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en Cancérologie de Marseille (CRCM),
France

*CORRESPONDENCE

Louis Yi Ann Chai

chailouis@hotmail.com

SPECIALTY SECTION

This article was submitted to
NK and Innate Lymphoid Cell Biology,
a section of the journal
Frontiers in Immunology

RECEIVED 16 September 2022

ACCEPTED 09 December 2022
PUBLISHED 11 January 2023

CITATION

Oh BLZ, Chan LWY and Chai LYA
(2023) Manipulating NK cellular
therapy from cancer to invasive fungal
infection: promises and challenges.
Front. Immunol. 13:1044946.
doi: 10.3389/fimmu.2022.1044946

COPYRIGHT

© 2023 Oh, Chan and Chai. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 11 January 2023

DOI 10.3389/fimmu.2022.1044946
Manipulating NK cellular
therapy from cancer to
invasive fungal infection:
promises and challenges

Bernice Ling Zhi Oh1,2, Louis Wei Yong Chan3

and Louis Yi Ann Chai4,5,6*

1VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical
Institute, National University Hospital, Singapore, Singapore, 2Department of Paediatrics, Yong Loo
Lin School of Medicine, National University Singapore, Singapore, Singapore, 3Clinician Scientist
Academy, National University Health System, Singapore, Singapore, 4Division of Infectious Diseases,
Department of Medicine, National University Health System, Singapore, Singapore, 5Department of
Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,
6Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of
Singapore, Singapore, Singapore
The ideal strategy to fight an infection involves both (i) weakening the invading

pathogen through conventional antimicrobial therapy, and (ii) strengthening

defense through the augmentation of host immunity. This is even more

pertinent in the context of invasive fungal infections whereby the majority of

patients have altered immunity and are unable to mount an appropriate host

response against the pathogen. Natural killer (NK) cells fit the requirement of an

efficient, innate executioner of both tumour cells and pathogens – their

unique, targeted cell killing mechanism, combined with other arms of the

immune system, make them potent effectors. These characteristics, together

with their ready availability (given the various sources of extrinsic NK cells

available for harvesting), make NK cells an attractive choice as adoptive cellular

therapy against fungi in invasive infections. Improved techniques in ex vivo NK

cell activation with expansion, and more importantly, recent advances in

genetic engineering including state-of-the-art chimeric antigen receptor

platform development, have presented an opportune moment to harness

this novel therapeutic as a key component of a multipronged strategy against

invasive fungal infections.
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Introduction

Despite the availability of treatment options, the risk of

mortality from invasive fungal infections (IFIs) remain high,

above 50% particularly for mould infections. While this may be

attributable in part to the limited range of effective anti-fungal

treatments available, the dismal outcomes are primarily

accounted for by susceptible, at-risk cohorts such as the

severely immunocompromised recipients of chemotherapy,

stem cell or organ transplants, as well as those receiving

immunosuppressive biologic therapy. These patients may not

be competent in mounting an effective host response against the

pathogen, even with the aid of an appropriate antimicrobial. On

this background, the augmentation of host immunity and

antimicrobial responses through the replacement of immune

cellular components is a logical strategy. Advances in recent

decades have cast a spotlight on T lymphocytes and natural killer

(NK) cells which have emerged as promising adoptive cellular

therapeutic modalities. This review focuses on capitalizing NK

cellular therapy against IFIs, taking reference from parallels in

oncology and T cell immunotherapy.
Biology of NK cells

Large lymphocytes with granular cytoplasm by morphology,

NK cells are innate lymphoid cells that circulate in the blood,

bone marrow and tissue (1). A distinct feature is the expression

of CD56 [also known as neural cell adhesion molecule 1

(NCAM1)] and the absence of T cell receptors (2). NK cells

are derived from hematopoietic progenitors in the bone marrow

where they undergo maturation; NK cell development also

occurs in other lymphoid organs (3). However, unlike T cells,

trafficking to the thymus is not a requisite for NK cell

maturation (4).

NK cells have traditionally been classified as either

immunomodulatory (CD56brightCD16dim/negative) or

cytotoxic (CD56dimCD16bright), based on CD56 and CD16

expression. More recently, however, advances in multi-

parameter cytometry and single cell proteogenomics have led

to discoveries of more diverse populations of NK cells. NK cells

have been shown to possess memory-like function through

higher intensity recall responses following repeated exposures

(5, 6). For example, in cytomegalovirus (CMV) infections (7–9),

studies have shown that a higher proportion of NK cells

demonstrate increased expression of NKG2C, an activating

receptor which recognizes and binds to CMV peptide (10).

Peripheral homeostatic maintenance allows NK cells to

persist in the blood even when differentiation of progenitor

cells fails (11, 12). Human NK cell turnover in the blood occurs

every 2 weeks and in vivo doubling time is estimated to be 13.5

days (13, 14). Continuously stimulated NK cells are able to
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achieve a median of 16 doublings before immune senescence.

Reduction of telomere shortening through overexpression of

telomerase reverse transcriptase (TERT) increases NK cell

lifespan by allowing additional doublings (14).
Role of NK cells in host immunity

The function of NK cells in the immune system is twofold:

first, as effector cells in the control of both microbial infections

and cancer; second, as regulatory cells that interact with other

immune cells such as T cells, B cells and dendritic cells (15).

NK cells play a pivotal role in the control of microbial

infections in the immune system. When pathogens reduce the

expression of HLA-I on infected cells to evade T cell surveillance,

NK cells activate themselves in response to the low HLA-I

expression (16, 17). To kill microbe-infected cells, NK cells

mediate antibody-dependent cell cytotoxicity (ADCC) on

antibody-bound cells (18); in addition, NK cells bind to death

receptors such as Fas ligand and tumour necrosis factor-related

apoptosis-inducing ligand (TRAIL) to induce apoptosis and

cytotoxicity (19). NK cells also augment host anti-microbial

responses through the secretion of proinflammatory cytokines

including interferon-gamma (IFNg) (20). NK cells can mount

adaptive responses such as the generation of specific NK cells

with memory function following repeated exposure, given that

different microbes evoke distinct NK cell mediated responses

(10, 21, 22).

NK cells further serve as regulators of the immune response

through various positive and negative feedback loops, as well as

through direct effects on other immune cells (23). NK cells can

also interact with dendritic cells by cross presenting antigens of

killed targets, triggering a cascade of downstream responses

mediated by dendritic cells (24, 25). The secreted cytokines,

IFNg and tumour necrosis factor alpha (TNFa), also support the
maturation of dendritic cells which secrete IL-12, which further

enhances NK cell activity (26, 27). NK cells can also act directly

on T and B cells to moderate overly activated responses against

pathogens (15, 28).

Analogously, in cancer, NK cells mediate cytotoxicity against

tumour cells through direct interactions based on the presence of

NKG2D ligands (which are upregulated in sarcomas) or absence

of MHC class I expression (such as in lymphomas) of NK cell

receptor ligands on cancer cells (29–31). Cytotoxicity can also be

mediated through ADCC as they express constant region (Fc)

receptor CD16 which allows recognition and binding to IgG1

and IgG3 antibodies coated on cancer cells. NK cells have also

been implicated in tumour immunosurveillance – this is most

evident in patients with primary NK cell immunodeficiencies

who have been observed to have a higher risk of developing

malignancies (32–34). Longitudinal population-based studies

suggest a higher relative risk of cancer in those with lower NK
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cell cytotoxicity (35). Additionally, reduced NK cell function and

lower NK cell infiltration in tumours have also been linked to

poorer outcomes in cancer patients (36). Conversely, increased

NK cell numbers and function were associated with treatment

response and disease control in haematological malignancies

(37–39).
Licensing and activation

Licensing

Licensing refers to the acquisition of functional competency

during NK cell maturation that mediates the capacity of NK cells

to respond to activating signals. This is dependent on

interactions between killer cell immunoglobulin-like receptors

(KIRs) and major histocompatibility complex (MHC) molecules

that belong to self (40, 41). MHC class I molecules bind to KIRs

which downregulate NK cell function through immunoreceptor

tyrosine-based inhibitory motifs (ITIMs) to dampen signals

through tyrosine phosphatases (42); these then minimize the

destruction of healthy cells (43). NK cell functionality is

determined by the amount and type of MHC class I alleles in

that interaction with KIRs (42). Once NK cells are functionally

competent, mature NK cells are suppressed by ligation of intact

self-MHC; suppression is lifted if MHC is altered or reduced

(42). The responsiveness of NK cells can be reset or altered in an

environment with variant MHC expression, while unlicensed

NK cells can still stimulate adaptive immune responses (44, 45).

In addition, KIR-mediated inhibition of mature NK cells can

also be overcome by stronger activating stimuli (46).
Activation

Activating receptors transmit signals via various pathways.

The natural NK cytotoxicity receptors, NKp30 and NKp46,

operate through the immunoreceptor tyrosine-based activation

motifs (ITAMs) of high-affinity IgE receptor (FceRIg) and

CD3z, while NKp44, CD94-NKG2C, KIR2DS1, KIR2DS2,

KIR2DS4 and KIR3DS1 operate via the ITAMs bearing

DAP12 adaptor (47). NK cell activation also depends on co-

stimulation by molecules such as [1] DNAM1, using a tyrosine

and asparagine-based motif (48), [2] 2B4, signalling through an

immunoreceptor tyrosine-based switch motif (ITSM) with NK

cell receptor 2B4 (49); and, [3] OX40, recruiting tumour necrosis

factor-associated factors to initiate signals (50). Signals from

activating receptors could be countered by inhibitory receptors

(43, 51, 52). The heterodimer CD94-NKG2A engages HLA-E

and transduces inhibitory signals via ITIMs (53, 54); this

counteracts the activating signals of CD94-NKG2C which then

binds to HLA-E with lower affinity (55). The ligands of
Frontiers in Immunology 03
activating co-stimulatory molecules such as DNAM1 can also

bind to inhibitory T cell immunoreceptor with immunoglobulin

and ITIM domains (TIGIT) and CD96 (16). NK activation is

also mediated by antibodies binding to CD16 Fc receptor, which

induces phosphorylation of ITAM domains of FceRIg and CD3z
- launching a cascade that culminates in cytotoxicity of the target

cells known as ADCC (56, 57).
Regulatory cytokines

Cytokines are crucial for activation of NK cells, especially in

the context of naïve NK cells where binding to individual

activating receptors is generally insufficient to trigger a

cytotoxic response (58). Interleukin 2 (IL-2) and interleukin 15

(IL-15) are the most well described and commonly used

cytokines which can activate NK cells.

Given that the IL-15 receptor (IL15R) shares signalling b and
g subunits with the IL-2 receptor (59), both IL-2 and IL-15

enhance signalling from activating receptors of NK cells (58, 60).

In addition, IL-15 also promotes their survival and proliferation

(59, 61, 62). Produced primarily by monocytes, macrophages

and dendritic cells, IL-15 forms complexes with the a-chain of

IL15R on cell surfaces (63, 64). IL-15 demonstrates superior

function when presented on the cell surface as membrane-bound

IL-15 (mbIL-15) as compared to its soluble form (64).

Transduction of mbIL-15 on human NK cells results in

increased longer-term survival compared to its secreted form

(65). This is due to the paradoxical effect of IL-15 which induces

cytokine-inducible SH2-containing protein (CIS) expression,

which dampens NK cell activation by promoting the

degradation of the tyrosine kinase JAK1 (66).

Other cytokines such as IL-12, IL-18 and IL-21 have also

been used in varying combinations to increase the cytotoxicity of

NK cells (67, 68). Specifically, human NK cells cultured for 16

hours with IL-12, IL-15 and IL-18, then washed and maintained

in IL-15 for 1-2 weeks, exhibited a “memory-like” form upon re-

stimulation (69). The complex interplay between the various

cytokines may lead to other effects as well. For example, IL-12

can induce expression of inhibitory receptor NKG2A (69, 70)

and IL-21 may inhibit IL-15 induced NK cell expansion (71).
Cytotoxic effector capabilities of
NK cells

NK cell-mediated cell killing occurs through activation

triggered by the formation of a synapse with the target cell.

Lytic granules transported on microtubules then concentrate on

the synapse, where they fuse with the plasma membrane and are

then released (72). Perforin, one of the main components of

these granules, forms pores in the cells, leading to osmotic lysis
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(73). Granzymes, another component of these granules, enter

the cells through the pores created by perforin and trigger

apoptosis of the cells by activating caspases (72). Lytic

granules are very potent as a solitary units in killing target

cells (73). NK cells can also proceed to kill other target cells even

after degranulation (74); as they can also kill cells through the

expression of FAS ligand and TNF-related apoptosis -inducing

ligand (TRAIL) (74). In addition to direct cytotoxicity, NK cells

also attract and stimulate other immune cells such as dendritic

cells (75) through the secretion of various cytokines, chemokines

and growth factors (43). An example would be the cytokine

IFNg, which promotes polarization of T helper 1 cells, induces

MHC class II expression on antigen presenting cells and,

activates macrophages (76).
Specific cytotoxic capabilities of NK
cells against fungi

Against fungi, the modus operandi of NK cells is similar:

direct killing either via degranulation releasing perforin or

granzyme, or secretion of effector cytokines (such as IFNg and
TNFa); where both induce phagocytosis and result in cell death.

In vitro, NK cells have exhibited phagocytic-like characteristics,

engulfing Candida yeast cells in a contact-dependent manner

(77). NK cells execute their main effector role by means of direct

cytolytic capacity against fungi, through the release of lytic

molecules pre-loaded in granules within the NK cell

cytoplasm. Perforin causes direct pore formation in the fungal

cell membrane disrupting membrane integrity and facilitating

entry of granzymes into the pathogen. Both perforin and

granzymes synergize to mediate apoptosis of target cells.

Granzymes, classically represented by Granzyme B, induces

apoptotic target cell death through caspase-dependent

pathways as well as release of inflammatory cytokines such as

interleukin 1 alpha and beta (78). The anti-fungal role played by

perforins has been well demonstrated against Rhizopus (79),

Aspergillus (80) and Candida (77). NK-directed killing is also

morphotype-specific, for example, in the case of Aspergillus or

Rhizopus, germinating conidia or hyphae are the targets of

NK cells.

Host recognition of fungi involves classic pathogen

recognition receptors such as toll like receptor (TLR) 2 (81,

82) and C type lectin receptor Dectin-1 (also known as CLEC 7a)

(83); which recognize beta-glucan in the fungal cell wall (81).

NK-specific receptors, such as Natural Killer Cell Receptors

(NCR) subtypes NKp30 and NKp46, have also been

implicated. Against Candida and Cryptococcus, NKp30

receptors have been shown to mediate perforin release and

fungal cytotoxicity through the PI3K-ERK1/2 pathway (84,

85). Binding between the Candida cell wall adhesins Epa1,

Epa6, and Epa7, and NKp46 receptor and its mouse
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orthologue NCR1, resulted in enhanced NK activation through

degranulation marker CD107, resulting in reduced fungal

burden (86). Most recently, the Candida adhesin Agglutinin-

Like Sequences (ALS) was identified as a ligand for TIGIT, an

inhibitory checkpoint inhibitor on NK cells (87). CD56, a

classical NK cell marker, has also been shown to be a major

pathogen recognition receptor which directly interacts with A.

fumigatus. Blockade of CD56 diminished NK activation, with

reduced inflammatory cytokine secretion against A. fumigatus

(88). ‘Death receptors’ TRAIL-R and Fas by TRAIL and Fas

ligand (FasL) (CD95L) have also been observed to be triggered

during the degranulation process (18).

IFNg and proinflammatory TNFa are pivotal mediators of

type 1 T helper cell (Th1) host response against fungi (89), while

granulocyte-macrophage colony stimulating factor (GMCSF)

activates the obligate phagocytes against fungi, macrophages

(77). The major source of secreted IFNg against fungi originates
from NK cells. IFNg is central in orchestrating the host immune

response against the pathogen, serving as a bridge between the

innate and adaptive immune systems. IFNg drives the

differentiation of CD4 cells towards Th1 subsets on its own

(90), or in synergy with TNFa (91, 92) and also mediates NK

cross talk with dendritic cells (81). IFNg also activates tissue

macrophages, as shown in the context of Cryptococcus infections

(93, 94). Against Candida, IFNg has also been shown to augment

the potency of polymorphonuclear neutrophils (77).

Furthermore, NK cells also secrete chemokines such as

CXCR2, CCL3/MIP-1a, CCL4/MIP-1b and CCL5/RANTES.

The production of these chemokines may be titrated on a

dose-dependent response, as seen in Aspergillus infections

(95). These chemokines serve to fine-tune NK cell migration,

cytotoxicity, and neutrophilic anti-fungal activity (96, 97).
Development and refinement of
NK cellular anti-fungal treatment:
in-vitro and in-vivo studies

The earliest attempts at utilizing NK cells of murine origin

against fungi began more than 30 years ago (Table 1). The

process of purification involved passing murine splenocytes

through nylon wool, retaining monocytes and B cells. The

non-adherent fraction was further differentiated through

Percoll gradient fractionation, or selected by panning and

rosetting with sheep erythrocytes. The NK-containing cellular

fractions demonstrated anti-fungal effects, when tested in vitro

with co-incubation against pathogenic fungi of interest,

Cryptococcus and Paracoccidioides (98–100). Growth inhibition

in excess of 50% could be achieved, albeit with higher effector-to-

target (E:T) ratios. The first attempts with human peripheral

blood lymphocytes followed on, through density gradient

centrifugation and selection for Leu-11b directed against NK
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surface Fc receptors. In vitro, co-incubation setting against

Coccidioides, human NK-enriched cells inhibited C. immitis

endospores and spherules effectively. In this setting, interferon

was used for immune augmentation and was shown to effectively

enhance leucocyte-mediated fungal killing (101). As IL-2

appeared to enhance NK cell activation (102), this was added

to CD16/CD56+ cell fractions against Cryptococcus with

demonstrable efficacy (103).

The advent of the magnetic-activated cell sorting (MACS)

platform has also revolutionized our capacity to sort cellular

subtypes via positive or negative selection, enabling us to select

for CD56+CD3- NK cells with more than 90% purity. This

platform has been widely employed to yield enriched NK cells

for further in vitro, and in vivo anti-fungal studies, focusing on

more difficult-to-treat moulds such as Aspergillus and

Zygomycetes. Interest also remains in the treatment of

pathogenic yeasts Candida and Cryptococcus. In tandem, a

deeper mechanistic understanding of the anti-fungal properties

of NK cells were also gained. For instance, the major roles played

by cytokines such as IFNg; NK-released perforins; the

requirement for physical contact between effector-target cells;

and, a predilection for specific pathways (e.g. PI3K-ERK1/2

signaling in NK-mediated anti-Cryptococcal activity) (104,

105). The use of human NK cells purified from peripheral

blood also regularly involved priming cytokines IL-2, IL-12,

IL-15 and IFNa/b concoctions which enhanced NK cellular

activity. Against Aspergillus, human NK cells were able to kill A.

fumigatus hyphae, but not resting conidia in vitro. Hyphae

killing, measured via methoxynitrosulfophenyl-tetrazolium

carboxanilide (XTT) assays ranged between 15% to 43%

measured hyphae killing of 15-43% was achieved, but required

high E:T ratios of 10:1 to 50:1 (80). Similar results were seen

against Zygomycetes, whereby R. oryzae hyphae (but not

conidia) were susceptible to NK killing (79), as well as in C.

albicans (77).

Against the background of the above in-vitro study

outcomes saw the development of adoptive transfer of NK

cellular therapy against IFI in animals. This was first

successfully demonstrated in 2003 with murine splenocytes

cultured in IL-12 and IL-18 and purified through negative

selection with 95% yield. Two million NK cells injected into

immunocompromised mice in a pulmonary aspergillosis mice

model in vivo saw significant reduction in lung fungal burden

(91, 92). The most recent attempt involved the use of adoptive

xeno-transfer of human NK cells to treat mice with pulmonary

aspergillosis. Of note, these human NK cells were highly

activated, expanded by co-culture with K562 cells genetically

modified to express 4-1BB ligand and membrane-bound IL15

(K562-41BBL-mbIL-15). Promisingly, cytotoxicity was observed

with a significantly lower E:T ratio of 2:1 where the infusion of

10 million cells led to an approximately 40% reduction in fungal

growth, independent of anti-fungal drugs (83).
Frontiers in Immunology 05
State of art: Clinical applications and
considerations for NK Cell therapy
from cancer to IFI

Much of what is currently known about the clinical

application of NK cells stems from decades of cancer research

in the use of NK cell infusions for cancer treatment (47). NK

cells can be obtained from peripheral blood of allogeneic donors,

differentiated umbilical cord blood, induced pluripotent stem

cells (iPSCs), or irradiated cells of the NK-92 cell line.

The clinical preparation of NK cells for cancer therapy

depends on the source of NK cells and it can be broadly

divided into the following processes: 1) harvesting from

source; 2) ex vivo NK cell preparation which may require

differentiation for stem cell sources, and usually involves

expansion to generate higher numbers of effector cells, 3)

patient lymphodepletion chemotherapy prior to infusion; and,

4) patient IL-2 therapy after infusion. In this section, we will

further discuss what is currently known about the clinical

application of NK cells in human clinical trials.
Sources of NK cells

Peripheral blood NK cells

The peripheral blood is the most common source of NK cells

in clinical trials (Figure 1). Allogeneic donors of peripheral blood

NK cells have been preferred over autologous NK sources in the

setting of anti-tumour activity for patients with cancer (47). This

is primarily due to the self-HLA expression on tumour cells that

inhibit the activity of autologous NK cells (47). HLA typing is

also required to identify suitable donors. Although allogeneic

NK cells generally do not cause graft versus host disease

(GVHD) directly (106, 107), adequate T-cell depletion

procedures (typical safety limit: 5 x 104 per kg body weight)

are still required (108, 109).

The process of isolation and enrichment of NK cells from

peripheral blood mononuclear cells starts with a leukapheresis

procedure (110). In this process, white blood cells are removed

from the blood of the donor while the remaining blood

components are returned via an apheresis machine (111).

Mononuclear cells are further enriched by centrifugation with

Ficoll density gradient centrifugation before T cell depletion with

CD3 immunomagnetic beads, followed on with CD56

enrichment (112).

Because peripheral blood NK cells of healthy individuals are

usually in a resting state, pre-activation is necessary to optimize

functionality using IL-2 or IL-15 (113). Short term exposure to

high dose IL-2 for 12-16 hours at doses of 1000 international

units per millilitre has been shown to adequately activate NK
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achieved with
higher E:T ratios

Jimenez B.E.
et al. Infect
Immun 1984
(98)

YT and human NK
cells had anti-
cryptococcal
activity

Perforin was
responsible for the
anticryptococcal
activity of YT cells and
primary NK cells.
Dependent on PI3K-
ERK1/2 signalling.
Contact was required
between NK cells &
fungi

Ma L.L. et al. J
Immunol 2004
(103), Wiseman
J.C. et al. J
Immunol 2007
(104)

NK cells killed
Cryptococcus
neoformans
through effector cell
binding and via
soluble factors, up
to 45% killing.

Nabavi N. et al.
Infect Immun.
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Hidore M.R.
et al. Infect
Immun. 1991
(100)
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Imm
mod

In-
vitro

Aspergillus
conidia and
hyphae

Co-culture followed
by 2,3-bis-(2-
methoxy-4-nitro-5-
sulfophenyl)-2H-
tetrazolium-5-
carboxanilide

Human
primary NK
cells from
PBMC

Negative selection using
anti-CD3 microbeads
was followed by a
positive selection of
CD56+CD3- cells using
anti-CD56 antibodies.
Purity 95%. Viability
98%

E:T 10:1,
20:1, 50:1; 6
hours

1000 U/mL IL-
12 every 3rd
day during
culture

No

(XTT) assay

In-
vitro

Paracoccidioides
brasiliensis yeast

Growth inhibition
and 51Cr release
assay against YAC-1
cells for NK activity

Murine
splenic cells

Nylon wool non-
adherent cells and
Percoll fractionation

E:T 50:1 to
500:1; 18
hours

No No

In-
vitro

Cryptococcus

Co-culture of NK
cells and fungi
followed by Triton-
X and enumeration
of fungal growth

Studies
performed
using
mostly
primary NK
YT cell lines
and some
human NK
cells

Human NK cells isolated
by magnetic-activated
cell sorting (MACS) NK
isolation kit (negative
selection). Purity >90%.

E:T >100:1;
24 hours

No No

In-
vitro

Cryptococcus

Co-culture followed
by 3-(4,5-
dimethylthiazol-2-
yl)-2,5-
diphenyltetrazolium
bromide (MTT) and
fluorescein diacetate
viability stain,
growth inhibition

Murine

Murine spleen nylon
wool non-adherent cells
enriched on
discontinuous Percoll
gradient.

E:T 2:1; 18
hours

No No
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First author,
journal, year

of
publication,
reference in
main text

No

CD16/56
lymphocytes
exhibited anti-
fungal activity by
up to 45%.

CD4 and CD8
lymphocytes also had
potent anti-fungal
activity. B cells and
opsonins were non-
essential

Levitz S.M.
et al. Infect
Immun. 1994
(103)

No

Primary NK cells
induced 20-30%
reduction on C.
albicans viability
that was mediated
by perforin.
Neutrophil anti-
fungal activity was
also enhanced by
NK cells

NK cells phagocytosed
C. albicans. NK cells
degranulate with
granzyme B and
perforin, and release
IFN-g, GM-CSF,TNF-a
in response to Candida.
Contact dependent
activation was shown
to be important

Voigt J. et al. J
Infect Dis 2014
(77)

No

Human NK cells
exhibited anti-
fungal activity
against R. oryzae
hyphae but not
conidia.

Perforin was involved
in the direct damage of
R. oryzae hyphae by
NK cells

Schmidt S. et al.
Immunobiol
2013 (79)

No

Leu-11b
complementation
inhibited C. immitis
killing by 76%

Interferon enhanced
peripheral blood
leucocyte mediated
inhibition of C. immitis

Petkus A.F.
et al. J Immunol
1987 (101)

(Continued)

O
h
e
t
al.

10
.3
3
8
9
/
fi
m
m
u
.2
0
2
2
.10

4
4
9
4
6

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
7

n
Type Fungi type Cell type or
platform

NK cell
source

Method of NK cell
preparation

Effector-
to-Target
(E:T) or
cell dose;
Exposure
time

Priming /
Stimulation

In-
vitro

Cryptococcus Co-culture
Source from
human
PBMC

Nylon wool non-
adherence and selected
by rosetting with sheep
erythrocyte/panning.

E:T 40:1 and
200:1; 24
hours

IL-2 1000 U/
mL

In-
vitro

Candida
albicans yeast

Co-culture followed
by XTT assay

Human
primary NK
cells from
PBMC

MACS NK isolation kit
(negative selection).
Purity > 95%.

E:T 2:1; 4
hours

100 U/mL IL-
2, 50 ng/mL
IL-15, 1000 U/
mL IFN-a,
2000 U/mL
IFN-b

In-
vitro

Rhizopus oryzae
conidia and
hyphae

Co-culture followed
by XTT assay for
hyphae. For conidia,
co-culture with NK
cells, followed by
lysis and culture
enumeration

Human
primary NK
cells from
PBMC

Negative selection using
anti-CD3 microbeads
was followed by a
positive selection of
CD56+CD3- cells using
anti-CD56 antibodies.
Purity 95%. Viability
98%.

E:T/ cell
dose not
detailed; 6-8
hours

1000 U/mL
rhIL-12 every
other day
during culture

In-
vitro

Coccidioides
immitis
endospores and
spherules

Co-culture of
effector cells with C.
immitis endospores
and spherules

Human
peripheral
blood
lymphocytes

Peripheral blood
layering, density gradient
centrifugation,
complementation with
Leu-11b, directed against
Fc receptor on NK cells

E:T 12.5:1 to
100:1; 4
hours

Interferon
(unspecified)
250 U
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of
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2 (1 ng/
d mIL-
0 ng/ml)

Neutrophil
depletion

Neutrophil depleted
mice which
received wild type
NK cells had
approximately 80%
lower lung fungal
chitin content

MCP-1/CCL2 mediated
influx of lung NK cells
through CCR2

Morrison B.E.
et al. J Clin
Invest. 2003
(91)

2 (1 ng/
d mIL-
0 ng/ml)

Neutrophil
depletion

Depletion of NK
cells led to a 2-3
fold increase in
lung fungal chitin.
NK cell adoptive
transfer resulted in
at least 2 fold
reduction in lung
fungal burden.

In neutropenic mice
NK cell-derived IFN-g
was shown to be
important in defending
against A. fumigatus
through CXCL9 and
CXCL10

Park S.J. et al. J
Immunol. 2009
(92)

L rIL-2
week

Cortisone acetate
(250 mg/kg/200
µL) and
cyclophosphamide
(250 mg/kg/100
µL)

Mice treated with
the expanded NK
cells had
significantly lower
fungal burden (40%
reduction) in the
lungs when
compared to
untreated mice

Highest efficacy was
observed against A.
fumigatus conidia
mediated by dectin-1
receptor on NK cells
which led to
augmented release of
perforin, that resulted
in direct cytolysis

Soe W.M. et al.
J Fungi (Basel)
2020 (83)

O
h
e
t
al.

10
.3
3
8
9
/
fi
m
m
u
.2
0
2
2
.10

4
4
9
4
6

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
8

Type Fungi type Cell type or
platform

NK cell
source

Method of NK cell
preparation

Effector-
to-Target
(E:T) or
cell dose;
Exposure
time

Prim
Stim

In-
vivo
and
in-
vitro

Aspergillus
fumigatus,
pulmonary
infection

Adoptive transfer of
murine NK cells
into mice

Murine
splenocytes

Splenocytes were
cultured with
indomethacin, 2-
mercaptoethanol, murine
IL-12 and mIL-18 for 5
days. Cultured NK cells
then enriched by
depletion of CD5+, Ly-
6G+, TER-119+, CD22+,
and F4/80+ cells. Purity
>95%.

2 × 106 cells
in 100 ml
through tail
vein
injection

mIL-1
ml) an
18 (10

In-
vivo
and
in-
vitro

Aspergillus
fumigatus,
pulmonary
infection

Adoptive transfer of
murine NK cells
into mice

Murine
splenocytes

Splenocytes were
cultured with murine IL-
12 and mIL-18 for 5
days and negatively
selected by depletion of
CD5+, Ly-6G+, TER-119
+, CD22+, and F4/80+
cells. Purity >95%.

2 × 106 cells
in 100 ml
through tail
vein
injection; 3
days

mIL-1
ml) an
18 (10

In-
vivo
and
in-
vitro

Aspergillus
fumigatus,
pulmonary
infection

Adoptive transfer of
human NK cells
into mice

Human
PBMC

Human PBMC were
expanded and activated
by co-culture with K562
cells genetically modified
to express 4-1BB ligand
and membrane-bound
IL-15 with CD3
depletion. Purity and
viability >92%.

E:T of 2:1 or
1 × 107 cells
in 200 ml; 4
days

10 U/m
over 1
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cells in the study by Miller et al. (107). IL-15 has been described

to maintain NK cell cytotoxicity for a longer period than IL-2

without repeat exposure (114, 115), however other studies have

suggested the possibility of cell exhaustion with other IL-15

dosing regimens (116). Other combinations involving 12-16

hour incubations with IL-12, IL-15 and IL-18 have also been

used in clinical trials as pre-activation prior to infusion in

patients (117). Recently, inhibitors of glycogen synthase kinase

3 (GSK3) have also been described to induce NK cell maturation

and cytotoxicity (118).
Differentiation from stem cells: Umbilical
cord blood and iPSCs

NK cells can also be obtained through the differentiation of

stem cells such as umbilical cord stem cells and iPSCs. Umbilical

cord banks allow the advantage of selection of donors with a

specific HLA or NK receptor profile. A higher number of naïve

NK cells exist in cord blood (approximately 30%) than in

peripheral blood (approximately 10%) (119). While they have

lower spontaneous killing of target cells due to lower expression

of perforin and granzyme B, they express the same amount of

activating receptors (120). With ex vivo activation and

expansion, lower cytotoxicity can be overcome to allow

broader off-the-shelf applications, including CAR-based

therapy (121), given the ubiquity of cord blood banks.

CD34+ hematopoietic cells from umbilical cord blood can be

differentiated into NK cells with the use of stem cell factor (SCF),

IL-2, IL-7, IL-15, and other growth factors (122, 123).
Frontiers in Immunology 09
Haematopoietic differentiation of iPSCs can be first induced

with SCF, vascular endothelial growth factor (VEGF) and bone

morphogenetic protein 4 (BMP4) (124). Thereafter, NK cell

differentiation is stimulated using IL-3, IL-7, IL-15, SCF and

FLT3L (125). These differentiated NK cells can then be expanded

by co-culture with K562 cells with membrane bound IL-21 (125,

126). However, the main limitation of differentiated cells as a

source is the significantly longer duration of culture required

(about 7 weeks) (127) which may not be practical for clinical use

in patients with rapidly progressing conditions.
Off-the-shelf genetically modified NK-92
products

Emerging data suggest the potential for NK-92 cells to be an

off-the-shelf source of NK cells for further engineering and

clinical development. First established in 1994, NK-92 is a cell

line derived from the peripheral blood of a patient with non-

Hodgkin’s lymphoma that was first established in 1994 (128); it

and has been found to have a high expression of activating

receptors (129), granzyme B and perforin (130).

The expansion of NK-92 cells has been adapted to good

manufacturing practice (GMP) conditions with a doubling time

of 24 to 36 hours with IL-2 support (131, 132). Phase I clinical

trials using NK-92 cells in patients with hematologic

malignancies and solid tumours have demonstrated safety with

some clinical response (133–136). Genetic modification of NK-

92 cells through viral transduction with CARs against a variety

of cancer targets such as CD19 and CD20 for B-cell malignancies
FIGURE 1

Clinical aspects of state-of-the-art NK cell therapy and potential challenges specific to applications for invasive fungal infections: The main
sources of NK cells in clinical trials are donor peripheral blood mononuclear cells which are the most commonly used, while next generation
genetically modified products using stem cells (umbilical cord blood cells or iPSCs) are progressively emerging. Schematic diagram representing
the main steps in cell manufacturing highlights the complexity and time needed to produce stem cell differentiated products in addition to the
need for genetic engineering of CAR-NK cells. The need for lymphodepletion chemotherapy and post infusion cytokine administration, which is
the case for most non-genetically engineered products is an important clinical aspect of NK cell therapy.
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(137–139) have also been developed. The first CAR NK-92

clinical trials were conducted in patients with relapsed or

refractory acute myeloid leukemia, using a lentiviral

transduced third-generation CAR targeting CD33 (140). While

clinical efficacy was not observed, these early studies

demonstrated safety as no grade 3-4 adverse events

were observed.

While NK-92 cells present an attractive, off-the-shelf option

for NK cell-based therapy, a potential major drawback is limited

persistence given that the cells are irradiated. Furthermore, most

protocols do not include lymphodepleting chemotherapy which

limits persistence as the cells are more likely to be rejected

very quickly.
Ex-vivo preparation of NK cells:
expansion through co-culture
with K562 cells

NK cell activation and proliferation can be induced through

co-culture with the chronic myelogenous leukaemia derived cell

line, K562 (141). Transduction of K562 with both mbIL-15 and

4-1BBL (14, 46, 113) which are then irradiated, further improves

NK cell proliferation following co-culture, a method which has

also been adapted to clinical use in large-scale, GMP conditions.

While irradiation restricts any proliferation of K562 cells, NK

cells also effectively kill K562 cells;, ensuring that there will be no

viable K562 cells infused to patients (110).

GMP cultures of NK cells isolated from peripheral blood

mononuclear cells lasting 10 days can achieve more than 300-

fold NK cell expansion (46, 110, 113). This allows sufficient cells

for multiple infusions from a single leukapheresis product (110,

142). An even higher amount of NK cells can be generated by

prolonging the duration of culture, or through the addition of

more irradiated K562-mbIL-15-4-1BBL cells for up to 8-15

weeks, following which senescence may start to set in (14).

Other modifications to K562 cells in an attempt to improve

NK cell expansion after co culture have also been studied: 4-

1BBL with IL-15 receptor alpha chain (109); 4-1BBL with IL-21

(143); CD64, CD86, CD19 with 4-1BBL; mbIL-15, mbIL-21 or

both (111, 126, 144); OX40 ligand with IL-2, IL-15 and IL-

21 (145).
Optimizing the host for NK cell
therapy: lymphodepletion and
cytokine administration

Allogeneic NK cells only persist for 2-3 weeks after infusion.

Lymphodepletion is primarily used to improve persistence by

overcoming rejection of NK cells by the recipient’s immune

system (69, 110, 146). Fludarabine and cyclophosphamide are
Frontiers in Immunology 10
the most widely used drugs to preferentially deplete recipient

lymphoid cells prior to NK cell infusion (107). In the pioneering

work by Miller et al. (107), deeper immunosuppression through

the addition of cyclophosphamide at 60mg/kg for 2 days to a

fludarabine regimen of 25mg/m2 for 5 days led to higher levels

of serum IL-15 and resulted in better engraftment. With these

lymphodepletion regimens, allogeneic NK cells typically persist

for 14-21 days following infusion (69, 110, 146, 147), including

that of umbilical cord blood derived NK cells (148).

In addition to lymphodepletion, IL-2 is also commonly

administered to improve survival and expansion of donor NK

cells. Typically, 6 doses of IL-2 are given subcutaneously over 2

weeks after NK cell infusion (110, 127, 146, 149, 150).

In a study by Miller et al. (107), haploidentical IL-2 activated

NK cells were observed to have increased NK cell expansion with

higher serum IL-15 levels in patients who received

lymphodepletion plus IL-2-diptheria toxin fusion protein, as

compared to those who received lymphodeplet ion

chemotherapy alone (127).

IL-15 and its variants have also been used to support NK cell

expansion in clinical trials. Cooley et al (151) showed that NK

cell expansion was higher than what had been previously

described with IL-2; however, subcutaneous IL-15 injections

were associated with cytokine release syndrome and associated

neurotoxicity. Increased toxicity was hypothesized to be due to

IL-15 stimulation of monocytes and T cells in contrast to actual

NK cell activation (151).
Adaptation of current NK
cellular technology to treatment
of IFI: identified challenges
and modifications

The perceived attractiveness of NK cellular therapy lies in

the capacity of NK cells to directly kill target cells and stimulate

the host immune response, without need for prior antigen-

specific sensitization, with minimal risk of inducing GVHD

(152). While in vitro and animal in vivo NK studies against

fungi to date seem promising, these are rudimentary first steps in

using NK cells with anti-microbial intent against pathogens

compared to the experience accumulated to date with NK

infusions for their anti-tumour activity, from which challenges

have been recognized. For instance, the requirement for

continued IL-2 administration post- NK cell infusion has been

pivotal in sustaining viability and expansion but its dosing is

limited by the adverse IL-2 cytokine-linked side effects

experienced by patients like malaise, nausea, vomiting (153).

The potential merits of the use of higher doses of IL-2 (up to

6,000 IU) (113) or with addition of IL-15 and IL-12 have since

come under question. IL-15 enhances cytotoxicity, but also

increases the risk of immune exhaustion (116). More critical
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cytokine-related toxicities such as worsening leucopenia,

granulocytopenia and thrombocytopenia are likely already

inherent in patients susceptible to invasive fungal infections,

hypotension, and capillary leak syndrome. The development of

IL-15 analogues, such as N-803, primes NK cells to produce

much needed IFNg and TNFa (154) against the fungi. NK cell

expansion using irradiated K562 cells with membrane bound IL-

15 and 4-1BBL is now being used to produce a good yield of

expanded NK cells for cellular therapeutics.

While anti-tumour treatment largely involves single infusions

of NK cells, the optimal number of infusions of NK cells, which

has important implications on its applicability, remains unknown.

The duration of viability of a single infusion of NK cells is

estimated to be between 2-3 weeks, subject to rejection by the

recipient’s immune system. In order to allow the infused NK cells

to dwell and exert their anti-fungal effect, lymphodepletion

chemotherapy also acts as a double-edged sword since they are

also well recognized to compromise even an immunocompetent

host’s immune mechanisms. In the setting of heavily pre-treated

patients, or those with existing co-morbidities, fitness to undergo

lymphodepletion is a major consideration, given the dose intensity

required. In fact, IFI patients who are post stem cell transplant

(SCT) or on intensive chemotherapy, are already lymphodepleted

by nature of their therapy. Hence, one might view the use of NK

adoptive therapy from an allogenic source (or ideally, from the

SCT donor) as befitting, under such circumstances.

Historically, the use of autologous NK cells for anti-tumour

intent has not yielded significant efficacy. This has been

attributed to HLA signals on the tumour cells which may

inhibit autologous NK cells from activating and effecting

cytotoxicity. However, this is unlikely to be of concern against

an invading fungus; instead, it could potentially be an alternative

source of NK cells in addition to a conventional allogenic option.

As with other more established forms of personalized cell-based

therapy such as CAR-T cell therapy, the issues of manufacturing

such as: quality of starting material, turnaround time, schedule

availability and requirement for quality control testing prior to

product release, need to be addressed when considering the

practical aspects of clinical NK cell therapy. Given the clinical

urgency, an autologous source may be the most practical. However,

if a patient is already in a dire state where the invasive fungal

infection is in fact an effect of underlying profound

immunosuppression, it may render the harvesting of a suitable

starting material impossible. In the same vein, the need for HLA

matching and the search for an allogeneic healthy donor starting

product may take more time than what a critically ill patient

may have.

The role of NK cells as innate lymphocytes effecting non-

discriminatory, anti-tumour, and possibly anti-microbial, activity is

a double-edged sword. NK cells utilize inhibitory receptors like

KIRs which interact with MHC-1 to distinguish between ‘self’ and

‘non-self’, marking out the latter for effector response. While they

are not known to display clonotypic receptors, what is apparent is
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that NK preparation and priming seems to have an effect on fungal

morpho-typic activity. NK cells primed by IL-2 by Schmidt et al.

displayed specificity for A. fumigatus and R. oryzae hyphae but not

conidia (80). Conversely, expanded NK cells expressing K562-

41BBL-mbIL-15 by Soe et al. have been observed to be most

efficacious against A. fumigatus germinating conidia, and this was

attributed to the Dectin-1 receptor (83). As a therapeutic

benchmark, voriconazole effectively targets both germinating

conidia and active growing hyphae (155). Given the morpho-

typic predilection against fungi that has been observed with NK

cells from different sources, further development of NK cells with

enhanced activity against both conidia and hyphae would

be desirable.
The goal ahead: augmenting
NK anti-fungal activity through
genetic engineering

Efforts in engineering NK cells to augment function have

been made via viral transduction or electroporation of mRNA

(110, 156). NK cell proliferation is critical in allowing DNA

integration of the gene of interest, especially when retroviral

transduction is used (46). Gene expression is also generally

improved in lentiviral transduction if the cells are proliferating

(157). Given concerns regarding oncogenic mutagenesis with

viral transductions, mRNA electroporation – a method that does

not involve viral vectors – has also been studied. Despite being

less costly and faster to prepare, a major limitation is that gene

expression is transient and is generally lost within a week (156).

While this may be a limitation for cancer-related applications,

short-term expression may be still be acceptable for other

indications beyond oncology.

To date, genetic engineering efforts have been geared

towards 1) enhancing activation and proliferation, 2)

decreasing inhibition, and 3) redirecting cells toward specific

targets. While most of the studies have been conducted in the

context of oncology, significant parallels may also be applicable

to an anti-fungal setting.

CAR engineering of NK cells is an emerging field that

leverages on the success of CAR-T cell technology in cancer

[Figure 2]. The potential major advantage of CAR-NK cells over

CAR-T cells is its potential for off-the-shelf use, given its HLA-

unrestricted killing (158), which abrogates the need for complex

testing and personalised manufacturing, in often dire and urgent

clinical scenarios. CAR-NK cells have also demonstrated

extended in vivo persistence and a favourable safety profile in

ongoing clinical trials (159). Primarily designed to re-direct T

cells towards specific targets such as CD19 expressed on B-cell

malignancies, second generation CAR-T cells first demonstrated

cytotoxicity through the incorporation of the 4-1BB co-

stimulatory domain (46). Further observations of a higher
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basal level of activation that was not dependent on antigen

binding have been characterised in a phenomenon known as

tonic signalling (160, 161). This suggests that CAR constructs

not only redirect T cells to specific targets, they also interact with

endogenous receptors leading to more T cell activation (162).

While the effects of tonic signalling have not been elucidated in

CAR-NK cells, similar cooperative activation in NK cells are

plausible (158). With the right target antigen, CAR-NK cells

directed against fungi have significant potential for further

clinical development.
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Dectin-1, also known as CLEC7A, is a C type lectin receptor

which recognizes beta-glucan, a ubiquitous polymer in the cell

walls of fungi such as Aspergillus, Candida and Zygomycetes

(163, 164). Beta-glucan is most abundantly expressed on actively

growing fungal morphotypes such as germinating conidia and

hyphal tips (165, 166). Hence, the generation of CAR-NK cells

co-expressing Dectin-1 receptor may literally ‘nip the problem in

the bud’ given its enhanced specificity over dormant or inactive

fungal conidia. In an attempt to study this, Dectin-CAR-T was

innovatively modified through the fusion of Dectin-1 receptor to
FIGURE 2

Engineering CAR NK Platforms against Invasive Fungal Infections [1] CAR NK cells co-expressing fungal specific receptors e.g., Dectin-1 fused to
co-stimulation and activating domains [2] Enhanced expression of NK-activating receptors or down regulation of NK-inhibitory receptors upon
ligation [3] NK cells with ‘cytokine-armouring’ capability for superior persistence and sustenance against fungal pathogens.
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CAR cassette encoding chimeric CD28 and CD3-z (167). These

Dectin-CAR-T, through their specificity for beta-glucan, were

able to induce hyphal damage, thereby functioning as treatment

against aspergillosis in mice. This proof-of-concept capability

harbours the potential to engineer NK cells with similar intent

whereby the likelihood of rejection is lower than T lymphocytes.

Next, is the possibility of manipulating the balance between

NK activating receptors (e.g., NKG2D-DAP10) and inhibitory

receptors (e.g., NKG2A and KIR) through genetic engineering

involving CRISPR-Cas9 gene editing technology. This has now

been made possible with the success of CAR-T technology which

can also be applied to NK cells as CAR-NK cells with specific

targets and increased cytotoxicity. Engineered CAR-NK cells

with membrane bound IL-15 (168) (or, with 4-1BBL) and

enhanced NKG2D–CD3z–DAP10 expression promise to exert

greater cytotoxicity with increased cytokine production and

degranulation (169). Conversely, down regulation of NK

inhibitory receptors is now possible through the use of (i) gene

editing techniques; (ii) single-chain variable fragments targeting

NKG2A protein expression at the endoplasmic reticulum, and

(iii) anti-KIR antibodies (170). Intuitively modifying NK cells to

augment expression of IL2R and IL15R also serves to increase

the sensitivity of NK cells to enrichment and expansion.

Cytokine “armoured” NK cells are being developed through

genetic CAR engineering of NK cells. On the basis that

continuous cytokine stimulation of NK cells during ex vivo

NK cell preparation renders the cells ‘cytokine-addicted’, these

cells are being developed to reduce the effects of “cytokine

addiction” such as decreased persistence in vivo (171).

Cytokine armouring is being developed in the forms of 1)

soluble cytokines that are secreted which also activate other

immune cells (172) and, 2) membrane-bound cytokines that are

triggered upon cellular interactions (173). When compared with

CAR alone, IL-15-armoured CAR NK cells demonstrated

superior persistence (168), not only in vivo in preclinical

models but also in a clinical study of patients with CD19

CAR-NK cells (159). A similar approach can also be applied

in the setting of anti-fungal NK cell therapy to augment NK cell

function and overcome the challenges of an immune milieu that

is often low in IFNg and TNFa in the setting of an invasive

fungal infection.

The ultimate objectives in optimizing NK cellular therapy

against fungi lie in enhancing activation and expansion of NK

cells to an ideal E:T ratio. This translates to good cell numbers,

viability, and enhanced activity. Beyond the traditional ‘single

donor’, use of hematopoietic stem and progenitor cells (HSCs)

and iPSC lines (174, 175) provide the advantage of an accessible

bank of matched donors. However, inherent obstacles such as

the complex cell manufacturing process, need to be overcome

through development of off-the-shelf products that do not

require HLA matching, given the often-urgent clinical

scenarios. Stem cell products can also potentially acquire
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significant new mutations (176) during the differentiation

process which presents an added challenge of regulatory

concerns about potential oncogenicity. Other off-the-shelf

options such as genetically modified NK-92 cells are promising

in terms of time-to-infusion advantage; however, the

cytotoxicity and persistence of NK-92 cells that have been

lethally irradiated (177) remain to be established until further

clinical data from ongoing trials become available (178).

Further studies need to be directed toward an ideal setting

where 1) the starting material is readily available; 2)

manufacturing can be completed in a reasonable time frame, if

not, an off-the-shelf product; 3) lymphodepletion is not required

(especially in already immunosuppressed patients); and, 4) NK

cells are able to expand in vivo and maintain their own activating

signals to mediate effective cytotoxicity.
Conclusion

NK cell technology has improved by leaps and bounds in

recent decades, making adoptive cellular transfer a viable

therapeutic option that can now be considered against

difficult-to-treat fungal infections. However, it is to be

highlighted that the use of NK cells as antimicrobial, anti-

fungal therapy is unlikely to be implemented independently as

a form of monotherapy. A practical strategy would be to

administer NK cellular therapy in conjunction with

conventional therapeutics such as the new generation azole

anti-fungal drugs (i .e . , voriconazole, posaconazole,

isavuconazole) or even liposomal amphotericin B. The basis

for supporting the deployment of a targeted immune-

augmenting therapy alongside conventional antimicrobials is

strong, given that many patients with invasive fungal infections

are immunocompromised.
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