molecule pathway and

abnormal energy metabolism, which had been rarely mentioned

before. Notably, the abnormal adhesion molecule pathway was

found inmalignant epithelial cells, whichwas poorly reported up to

date and worthy of further in-depth study. Therefore, our study

proposes a family of adhesion molecules, i.g. CLND1 and CLND4

as novel therapeutic targets in LUAD treatment. Then, we

demonstrated the majority of fibroblasts expressed a-SMA

(ACTA2) driven from tumor tissues. And, we further found the

expressionofRALAwas specificallyupregulated inendothelial cells
Frontiers in Immunology 13
driven from tumor tissues. It is worth noting that RALAwas shown

downregulated in LUAD based on the TCGA bulk RNA-seq data,

while almost all other cancer types showed an increase in RALA.

Hence, it was for the first time revealed that targeting the RALA in

tumor endothelial cells maybe a potential therapeutic target

for LUAD.
Conclusion

Our study revealed immune and non-immune cell subtypes

and type-specific gene expression in TME, and shed light on

novel therapeutic strategies via multicenter scRNA-seq datasets

analysis and verification in our clinical cohorts.
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