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Immune cells are capable of influencing tumor progression in the tumor

microenvironment (TME). Meanwhile, one mechanism by which tumor

modulate immune cells function is through extracellular vesicles (EVs), which

are cell-derived extracellular membrane vesicles. EVs can act as mediators of

intercellular communication and can deliver nucleic acids, proteins, lipids, and

other signaling molecules between cells. In recent years, studies have found

that EVs play a crucial role in the communication between tumor cells and

immune cells. Innate immunity is the first-line response of the immune system

against tumor progression. Therefore, tumor cell-derived EVs (TDEVs) which

modulate the functional change of innate immune cells serve important

functions in the context of tumor progression. Emerging evidence has

shown that TDEVs dually enhance or suppress innate immunity through

various pathways. This review aims to summarize the influence of TDEVs on

macrophages, dendritic cells, neutrophils, and natural killer cells. We also

summarize their further effects on the progression of tumors, which may

provide new ideas for developing novel tumor therapies targeting EVs.
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1 Introduction

Extracellular vesicles (EVs) usually refer to a group of

heterogeneous, cell-released, double-membraned 150-1000 nm

structure vesicles (1, 2). To address the considerable discrepancy

in the definitions of EV subtypes, the International Society for

Extracellular Vesicles (ISEV) suggested using “small EVs”

(sEVs) for EVs under 200nm and “medium/large EVs” (m/

lEVs) for EVs larger than 200nm in the position paper published

in 2018 (1). In this article, the term “EVs” represents all cell-

derived extracellular membrane vesicles (though most studies

investigate sEVs).

The biogenesis of EVs has been well characterized (3). It is

known that EVs originate from endosomes that are divided into

3 parts: early endosomes, late endosomes, and recycling

endosomes. Invaginated vesicles first form intraluminal

vesicles and integrate their cargoes into early endosomes. This

cargo can consist of proteins, nucleic acids, and lipids, etc.

Endosomes that internalize cargo to be recycled are classified

as “recycling endosomes”. The rest of the early endosomes are

subsequently transformed into late endosomes (4), also called

multi-vesicular bodies (MVBs) (5), while dividing their cargo

into vesicles budding in the lumen of the late endosomes. Four

multi-protein complexes, endosomal sorting complexes required

for transport (ESCRT) 0, I, II, and III, are involved in this step

(6–8). ESCRT-0 has an association with cargo gathering in a

ubiquitin-dependent process. The recruitment of ESCRT-I and

II promotes endosomal membrane budding and ESCRT III is

essential for completing budding. If the cargoes are destined to

be degraded, the late endosomes will fuse with lysosomes and

their cargoes will be digested. Other late endosomes carrying

contents that are fated to be exported fuse with the plasma

membrane and their internal vesicles are exported as EVs. Some

ESCRT-independent mechanisms of EV biogenesis have also

been reported, such as the biogenesis mechanism related to

ceramide signaling pathways (9, 10).

Loaded with specific proteins, nucleic acids, and lipids, EVs

play an important role in intercellular communication. In the

1990s, Raposo et al. reported that highly enriched MHC II

molecules from Epstein-Barre Virus (EBV)-transformed B cell-

derived EVs provoked certain CD4+ T cell clones,

demonstrating EVs to be the critical mediator of intercellular

communication (11). The binding specificity of EVs and

recipient cells may be endowed by ligands expressed on their

membranes. Thus, EVs can be used as potential targets of

biomarker testing and transporters of drugs and genes.

Numerous recent studies have found that EVs are closely

related to cancer progression (12–14). Tumor-derived EVs

(TDEVs) take part in the formation of the tumor

microenvironment (TME), epithelial-mesenchymal transition

(EMT), angiogenesis, and metastasis. EMT and angiogenesis

are both crucial processes for tumor metastasis and are regulated

by EVs. For example, by interacting with endothelial cells
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TDEVs display a capacity for promoting angiogenesis by

transporting activated epidermal growth factor receptor

(EGFR) (15). Moreover, EVs facilitate tumor metastasis by

mediating extracellular matrix (ECM) remodeling. Matrix

metalloproteinase (MMP) is the major performing protein in

tissue remodeling (16) and EVs derived from glioblastoma

tumors have been found to increase the expression of MMP14

RNA in microglia (17). It has been found that macrophage

migration inhibitory factor (MIF) existing in EVs derived

from pancreatic ductal adenocarcinoma (PDAC) formed a

pre-metastatic niche in the liver thus advancing liver

metastasis (18). In addition, TDEVs can deliver their cargo to

cancer cells, immune cells, and stromal cells. TDEVs exert a dual

effect on tumor development by inhibiting natural killer (NK)

cytotoxicity, mediating neutrophil differentiation, and

influencing dendritic cell function. In many cases, TDEVs

stimulate the pro-inflammatory M2 phenotype differentiation

of macrophages and create an immunosuppressive

microenvironment in tumor tissue. PD-L1 packed in TDEVs

prevents T cell activation and stops tumor cells from being

identified and killed (19, 20). These studies all provide evidence

that TDEVs are engaged in many processes of tumor

progression that affect immune cell functions.

Innate immune cells can be divided into classical innate

immune cells, innate lymphoid cells (ILCs), and innate-like

lymphocytes (ILLs). Classical innate immune cells include

monocytes, macrophages, conventional dendritic cells,

granulocytes, and mast cells. Here we review the studies

focusing on the modulatory functions of TDEVs on four kinds

of innate immune cells: macrophages, dendritic cells,

neutrophils of granulocytes, and natural killer (NK) of ILCs.

Macrophages are differentiated frommonocytes that migrate

to tissues and organs under the influence of chemokines such as

monocyte chemoattractant protein 1 (MCP-1). Induced by

pathogens or different types of cytokines in the local

microenvironment, monocytes differentiate into two

macrophage subsets with different functional properties: type-1

macrophage (M1, classically activated macrophage) and type-2

macrophage (M2, alternatively activated macrophage).

Compared with M1, M2 commonly accounts for a larger

proportion of TME in solid tumors and results in tumor

immune escape (21). Macrophages perform a variety of

important functions including: phagocytosis and sterilization,

inflammatory reaction, antigen-presenting, and immune

regulation. Thus, macrophages are fundamental for the

development and progression of tumors.

Dendritic cells (DCs) are functionally sorted as conventional

DCs (cDCs), plasmacytoid DCs (pDCs), and monocyte-derived

inflammatory DCs (moDCs) while the last type only appears

during inflammation (22). cDCs generally participate in

immunity as antigen-presenting cells (APC), acting as a bridge

between adaptive and innate immune systems. They are essential

for the induction and maintenance of anti-tumor immunity. In
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TME the antigen-presenting function is impaired (23).

Depending on distinct environmental signals, tumor-

infiltrating dendritic cells (TIDC) display either anti-tumor or

pro-tumor functions. In most cases, TIDCs exhibit a tolerogenic

phenotype under the impact of immune-suppressive factors like

vascular endothelial growth factor (VEGF), IL10, TGFb, and
prostaglandin E2 (PGE2), subduing Th1-activating ability while

enhancing Th2 and Treg responding (24). As a special lineage of

DCs, pDCs are poor in antigen presentation and strong in IFN

production. They contribute to tumor growth probably by

activating Treg and forming an immune-subversive

environment (25).

Neutrophils account for 70-80% of peripheral granulocytes.

They possess a high generation rate of 1×107 per minute but are

short-lived (about 2-3 days in circulation). Within the cancer

framework, neutrophils show N1 and N2 phenotypes,

respectively acting as tumor suppressors and tumor promoters

(22). Neutrophils are pro-inflammatory in the early stages of the

tumor, but gradually display the immunosuppressive phenotype

as the tumor progresses (26). They produce reactive oxygen/

nitrogen species (ROS/RNS) to regulate inflammation, secret

neutrophil elastase (NE) and MMP8/9 to accelerate invasion,

release Oncostatin-M to encourage angiogenesis, and make

PGE2 to promote tumor development (27).

NK cells are a subset of ILCs. There is a plethora of evidence

indicating that NK receptor NKG2D assists the immune system

in recognizing tumors. NK cells kill target cells and restrain

primary tumor progression through various pathways including:

antibody-dependent cell-mediated cytotoxicity (ADCC), Fas/

FasL pathway, perforin/granzyme pathway, and release of

cytokines such as TNF (28). Nevertheless, the killing efficiency

of NK is limited due to the presence of TGF-b in plasma of both

solid and hematological tumors (29–31). TGF-b can reduce the

expression of activating receptors (including NKG2D, NKp30

and NKp46) and upregulate the expression of the inhibitory

receptor NKG2A (29–31).

In the following sections we discuss the diverse impacts of

TDEVs on innate immune cells, which including macrophages,

dendritic cells, neutrophils, and NK cells. We further summarize

the effects of these regulated immune cells on tumor progression.

We will focus on the cargoes of TDEVs which modulate innate

immunity is the promising novel targets for tumor diagnosis

and treatment.
2 Macrophage

Macrophages have multiple functions, including

phagocytosis and sterilization, and participation in

inflammatory reactions, presenting antigens, and immune

regulation (32). They recognize antigenic foreign bodies

through surface pattern recognition receptors (PRR) and
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opsonic receptors, swallowing pathogens into the cell through

receptor-mediated endocytosis. Sterilization is conducted by

reactive oxygen intermediate (ROI) and reactive nitrogen

intermediate (RNI), or directly by lysosomes and accumulated

lactic acid. IgG Fc receptors on the surface of activated

macrophages mediate ADCC to kill tumor cells or virus-

infected cells (33). Activated macrophages also synthesize and

secret chemokines and cytokines to participate in the

inflammatory response. M1 and M2 macrophages have

distinct secretion profiles (34). M1 macrophages tend to

release chemokines (such as CCL2, CCL3, and CXCL8) and

pro-inflammatory cytokines (such as IL-6, TNF-a, and IL-1b
(35–37), while M2 macrophages produce anti-inflammatory

factors like IL-10 and TGF-b more (34, 38). Peripheral organ-

resident macrophages swallow pathogens, process them into

small immunogenic peptides, present peptide fragments to the

cell surface for recognition by CD4+ Th cells and trigger

adaptive immune response (39, 40). Macrophages play a dual

role in tumor immunity (41). On the one hand, macrophages

induce specific anti-tumor responses by presenting antigens as

professional APCs. Activated macrophages kill tumor cells

through non-specific phagocytosis or ADCC, and also

indirectly by secreting TNF, NO, and other cytotoxic factors.

On the other hand, macrophages are polarized into TAMs under

the influence of certain molecules released by tumor cells,

promoting tumor development.
2.1 TDEVs regulate the polarization
of macrophage

It is well known that macrophages participate in innate

immune responses (42). CD14 and CD68 are the characteristic

surface markers of the human macrophages (43–46). Circulating

monocytes become macrophages when infiltrating into tissues.

Based on the expression of specific surface markers, monocyte-

derived macrophages can be polarized and divided into two

phenotypes including M1 and M2 (47). In humans, M1

macrophages specifically express CD64, CD86, MARCO,

CXCL9, CXCL10, CXCL11, NOS2, and SOCS1 (46, 48–51) on

the surface, while M2 macrophages are identified by expressing

TGM2, CD23, CD163, CD206, ARG1 and CCL22 (44, 46, 48, 49,

52–54). M1 macrophages, also known as classically activated

macrophages, are induced by Th1 cytokines such as IFN-g, IL-
1b, and LPS. They secrete pro-inflammatory cytokines and

function as anti-tumor cells. M1 macrophages bear the

antigen-presenting ability so that they can activate adaptive

immunity and bring about tissue damage (39, 40, 42, 55, 56).

Secreting inhibitory factors like IL-4, IL-10, and IL-13, M2

macrophages show pro-tumor activity by promoting local

immunosuppression, angiogenesis, and metastasis (57, 58).

Tumor-associated macrophages (TAM), taking up 50% of the

host infiltrating cells in TME, are usually considered as M2
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phenotype (59). Meanwhile, there are many subsets in between

that have yet to be clarified, expressing both M1 and M2 markers

(60–62). Studies have shown that the polarization of

macrophages in TME towards M1 or M2 can be promoted by
Frontiers in Immunology 04
contents in TDEVs. In Table 1 we summarize previous studies

that investigate TDEVs cargoes in regulating the polarization of

the macrophage, including miRNAs, lncRNAs, circRNAs,

and proteins.
TABLE 1 Cargoes of TDEVs in promoting the polarization of macrophages.

Cargo Cancer type Mechanism Polarization References

miRNAs miR-21 Bladder cancer PI3K/AKT pathway M2 (63)

miR-25-3p, miR-130b-3p,
miR-425-5p

CRC PTEN/PI3K/AKT pathway M2 (64)

miR-301a-3p Esophageal squamous cancer PTEN/PI3K/AKT pathway M2 (65)

miR-222 Adriamycin-resistant breast cancer PTEN/PI3K/AKT pathway M2 (66)

miR-19b-3p Lung adenocarcinoma Hippo pathway M2 (67)

miR-423-3p Cervical cancer Blocking the expression of CDK4 mRNA M2 (68)

miR-21 Hypoxic tumor cells, HNSCC,
bladder cancer

– M2 (63, 69, 70)

miR-138-5p Breast cancer Inhibiting KDM6B expression M2 (71)

miR-770 NCSLC Targeting MAP3K1 M1 (72)

miR-130 Breast cancer M2 macrophages reprogramming M1 (73)

miR-9 HPV + HNSCC – M1 (74)

lncRNAs PCAT6 NSCLC – M2 (75)

ARSR Renal cell carcinoma STST3 pathway M2 (76)

HMMR-AS1 HCC MiR-147a/ARID3A axis M2 (77)

TP73-AS1 Nasopharyngeal carcinoma Binding with miR-342-3p M2 (78)

FGD5-AS1 Pancreatic cancer STAT3/NF-kB pathway M2 (79)

ELFN1-AS1 Osteosarcoma Sponging miR-138-5p and miR-1291 M2 (80)

HCG18 Gastric cancer Sponging miR-875-3p M2 (81)

circRNAs hsa-circ-0048117 Esophageal squamous cancer Sponging miR-140 M2 (82)

hsa_circ_0017252 Gastric cancer Sponging miR-17-5p M2 (83)

circFARSA NSCLC PTEN/PI3K/AKT pathway M2 (84)

circ_0001142 Breast cancer Circ_0001142/miR-361-3p/PIK3CB pathway M2 (85)

circPVT1 Lung cancer MiR-124-3p/EZH2 axis M2 (86)

circSAFB2 Renal cell carcinoma MiR-620/JAK1/STAT3 axis M2 (87)

circNEIL3 Glioma Stabilizing IGF2BP3 M2 (88)

protein CSF-1, MCP-1/CCL2, EMAP2/
AIMP1 and LTA4H

Melanoma, skin squamous cell
carcinoma and lung cancer

– M2 (89)

gp130 Diffuse large B-cell lymphoma STAT3 pathway M2 (90)

leptin Gallbladder cancer STAT3 pathway M2 (91)

PTPRO Breast cancer STAT3 pathway M1 (92)

RNF126 Nasopharyngeal carcinoma PTEN/PI3K/AKT pathway M2 (93)

ANLN HNSCC PTEN/PI3K/AKT pathway M2 (94)

TIM-3 Osteosarcoma Increases the expression of N-cadherin and
Vimentin, decreases E-cadherin expression

M2 (95)

Melanoma – M2 (96)

PD-L1 Oral squamous
carcinoma cells

Up-regulate the expression of PD-L1 M2 (97)

ICAM-1 PDAC – M2 (98)

CXCL14 Prostate cancer NF-kB pathway M2 (99, 100)

avb6 Prostate cancer – M2 (101)

avb6 negative Prostate cancer – Prevent M2
polarization

(101)
fr
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2.1.1 miRNAs cargo in TDEVs
Tumor-derived miRNAs assist in M2 polarization, thereby

enhancing tumor proliferation through intercellular dialogue. The

PTEN/PI3K/AKT signaling pathway is a common mechanism by

which miRNAs regulate macrophage polarization. In

macrophages, activating the PI3K/AKT pathway leads to the

activation of signal transducer and activator of transcription 3

(STAT3), which is crucial for the differentiation of macrophages

into M2 phenotype (102, 103). For example, miR−21 is carried in

human bladder T24 cancer cell-derived EVs and promotes

macrophages to M2 polarization, which through inhibited

PI3K/AKT dephosphorylation leads to increase STAT3

activation (63). The miRNAs (miR-25-3p, miR-130b-3p, miR-

425-5p) transferred from colorectal cancer (CRC) to

macrophages via EVs can enhance M2 polarization by adjusting

PTEN through the activation of PI3K/Akt signaling pathway,

which finally leads to tumor EMT, angiogenesis, and liver

metastasis (64). The PTEN/PI3K/AKT signaling pathway is also

the target of miR-301a-3p from esophageal squamous cancer cell-

derived EVs (65) and miR-222 fromAdriamycin-resistant MCF-7

breast cancer cell-derived EVs (66) to induce M2 polarization.

Chen et al. have reported that highly enrichedmiR-19b-3p in lung

adenocarcinoma-derived EVs promoted M2 polarization through

the Hippo pathway (67). MiR-19b-3p targets PTPRD, suppresses

the PTPRD-mediated dephosphorylation of STAT3, activates

STAT3, and induces polarization (67). In addition, Yan et al.

have found that cervical cancer cell-secreted EVs transported

miR-423-3p to stimulate macrophage M2 polarization by

blocking the expression of CDK4 mRNA (68).

EVs produced by hypoxic tumor cells are enclosed with

miR-21 and promote the transformation from monocyte to M2-

polarized macrophage, and form an immunosuppression

environment in TME (69). The same effect of EV miR-21 has

also been observed in head and neck squamous cell carcinoma

(HNSCC) and bladder cancer (63, 70). Moreover, breast cancer

cell-derived EVs carrying miR-138-5p suppress M1 polarization

and upgrade M2 polarization through the inhibition of

epigenetic factor lysine demethylase 6B (KDM6B) expression

in a suspension coculture system comprising breast cancer cells

and macrophages (71).

Notably, some miRNAs in EVs are capable of suppressing

tumor progression. Non-small cell lung carcinoma (NSCLC)

cell-derived extracellular vesicular miR-770 has been confirmed

to inhibit M2 macrophage polarization by targeting MAP3K1,

which in turn prevents tumor invasion (72). MiR-130

originating from breast cancer cells leads to a reprogramming

from M2 macrophages to M1 macrophages while the

upregulation of M1 specific markers and downregulation of

M2 specific markers were tested. After reprogramming,

the phagocytic function of macrophages is enhanced

and the ability to metastasize is impaired (73). Furthermore,

miR-9-enriched EVs derived from HPV + HNSCC promote M1
Frontiers in Immunology 05
phenotype polarization and then improve the radiosensitivity of

HNSCC (74).

2.1.2 lncRNAs cargo in TDEVs
lncRNAs are RNAs longer than 200 nucleotides with a

relatively restricted protein-coding capacity (104). lncRNAs

can promote M2 polarization in many ways. Chen et al. found

that the knockdown of lncRNA PCAT6 could prevent its

positive effect on M2 polarization and in turn accelerated

NSCLC development (75). lncARSR-containing EVs derived

from renal cell carcinoma achieve a similar effect via the

STAT3 pathway (76). MiR-147a/ARID3A axis is activated

under hypoxia condition by hepatocellular carcinoma (HCC)-

derived EVs del iver ing lncRNA HMMR-AS1 (77) .

Mechanistically, HMMR-AS1 interacts with miR-147a to

reduce ARID3A degradation after which M2 macrophage

polarization and the development of HCC are promoted (77).

In addition, lncRNA TP73-AS1 is highly expressed in

nasopharyngeal carcinoma cell-derived EVs, which binds to

miR-342-3p, promotes the M2 polarization of macrophages,

and reinforces the motility and microtubule formation of

macrophages (78). Furthermore, FGD5-AS1 enriched in

pancreatic cancer cell-derived EVs mediates M2 polarization

of macrophages by activating STAT3/NF-kB pathway (79).

Interestingly, previous studies have found that lncRNAs can

bind with miRNA to remove them from circulation and then

promote tumor growth. For example, lncRNA ELFN1-AS1

exists in osteosarcoma cell-derived EVs sponge miR-138-5p

and miR-1291 to suppress the M2 polarization (80). The

down-regulation of miR-875-3p reached by lncRNA HCG18

in gastric cancer cell-derived EVs facilitates the M2 polarization

of macrophages (81).

In addition to regulating macrophage polarization, lncRNAs

also cause chemoresistance. It has been confirmed that

glioblastoma cell-derived extracellular vesicular lnc-TALC

induces temozolomide resistance by binding to ENO1 and

phosphorylating p38 MAPK (105). LncRNA PART1 in

esophageal squamous cell carcinoma cell-derived EVs

competitively combines with miR-129 to raise the expression

of Bcl-2 in esophageal squamous cell carcinoma cells, thus

inducing the drug resistance of tumor cells to gefitinib (106).

This indicates that lncRNA in EVs may serve as a promising

therapeutic target for cancer patients.
2.1.3 circRNAs cargo in TDEVs
Emerging studies indicate that circRNAs play a critical role

in tumor-induced immune responses. CircRNAs sometimes

serve as miRNA sponges, binding with them and removing

them from circulation. For instance, esophageal squamous

cancer cell-derived hsa-circ-0048117 is transmitted to

macrophages, works as a miR-140 sponge, and mediates M2
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polarization (82). Hsa_circ_0017252-containing EVs of gastric

cancer inhibits M2 polarization and tumor development

through sponging miR-17-5p (83).

Various signaling pathways are involved in the regulation of

macrophage polarization. Tumor-derived circFARSA delivered by

EVs regulates M2 polarization via PTEN/PI3K/AKT pathway to

raise the metastatic potential of NSCLC (84). Circ_0001142 carried

by breast cancer cell-released EVs influences macrophages’

autophagy and polarization via circ_0001142/miR-361-3p/

PIK3CB pathway (85). Circ_0001142, targeting PIK3CB, is

capable of activating the PI3K/AKT - an effect that can be

reversed by miR-361-3p (85). There are other signaling pathways

circRNAs interfere with, resulting in M2 polarization and tumor

progression, such as the miR-124-3p/EZH2 axis targeted by

circPVT1 in EVs and miR-620/JAK1/STAT3 axis targeted by

circSAFB2 in EVs. Lung cancer cell-derived circPVT1 increases

EZH2 expression by downregulatingmiR-124-3p expression so that

macrophages are induced to polarize towards anM2-like phenotype

(86). CircSAFB2 in renal cell carcinoma cell-derived EVs

functioned as a miR-620 sponge while JAK1 and STAT3 protein

levels were tested markedly lower after co-culturing with miR-620

mimics (87). This correlates with the result that renal cell carcinoma

cell-derived EVs induce macrophages express a higher level of JAK1

and STAT3 protein, and miR-620 can prevent the JAK1 and

STAT3 expression (87). In addition, circNEIL3 has been shown

to contribute to tumor progression by stabilizing the oncogenic

protein IGF2BP3, which is packaged by hnRNPA2B1 in glioma

cells and transported to TAMs (88).

2.1.4 Protein cargo in TDEVs
Previous studies have found that proteins carried by TDEVs

affect the polarization of macrophages in multiple ways. Park et al.

reported a 3-4-fold increase of total EV-containing protein per cell

under hypoxia conditions in melanoma cell lines (B16-F0 and

A375), skin squamous cell carcinoma cell line (A431), and lung

cancer cell line (A549). Several abundant proteins such as CSF-1,

MCP-1/CCL2, EMAP2/AIMP1, and LTA4Hwere detected in these

EVs, which help in monocyte/macrophage recruitment and M2

polarization (89). Diffuse large B-cell lymphoma-derived EVs are

enriched in gp130, which functions as the activator of the STAT3

signaling pathway to stimulate downstream targets like BCL2,

SURVIVIN, and BAX to promote M2 polarization (90). Similarly,

leptin existing in the EVs derived from gallbladder cancer boosts

M2 macrophage polarization by activating the STAT3 signaling

pathway as well (91). On the contrary, protein tyrosine phosphatase

receptor type O (PTPRO) in EVs produced by breast cancer cells

induces M1 polarization via inactivating the STAT signaling

pathway and then inhibits tumor migration (92). In addition,

nasopharyngeal carcinoma-derived EVs containing RNF126

induce the M2 polarization of macrophages and contribute to the

invasion and metastasis of tumors. Yu et al. have demonstrated that

RNF126 degrades PTEN and provokes the PI3K/AKT
Frontiers in Immunology 06
pathway to regulate macrophage polarization (93). Furthermore,

HNSCC-derived EVs carrying Anillin, actin-binding protein

(ANLN), induced M2 polarization of macrophages via PTEN/

PI3K/AKT signaling pathway (94).

The T-cell immunoglobulin and mucin domain 3 (TIM-3),

also known as HAVCR2, has been proved to express in activated

Th1 cells, Tregs, macrophages, dendritic cells, NK cells,

and tumor cells (107, 108). Cheng Z. et al. found that the

TIM-3 in osteosarcoma cells-derived EVs promoted M2

polarization, tumor invasion, metastasis, and EMT (95). The

underlying mechanism is that TIM-3 increases the expression of

N-cadherin and Vimentin, but decreases that of E-cadherin in

infiltrated monocytes (95). While Li et al. also demonstrated that

TIM-3 enriched in melanoma cell-derived EVs facilitated M2

type differentiation but the mechanism remained elusive (96).

It is well known that the plasma membrane-associated

receptors play an important role in the function of immune cells.

The surface receptors can also be packed in TDEVs and exert an

influence onmacrophages in different manners. Yuan et al. revealed

the mechanism underlying endoplasmic reticulum stress and tumor

development. They found that endoplasmic reticulum stress led oral

squamous cell carcinoma (OSCC) to produce EVs loaded with PD-

L1 and up-regulate the expression of PD-L1 in macrophages, thus

driving the M2 macrophage polarization (97). In addition, ICAM-1

enriched in PDAC-derived EVs binds to CD11c on the surface of

macrophages. Besides inducing M2 phenotype differentiation, these

EVs also up-regulate the secretion of pro-tumoral molecules like

VEGF, MCP-1, IL-6, IL-1b, MMP-9, and TNFa in macrophages

exposed (98). Moreover, evidence indicates that prostate cancer cell-

derived EVs loading CXCL14 promotes M2 polarization through

activating NF-kB signaling, which is a key regulator of macrophage

function and tumor progression (99, 100). Prostate cancer cells

release two kinds of EVs, including avb6 (a surface receptor of the
integrin family) positive and negative expression EVs. The avb6-
positive EVs promote the M2 type differentiation of peripheral

blood mononuclear cells, while the negative ones prevent this

effect (101).
2.2 TDEVs regulate the pro-inflammatory
responses of macrophage

Macrophages can secret pro-inflammatory factors to regulate

fibrosis, metabolism, cellular debris, and T cell function directly or

indirectly (109). For example, IL-6 released from macrophages

dominates in phosphorylating STAT3 and further promotes

tumor growth and metastasis (110, 111). The level of pro-

inflammatory cytokines can be up-regulated by TDEVs in gastric

cancer, breast cancer, lung cancer, CRC, melanoma, and OSCC

(112–119), leading to tumorigenesis and metastasis further.

Inflammatory cytokines array showed that the expression of IL-6,

CCL2, GCSF, and TNF-a was augmented by TDEVs, along with
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the phosphorylation of transcription factor NF-kB, which indicates

that TDEVs stimulate the secretion of pro-inflammatory cytokines

via NF-kB signaling pathway in gastric cancer, lung cancer, breast

cancer and melanoma (112–115, 120). Various components of EVs

exerting regulatory effects are being studied. For example,

palmitoylated proteins on the surface of EVs are identified as a

key factor in binding with macrophage surface protein Toll-like

receptor (TLR) 2 to further phosphorylate NF-kB and activate

inflammatory responses (113) (Figure 1). In addition, miRNAs also

play an important role in modulating pro-inflammatory cytokines

release. Lung cancer-derived EVs transporting miR-16, -21, -29a

bind to TLR7/8 on the surface of macrophages to elicit

phosphorylated activation of NF-kB, which induces an increase in

transcription of pro-inflammatory cytokines including IL-6 (115).

Similarly, miR-25-3p in breast cancer-derived EVs binding with

TLR7/8 increases the expression of IL-6 and phosphorylated NF-kB
(116). Moreover, oncogenic miR-183-5p in breast cancer-derived

EVs are engulfed by macrophages and downregulate target gene

PPP2CA expression by combining with the binding sequence
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which leads to a decrease in dephosphorylation of p65,

consequently promoting IL-1b, IL-6, and TNF-a secretion (121).

The STAT3 pathway is engaged in the modulation by

TDEVs. EVs released by endoplasmic reticulum-stressed liver

cancer cells upregulate IL-6, IL-10, and MCP-1 levels but

downregulate TNF-a levels in macrophages with an increase

in p-JAK2 and p-STAT3 (119). Gp130 (IL-6 receptor) is carried

by TDEVs and interacts with macrophages to induce the

phosphorylation and translocation of STAT3 to the nucleus,

leading to an elevated expression of IL-6 and a shape of the pro-

tumor cancer environment in several human breast cancer cell

lines (MDA-MB231, MDA-MB-468, Hs578T, and MCF7) (118).
2.3 TDEVs regulate the anti-inflammatory
responses of macrophage

TDEVs present a double-sided sword: they participate in

activation of inflammatory responses, but they can downregulate
FIGURE 1

Schematic model of TDEVs in regulating the functions of macrophage. TDEVs can modulate the cytokine secretion, phagocytosis, and
migration of macrophages via various signaling pathways. For cytokine secretion (Blue): Palmitoylated proteins carried by gastric cancer-derived
EVs bind with TLR2 on the surface of macrophages to further activate NF-kB signaling, leading to an elevated level of pro-inflammatory
cytokines including IL-6, IL-1b, TNF-a and so on. Similarly, miRNAs in EVs secreted by lung cancer and breast cancer bind with TLR7/8 to
induce pro-inflammatory cytokines secretion via the NF-kB pathway. However, HNSCC-derived EVs cargo TGF-b isoform inhibits NF-kB
signaling to down-regulate the expression of pro-inflammatory cytokines. For phagocytosis (Green): PtdSer in apoptotic tumor-derived EVs
binds with receptors such as TIM-4 to promote the phagocytosis of apoptotic cells by macrophages. However, lncRNA TUC399 contained in
HCC-derived EVs down-regulates the FcgR-mediated phagocytosis. For migration (Red): TDEVs from myeloma containing serglycin can
augment macrophage migration, and SIPA1 in breast cancer-derived EVs induces elevated expression of myosin-9 in macrophages, which
contributes to migration.
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the expression of pro-inflammatory cytokines as well. HREV-

positive EVs derived from two CRC cell lines (SK-CO1 and

Caco-2) lead to a lower level of pro-inflammatory cytokine IL-1b
and a higher level of anti-inflammatory cytokine IL-10 in the

zebrafish model with a positive correlation between the

concentration of HERV-positive EVs and anti-inflammatory

responses (122). HNSCC-derived EVs down-regulate macrophage

release of IL-1b, indicating that HNSCC-derived EVs block the

activation of inflammatory responses. TGF-b isoforms composition

is hypothesized to be the key factor via inhibiting the NF-kB
signaling pathway (123) (Figure 1). Previous studies have also

indicated that miRNAs play an important role in the modulation

of cytokines. Li J. et al. found that EVs treated under hypoxia and

released by lung cancer cells down-regulate the expression of pro-

inflammatory cytokines IL-6 and IL-1A through cargo containing

miR101 while targeting CDK8 and SUB1 (124). Moreover,

lncRNAs act as the mediator of cytokines secretion through

TDEVs. Li X. et al. found that HCC-derived EVs containing

lncRNA TUC339 were engulfed by macrophage (THP-1 cell) and

downregulate the secretion of IL-1b and TNF-a (125).
2.4 TDEVs regulate the macrophages
phagocytotic function

Macrophages, as phagocytes, engulf apoptotic cells and

debris that trigger immune responses to exert an anti-tumor

effect (109). Previous studies have indicated that the

phagocytotic activity of macrophages can be downregulated by

TDEVs. EVs from metastatic osteosarcoma (K7M3 and DLM8)

reduce the phagocytic function of alveolar macrophages

via promoting TGF-b2 secretion, while there is no

significant change in phagocytosis of macrophages taking up

non-metastatic osteosarcoma (K7 and Dunn) -derived EVs

(126). Along these same lines research conducted by Li X. and

colleagues showed that HCC-derived EVs enriched in lncRNA

TUC339 led to decreased FcgR-mediated phagocytosis in

macrophages were found in (125). Furthermore, Gregory C.D.

et al. found that apoptotic TDEVs contained phosphatidylserine

(PtdSer) to bind with proteins such as T cell immunoglobulin

and mucin domain-4 (TIM-4), which had a positive relation to

phagocytosis of apoptotic cells (127) (Figure 1). These studies

shed light on the relationship between phagocytosis in

macrophages and TDEVs, however, the specific mechanism is

still unclear.
2.5 TDEVs modulate the macrophages
migration

During cancer development, macrophages migrate out of

circulation and into the tumor milieu, triggering inflammation

and tumor metastasis (128). EVs released by PDAC elicit
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migration to the liver of bone marrow-derived cells including

macrophages, which follows an elevated level of TGF-b released

by Kupffer cells (18). Myeloma-derived EVs with serglycin

engulfed by macrophages augment migration as compared

with serglycin-null EVs (129). In addition, it is reported that

EVs from breast cancer cells (MDA-MB-231) expressing high

levels of signal-induced proliferation-associated 1 (SIPA1)

promote the migration of macrophages to tumor tissue (130)

(Figure 1). SIPA1 binds to the promoter of the target gene

MYH9 to upregulate the transcription of MYH9, and the

enrichment of myosin-9 in EVs contributes to macrophage

migration (Figure 1).
3 Dendritic cells

Dendritic cells (DCs), derived from hematopoietic stem

cells, are identified as a vital kind of innate immune cells. As

APCs, DCs recognize and swallow pathogens, subsequently

presenting to immune cells like T cells to activate immune

responses, by corresponding receptors and co-stimulatory

molecules on the surface (131). In addition, DCs also secrete

cytokines and chemokines capable of modulating the

microenvironment and tumor development. Various functions

of DCs are regulated by TDEVs, and interestingly they are

capable of causing both anti-tumor and pro-tumor effects

under certain conditions. DCs are divided into three subsets,

classical DC (cDC), plasmacytoid DC (pDC), and monocyte-

derived DC (mo-DC) (132). The former two are derived from

common dendritic cell progenitors (CDPs), and mo-DC are

derived from monocytes. Mature DCs express a higher level of

functional molecules including co-stimulatory molecules (CD40,

CD80, CD86), MHC II, pro-inflammatory cytokines, and CCR7

comparing to immature DCs, via the stimulus with GM-CSF,

IFN-g, IL-4 and pathogens (133).
3.1 Anti-tumor effect of DCs on
responses to TDEVs

TDEVs augment anti-tumor activity by promoting the function

of DCs inmany cancers like melanoma, HCC, and colon carcinoma

(120, 134, 135). It has been found that tumor antigen (TA) carried

by EVs are a key factor in this process. HCC cell-derived EVs

inhibit tumor growth by transferring HCC antigens and

antigenic chaperones to DCs, which induces cytolysis and

increases IFN-g expression but decreases IL-10 and TGF-b
expression. Furthermore, DCs treated with HCC cell-derived EVs

activate T-cell immunity by presenting antigens (135). Similarly,

EVs containing tumor antigen ErbB2 promotes the activation of

CD8+T cell by DC (136). Melanoma cell-derived EVs carrying

tumor-associated antigens (TAAs) promote DCs to express

maturation marker CD86 and raise the anti-tumor activity in
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mouse models (137). In addition to whole-tumor antigens, MHC-I

peptide complexes are also transferred to DCs by TDEVs in

melanoma, resulting in the activation of cytotoxic T-lymphocytes

(CTL) (138). The specific mechanism for this is still under

investigation. The only known study to date is by Squadrito M.L.

et al. who found that CRC-derived EVs internalized by DCs

promoted the presentation of tumor antigens mediated by MHC-

I, and extracellular vesicle-internalizing receptor (EVIR) played an

important role in the binding and internalization of TDEVs by DCs

(134) (Figure 2).
3.2 Immunosuppress effect of DCs on
responses to TDEVs

A decrease in pro-inflammatory cytokine secretion but an

increase in anti-inflammatory cytokines can be detected in DCs

stimulated with TDEVs. In Lewis lung cancer (LLC) and breast

cancer, surface markers including CD80, MHC-II, and CD86 are

downregulated by TDEVs, indicating that DCs are immature. In

addition, the cytokine expression in DCs is regulated by TDEVs
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as well. There is a decrease in TNF-a, IL-6, and IL-12, but an

increase in Arginase I while the levels of IL-10 and IL-12p40 do

not change significantly. In addition, chemokine receptor

expression (which is essential for the migration of DCs) is

inhibited by LLC cell-derived EVs (139). The expression of IL-

6 is increased by TDEVs in breast cancer, lung cancer, and

melanoma in various ways (140). HSP72 and HSP105 proteins

on melanoma-derived EVs surface bind with TLR2 and TLR4

on DCs, causing the phosphorylation of ERK, JNK, p38, and NF-

kB to induce expression of IL-6. IL-6 induces STAT

phosphorylation to bind in the MMP9 promoter site and

elevates the transcription of MMP9. Due to the function of

reorganizing extracellular matrix by MMP9 (141), tumor cells

invade other organs. PGE2 carried by prostate cancer-derived

EVs binds to receptors EP2/EP4 on DCs to upregulate the

CD73 expression, while the adenosine monophosphate

(AMP)-depends on expressions of IL-12 and TNF-a decrease

subsequently (142). However, the underlying mechanism still

needs further investigation.

Notably, microRNAs in TDEVs can interfere with the

function of DCs. MiR-212-3p carried by pancreatic cancer
FIGURE 2

Effects of TDEVs in regulating DCs, neutrophils, and NK cell functions. TDEVs can interact with innate immune cells including DCs, neutrophils,
and NK cells, exerting a dual effect in regulating their functions. TDEVs to DCs: EVs containing tumor antigen from HCC can transfer it to DCs
and further activate T cell immunity, indicating its anti-tumor effect. TDEVs can impair DCs differentiation and maturation to suppress immune
responses in some cancers, HLA-G is identified as a key factor in this negative regulation. Some TDEVs contain HSP72 and HSP105 bind with
TLR on DCs to increase MMP9 expression, reorganizing ECM and contributing to tumor invasion. TDEVs to neutrophils: circRNA PACRGL in
CRC-derived EVs are engulfed by neutrophils and down-regulate TGF-b1 expression, further inducing polarization to the N2 phenotype. TDEVs
can also induce NET formation by neutrophils in a dose-dependent way, which further contributes to thrombosis. TDEVs containing HMGB1
can upregulate PD-L1 on neutrophils to suppress T cell immunity, exerting a pro-tumor effect. TDEVs to NK cells: BAG6/BAT3 on the surface of
TDEVs can bind with NKp30 to suppress NK cytotoxicity via the nSmase2-dependent pathway. NKG2DLs, TGF-b, and other immunosuppressive
proteins from TDEVs bind with NKG2Ds on the surface of NK cells to block NK cytotoxicity.
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cell-derived EVs inhibited the expression of regulatory factor X-

associated protein (RFXAP) to decrease MHC II on DCs and

induce immune tolerance (143), while miR-203 induced the

downregulation of TLR4 and cytokines in DCs such as TNF-a
and IL-12 in pancreatic cancer (113). In head and neck cancer,

TDEVs disrupt the maturation, viability, and migration of

mono-CDs targeted by 133 miRNAs including miR-16, miR-

23b, miR-24. CD80 and HLA-DR expression have been

shown to exhibit a decrease in DCs after incubating with

HNSCC cell-derived EVs (144) (Figure 2).
3.3 TDEVs modulate the differentiation
of DCs

Wieckowski E. et al. found that antigen-processing machinery

(APM) components including MIB1, IMP7, Tapasin, and

Calreticulin were downregulated in monocytes after stimulation

with TDEVs, indicating impaired differentiation from monocytes

to DCs (145). Surface proteins that demonstrate the maturation of

DCs decrease with the stimulation of TDEVs in melanoma, lung

cancer, renal cancer, breast cancer, and thymoma (139, 146–149).

Expressions of markers such as CD40, a5 integrin, CD80, CD86,
and HLA-DR are downregulated in monocyte-derived DCs after

co-incubation with renal cancer derived-EVs carrying HLA-G,

which can be inhibited by anti-HLA-G-antibody. This confirmed

the negative-regulatory role of EVs with HLA-G in DCs

differentiation (146) (Figure 2). Hendrik Gassmann and

colleagues proposed a model where Ewing sarcoma-derived EVs

carrying RNA and protein activate myeloid cell pathology and

induce the secretion of pro-inflammatory cytokines such as IL-6,

IL-8, and TNF, which modulates the differentiation of

myeloid cells into semi-mature DCs and impairs T cell

activation (150) (Figure 2). Moreover, the role of modulating

differentiation by IL-6 was also examined in the breast cancer

(148). Glioma-derived EVs down-regulate the expression of IL-

12p70 in immortalized DCs, which orchestrates the maturation

and differentiation of DCs (151).
4 Neutrophils

Neutrophils, abundant in circulation, are indispensable for

an immune response due to their dual role of both affecting

innate immunity and modulating adaptive immunity (152).

The complicated function of neutrophils in the innate immune

response includes forming neutrophil extracellular traps (NETs),

polarization to a different state, phagocytosis, co-regulation with

T cells, and so on. Interestingly, NETs are a double-sided sword

in the immune response. On the one hand, they neutralize and

ensnare microbiotics to against infection. On the other hand,

they have adverse such as promoting thrombosis, tumor
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metastasis, and inflammation that causes organ and vascular

damage (Figure 2). In addition, neutrophils also exert a dual

effect on tumors by polarization to N1 or N2 phenotypes. In

TME, stimulators including TGF-b and IFN-b respectively

switch the phenotype of tumor-associated neutrophils (TANs)

into N1 and N2 phenotypes (153) (Figure 2). The N1 phenotype

shows an anti-tumor effect via enhancing apoptosis and

secreting pro-inflammatory cytokines, while the N2 phenotype

promotes tumor development and suppresses immune

responses (154) (Figure 2).
4.1 TDEVs promote neutrophils
NETs formation

TDEVs engulfed by neutrophils target NETs to promote

thrombosis. A previous study has shown that tumor

microparticles carrying tissue factor (TF) promoted cancer-

associated deep vein thrombosis (DVT) initiation by adhering

to NETs in a mouse model with pancreatic cancer (155). Ana C.

Leal et al. showed that 4T1 murine breast tumor derived-EVs

contribute to the prothrombotic state via inducing NETs

formation by neutrophils stimulated by G-CSF in the

murine breast cancer model (Figure 2). Moreover, there is a

dose-dependent procoagulant property of 4T1 derived-EVs and

this progress relies on the ability to recruit TDEVs by NETs

(156). Exposure to TDEVs which bear gDNA induces TF

activation in leukocytes, along with the upregulation of IL-8

(157). However, the function that TDEVs stimulated NETs

promoting tumor growth is still under investigation.
4.2 TDEVs modulate neutrophils
polarization

In addition to stimulating the formation of NETs, TDEVs

play an important role in regulating the polarization of

neutrophils. In CRC, TDEVs carrying oncogene circPACRGL

promote the differentiation of neutrophils from N1 to

N2 by regulating the miR-142-3p/miR-506-30-TGF-b1 axis

(158). circRNA PACRGL swallowed by neutrophils binds to

miR-142-30/miR-506-3p to inhibit the post-transcriptional

control of mature mRNA and therefore TGF-b1 expression is

downregulated, which induces neutrophils into the N2

phenotype (Figure 2). In addition, TDEVs induce neutrophil

polarization to the N2 phenotype via the NF-kB pathway in

gastric cancer and CRC (159, 160). Gastric cancer-cell derived

EVs carrying high mobility group box-1 (HMGB1) bind with

TLR or receptor for advanced glycation end products (RAGE) to

activate NF-kB signaling, which induces the phosphorylation of

downstream proteins including p65, STAT, and ERK

and upregulates the expression of inflammatory factors such as

IL-1b, IL-6, IL-8, OSM, and TNFa (Figure 2). Moreover, these
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pro-tumor effects of EVs can be blocked by NF-kB inhibitors

(159). In HCC, TDEVs regulate the phenotype of neutrophils

into N2, but the exact mechanism needs further investigation

(161). Taken together, these data suggest that TDEVs induce

neutrophils to polarize into the pro-tumor state of the N2

phenotype in various signaling pathways.
4.3 TDEVs regulate neutrophils’
other functions

Other functions of neutrophils can also be regulated by TDEVs.

For example, the lifespan of neutrophils was prolonged by EVs

from CRC stem cells by modulating the expression of IL-1b via the

NF-kB signaling axis. EVs with tri-phosphate RNAs, acting as

pathogen-associated molecular pattern (PAMP) molecules, interact

with PRRs and activate the NF-kB pathway with elevated

expression of nuclear p65 and IL-1b [20]. In addition, PD-L1 on

neutrophils is upregulated by gastric cancer cell-derived EVs,

activated by HMGB1 via phosphorylating STAT3 and

downstream molecules, which suppresses T-cell immunity to

have a pro-tumor influence (162) (Figure 2). More changes in

neutrophil function by TDEVs need further investigation.
5 NK cells

NK cells are a subset of type 1 ILCs with surface markers

CD3- and CD19-, but are CD56+ and CD16+. They originate

from common lymphoid progenitor (CLP) cells in the bone

marrow and are widely distributed in the blood, peripheral

lymphoid tissue, liver, spleen, and other organs, accounting for

5-10% of peripheral blood mononuclear cells (163, 164).

Activating and inhibitory receptors are co-expressed on the

surface of NK cells, which can bind to MHC I molecules

expressed on the surface of one’s cells. NK cells also express

NKG2D and natural cytotoxicity receptors (NCR) (NKp30,

NKp44, and NKp46) (165). They are activating receptors that

do not interact with MHC I. Cancerous cells decrease the

expression of MHC I and cause a loss of inhibitory receptor

function, referred to as the “missing-self” mode. Meanwhile,

tumor cells overexpress ligands of NKG2D and NCR, providing

sufficient targets for activating receptors via the “induced-self”

mode (166, 167). NK cells are activated through the

above two modes and kill tumor cells by releasing perforin,

granzyme, TNF-a, or FasL (168). In addition, as a group of type

1 ILCs, NK cells synthesize and secret IFN-g to play a role in the

anti-infection and immune regulation (169, 170).

In most cases, TDEVs exert an influence on NK cells

through NKG2D ligands (MICA, MICB, ULBP-1, ULBP-2, or

ULBP-3) existing on the surface of EVs. NKG2DLs

downregulate NKG2Ds floating on the surface of NK cells and

block cell activation, resulting in the damage of NK cytotoxicity
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(171, 172) (Figure 2). Besides NKG2DLs, TGF-b1 (173, 174) and
some other immunosuppressive proteins (PD-L1, CD39, CD73,

FasL, LAP-TGFb, TRAIL, CTLA-4) (175–177) are common

cargoes of TDEVs, which act the same way as NKG2DLs do

(Figure 2). TGF-b in EVs has another mechanism to inhibit the

activation of NK cells: interacting with its receptors on the

surface of NK, activating the TGFb-Smad2/3 pathway, and

promoting the phosphorylation of Smad2/3 (178, 179).

Furthermore, soluble ligand BAG6/BAT3 was found to exist in

chronic lymphocytic leukemia patients’ blood (180). Once

BAG6/BAT3 is expressed on the surface of EVs it interacts

with the activating receptor NKp30 of NK cells and induces cell

stress through the nSmase2-dependent pathway to suppress NK

cytotoxicity (180).

Some cytokines in TDEVs have a dual effect on NK cells. For

example, genetically modified myeloid leukemia cell line K562

expresses IL-15, IL-18, and 4-1BBL (TNFSF9) on the surface of

its EVs. These proteins stimulate NK cells to proliferate and

enhance the cytotoxicity of NK cells within 4 hours. However, as

time goes by (48 hours), the cytokines reduce NK cytotoxicity

via the inhibition of activated receptors (NKG2D、NKp44) and

the promotion of inhibitory receptors (NKG2A) (181).

Moloudizargari et al. also reported the bifacial effect of

myeloma derived-EVs on NK cells (181, 182).

The RNA component in TDEVs is also participating in

regulating NK cells’ function. CRC-derived EVs containing

lncRNA SNHG10 increase INHBC expression and then

suppress the activation of NK (183). MiRNA-378a-3p in EVs is

induced in tumors undergoing radiotherapy, leading to the

reduction of granzyme-B secretion and loss of activity in NK

cells (184). EVs from HCC cells deliver circUHRF and affect NK

cells through three different ways to achieve immunosuppression

and drug resistance. Firstly, decreasing IFN-g and TNF-a
secretion of NK cells. Secondly, degrading miR-449c-5p to

foster the expression of TIM-3. Based on the fact that circRNAs

usually work as miRNA sponges, studies indicated that circUHRF

and miR-449c-5p may target each other in human NK-92 cells,

thus impairing their function. Finally, there is a finding that the

high levels of circUHRF1 in EVs can increase the connection with

limited NK cell proportion and tumor infiltration (185).
6 Conclusions and perspectives

In recent years, EVs have become a popular topic in cancer and

immunity research due to their complicated functions in regulating

TME and their important role in mediating cell-to-cell

communication (186, 187). Almost all cells including immune cells

and cancer cells can generate EVs with common or specific cargoes

which interactwith recipient cells to further affect their functions and

tumorigenesis (188,189). In this review,we summarize the regulation

of innate immune cells including macrophages, DCs, NK cells, and

neutrophils by TDEVs (Figures 1, 2). Overall, TDEVs exert a dual
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effect on immune responses and tumor development. For example,

the secretion of pro-inflammation cytokines by macrophages and

cytotoxicity of NK cells is either up-regulated or down-regulated by

TDEVs. Moreover, TDEVs induce macrophage polarization to

different states (functions as pro-tumor or anti-tumor), further

influencing tumorigenesis, metastasis, and so on. Previous studies

have demonstrated that the specific function of TDEVs mainly

depends on their bioactive cargoes and tumor stage. For instance,

at the beginning of tumorigenesis, EVs stimulate TAM and up-

regulate cytokines that beneficial for angiogenesis and tumor

metastasis. However, in the context of metastasis, anti-tumor

responses such as cytotoxicity and phagocytosis are promoted by

TDEVs. Based on these previous findings, the expression of innate

immune cell markers and related molecules can be used as step-

change indicators of diagnosis and prognosis in clinical

treatment (190).

Various surface proteins and cargo components in TDEVs have

been found to play an essential role in the regulation of macrophage

polarization. Of the cargo components, most of the studies so far

have been on miRNAs (Table 1). Other RNAs, proteins, and

cytokines also target recipient cells to modulate their functions

via direct binding with receptors or regulating corresponding gene

expression. While the specific mechanism is still not completely

known, NF-kB pathway and PTEN/PI3K/AKT pathways have been

recognized as crucial signaling pathways in regulating immune

responses. Therefore, key factor inhibitors can pharmacologically

antagonize the effect of TDEVs. Moreover, there are also numerous

studies concerning modulation of the formation, circulation, and

absorption of TDEVs in anticancer therapies (191).

Although existing studies have provided many insights

about the regulation of innate immunity by TDEVs, there are

still many limitations. Firstly, the studies investigating TDEVs’

modulation of the function of innate immune cells like mast

cells, eosinophils, and basophils remain inadequate. Secondly,

more detailed mechanisms of TDEVs functions on innate

immunity are still under investigation, and the results of these

studies will be vital for identifying new cancer targets.

Additionally, the majority of current studies are in vitro

experiments, and more in vivo investigations are supposed to

be conducted to better demonstrate the effects of TDEVs in

cancer progression (192). TDEVs mediating intercellular

communication between cancer and innate immune cells is a
Frontiers in Immunology 12
promising field, which can shed a spotlight on novel cancer

therapies. We hope more investigations will be conducted to

promote this progression.
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Glossary

AMP adenosine monophosphate

ADCC antibody-dependent cell-mediated cytotoxicity

APC antigen-presenting cells

APM antigen-processing machinery

CRC colorectal cancer

CDPs common dendritic cell progenitors

CLP cells common lymphoid progenitor cells

cDCs conventional DCs

CTL cytotoxic T lymphocyte

DVT deep vein thrombosis

DCs dendritic cells

ESCRT endosomal sorting complex required for transport

EGFR epidermal growing factor receptor

EMT epithelial–mesenchymal transition

ECM extracellular matrix

EVIR extracellular vesicle-internalizing receptor

EVs extracellular vesicles

FGF fibroblast growth factor

HCC hepatocellular carcinoma

HMGB1 high mobility group box-1

HNSCC head and neck squamous cell carcinoma

ILCs innate lymphoid cells

ILLs innate-like lymphocytes

ISEV International Society for Extracellular Vesicles

lEVs large EVs

KDM6B lysine demethylase 6B

LLC Lewis lung cancer

MIF macrophage migration inhibitory factor

MMP matrix metalloproteinase

mEVs medium EVs

MCP-1 monocyte chemoattractant protein 1

moDCs monocyte-derived inflammatory DCs

MVBs multi-vesicular bodies

NCR natural cytotoxicityreceptor

NK natural killer

NE neutrophil elastase

NETs neutrophil extracellular traps

NSCLC non-small cell lung cancer

OSCC oral squamous cell carcinoma

PDAC pancreatic ductal adenocarcinoma

PAMP pathogen-associated molecular pattern

PRRs pattern recognition receptors

pDCs plasmacytoid DCs

PDGF platelet-derived growth factor

PGE2 prostaglandin E2

PTPRO protein tyrosine phosphatase receptor type O

ROS/RNS reactive oxygen/nitrogen species

(Continued)
Frontiers in Immunology
 18
Continued

RAGE receptor for advanced glycation end products

RFXAP regulatory factor X-associated protein

SIPA1 signal-induced proliferation-associated 1

sEVs small EVs

TIM-3 T cell immunoglobulin and mucin domain 3

TIM-4 T cell immunoglobulin and mucin domain-4

TLR Toll - like receptor

TA tumor antigen

TME tumor microenvironment

TAM tumor-associated macrophages

TANs tumorassociated neutrophils

TDEVs tumor-derived EVs

TIDC tumorinfiltrating dendritic cells

VEGF vascular endothelial growth factor
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