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Background: Accumulating evidence shows that immunogenic cell death

(ICD) enhances immunotherapy effectiveness. In this study, we aimed to

develop a prognostic model combining ICD, immunity, and long non-coding

RNA biomarkers for predicting hepatocellular carcinoma (HCC) outcomes.

Methods: Immune- and immunogenic cell death-related lncRNAs (IICDLs)

were identified from The Cancer Genome Atlas and Ensembl databases. IICDLs

were extracted based on the results of differential expression and univariate

Cox analyses and used to generate molecular subtypes using

ConsensusClusterPlus. We created a prognostic signature based on IICDLs

and a nomogram based on risk scores. Clinical characteristics, immune

landscapes, immune checkpoint blocking (ICB) responses, stemness, and

chemotherapy responses were also analyzed for different molecular subtypes

and risk groups.

Result: A total of 81 IICDLs were identified, 20 of which were significantly

associated with overall survival (OS) in patients with HCC. Cluster analysis

divided patients with HCC into two distinct molecular subtypes (C1 and C2),

with patients in C1 having a shorter survival time than those in C2. Four IICDLs

(TMEM220-AS1, LINC02362, LINC01554, and LINC02499) were selected to

develop a prognostic model that was an independent prognostic factor of HCC

outcomes. C1 and the high-risk group had worse OS (hazard ratio > 1.5, p <

0.01), higher T stage (p < 0.05), higher clinical stage (p < 0.05), higher

pathological grade (p < 0.05), low immune cell infiltration (CD4+ T cells, B

cells, macrophages, neutrophils, and myeloid dendritic cells), low immune

checkpoint gene expression, poor response to ICB therapy, and high stemness.

Different molecular subtypes and risk groups showed significantly different
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responses to several chemotherapy drugs, such as doxorubicin (p < 0.001),

5-fluorouracil (p < 0.001), gemcitabine (p < 0.001), and sorafenib (p < 0.01).

Conclusion: Our study identified molecular subtypes and a prognostic

signature based on IICDLs that could help predict the clinical prognosis and

treatment response in patients with HCC.
KEYWORDS

hepatocellular carcinoma, lncRNAs, immunogenic cell death, biomarkers,
clinical prognosis
Introduction

Liver cancer is the second most common cause of cancer-

related deaths worldwide (1), with hepatocellular carcinoma

(HCC) being the most common histological type (2). Despite

advancements in HCC treatment, the 5-year survival rate of

patients with HCC remains less than 30% owing to complex

etiology and high degree of heterogeneity (3). A novel prognostic

indicator is, thus, required to accurately predict prognosis and

guide appropriate treatment for patients with HCC.

Long non-coding RNAs (lncRNA) are RNA transcripts that

are longer than 200 nucleotides; however, they do not encode

proteins (4). LncRNAs are appealing biomarkers for cancer

diagnosis and prognosis because of various reasons. First,

lncRNA expression varies greatly across disease stages,

diseases, and tissues; thus, it can better represent disease

features (5). Second, lncRNA can regulate gene transcription,

post-transcriptional modification, and epigenetic expression (6,

7), which correlates more closely with tumor progression.

Numerous studies have examined the clinical relevance of

lncRNA within tumors, including HCC (8). LncRNA has been

recently revealed to regulate the expression of genes encoding

anticancer immunity proteins (9). Tumor immune cell infiltration

also depends on lncRNA (10). For example, NRON sequesters

phosphorylated NFAT in the cytoplasm and maintains T cell

resting states (11). Antisense lncRNA SATB2-AS1 regulates the

expression of SATB2, inducing the expression of TH1 chemokines

CXCL9 and CXCL10 and initiating the transport of effector T cells

(12). Moreover, GAS5 plays a crucial role in the growth arrest of T

cells and non-transformed lymphocytes (13), and FENDRR

promotes inflammatory and antitumor immunity by controlling

tumor cell immunogenicity and proliferation (14). In patients with

cancer, LIMIT correlates with MHC-I, tumor-infiltrating T cells,

and checkpoint blockade response (15).

Immunotherapy has received increasing research attention

in recent years. Immune checkpoint inhibitors yielded

promising results in several clinical trials for HCC (16–18).

They work primarily to prevent the activation or effects of T cells
02
(19). An immune checkpoint inhibitor, nivolumab (anti-PD-1),

was the first FDA-approved treatment for HCC. It reduces the

number of unresponsive T cells while increasing CD38-

expressing activated T cell counts (20). In 20% of HCC

patients, pembrolizumab has shown efficacy in rejuvenating

exhausted T cells and restoring their antitumor functions by

inhibiting the PD-1 pathway (21, 22). Similarly, ipilimumab

targets CTLA4 receptors and blocks their interaction with

CD80/86, thereby allowing T cells to release suppressive

signaling and become cytotoxic (23). Increasing evidence

shows that cancer antigens released by immunogenic cell

death (ICD) can boost cytotoxic T cell responses, potentially

improving immunotherapy (24–28).

ICD is a form of cell death that elicits an immune response

against the antigens of dead or dying cells, mostly cancerous cells

(29, 30). ICD may activate danger-signaling pathways mediated

by surface calreticulin/heat-shock proteins, secreted ATP, or

HMGB1 (31–33). Extensive preclinical studies have identified

ICD as a significant predictor of solid antitumor immunity (34,

35). ICD for biomarker discovery offers considerable advantages

because it allows simultaneous integration of several immune-

related pathways, such as those of danger signaling and effector

T cell infiltration/activity (36, 37). The induction of ICD may

become a more effective approach in cancer immunotherapy

since it allows the eradication of tumors that had previously

escaped the immune system (38).

As a single or combined agents with chemotherapy that

induces ICD, TLR7 agonists have been used as anticancer

immunotherapeutic agents (39, 40). Chemotherapy-induced

ICD can convert malignant cells into vaccines and increase T

cell priming, thereby facilitating T cell-mediated destruction of

residual cancer cells (41, 42). Moreover, conventional NIR-PIT

induces ICD that drives naive T cells to differentiate into

effectors by maturing dendritic cells (43, 44). Thus, ICD plays

a crucial role in triggering anticancer immune responses,

particularly T cell response. Further research into the

interactions between ICD and immunity may provide new

insights into tumor immunotherapy.
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In this study, molecular subtypes and a lncRNA prognostic

risk model combining ICD and immunity were constructed to

predict the immune microenvironment, prognosis, and response

to immunotherapy and chemotherapy in HCC. Our findings

pave the development of treatment strategies that will benefit

HCC patients.
Materials and methods

Data acquisition, differential expression
analysis, and intersection identification

The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.

gov/) database was used to download RNA sequencing (RNA-seq)

data and clinical information. Additionally, we downloaded gene

transfer format files from Ensembl (http://asia.ensembl.org) to

identify the lncRNAs from mRNAs. The limma package

(v3.40.2) (45) was used to identify differentially expressed

lncRNAs between normal and tumor tissues with p < 0.05 and |

log2 fold change (FC)| > 1. Next, we downloaded a list of immune-

related genes (IRGs) from the ImmPort database (http://www.

immport.org ), which were used in co-expression analysis to

identify immune-related lncRNAs (irlncRNAs). Immunogenic

cell death-related lncRNAs (icdrlncRNAs) were identified using

co-expression analysis of 33 recognized ICD-related genes

(ICDRGs) extracted from a large-scale meta-analysis (46).

Immune-related and immunogenic cell death-related lncRNAs

(IICDLs) were generated from the intersection of two

DElncRNA datasets. Thereafter, Spearman’s correlation analysis

was used to describe gene–gene correlation. Gene intersection

analysis was performed using the ggplot2 package (v3.3.3).
Cluster analysis

A univariate Cox regression analysis was used to screen for

prognosis-related IICDLs. A cluster analysis was performed

using the package ConsensusClusterPlus (v1.54.0) to identify

IICDLs related to molecular subtypes. Heat map clustering was

performed using the pheatmap package (v1.0.12). Kaplan–Meier

(KM) analysis was used to compare the prognosis of both

clusters. Stack graphs were used to visualize the correlation

between clusters and clinical parameters, and chi-square tests

were used to analyze them. Visualization was performed using

the ggplot2 package (v3.3.3).
Differential expression analysis and
enrichment of clusters

The limma package was used to analyze the differential

expression of mRNA between clusters 1 and 2. The threshold
Frontiers in Immunology 03
for differential mRNA expression was defined as p < 0.05 and |

log2 FC| > 0.2. To analyze the biological functions of potential

mRNAs, the ClusterProfiler package (v1.54.0) was used to

perform Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) analyses. The ggplot2 package

(v3.3.3) was used for visualization.
Building the prognostic signature

We used the prognostic IICDLs to construct a prognostic

model using LASSO Cox regression analysis via the glmnet

package (v4.1-2). Based on the regression coefficient (b) derived
from the multivariate Cox regression analysis, the following

formula was used to construct a prognostic signature: risk score

= (blncRNA1* expression level of lncRNA1) + (blncRNA2* expression
level of lncRNA2) +… + (blncRNAn* expression level of lncRNAn).

Each patient was assigned a risk score using this formula in TCGA-

HCC cohorts. Patients were categorized based on the median risk

score into low- and high-risk subgroups, and overall survival (OS)

times were compared between the two groups using KM analysis.

A time-related receiver operating characteristic (ROC) analysis was

performed using the timeROC package (v0.3) to evaluate the

prognostic ability of the risk model.
Construction and evaluation of a
predictive nomogram

Both univariate and multivariate Cox regression analyses

were performed to test whether the prognostic models are

independent of conventional clinical characteristics. A

nomogram was developed based on all independent prognostic

factors to assess the 1-, 3-, and 5-year survival of patients with

HCC (47). Calibration plots were constructed as part of an

internal validation process to ensure the predictive accuracy of

the nomogram. Nomogram performance was also evaluated

using time-dependent ROC analysis. Decision curve analysis

(DCA) was performed to determine the clinical net benefit (48).
Identifying somatic mutations

Data on the somatic mutations in the HCC samples were

obtained from TCGA GDC Data Portal in a mutation annotation

format. The Maftools package (v2.6.05) was used to visualize and

summarize the mutated genes using waterfall plots.
Identifying the immune landscape

TIMER (https://cistrome.shinyapps.io/timer/) is a web-

based resource for estimating the abundance of tumor-
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infiltrating immune cells (B cells, CD4 and CD8 T cells,

neutrophils, macrophages, and dendritic cells) (49). TIMER

deduces the abundance of TIICs by deconvolution, Monte

Carlo simulations, orthogonal estimates TIMER deduces the

abundance of tumor-infiltrating immune cells from gene

expression profiles based on a deconvolution method validated

by Monte Carlo simulations, orthogonal estimates from DNA

methylation-based inferences, and pathological assessments.

The abundance of immune cells in each tumor sample was

analyzed using TIMER. Eight common immune checkpoint

genes (ICGs; SIGLEC15, TIGIT, CD274, HAVCR2, PDCD1,

CTLA4, LAG3, and PDCD1LG2) were compared across

molecular subtypes and risk groups. Higher Tumor Immune

Dysfunction and Exclusion (TIDE) scores were associated with a

shorter survival and poorer immune checkpoint blocking (ICB)

treatment response. Using the TIDE database, we calculated the

TIDE scores for molecular subtypes and risk groups in TCGA.

Microsatellite instability (MSI) may be a predictive biomarker of

immunity to immune checkpoint inhibitors (50). Therefore, the

MSI score was calculated for each sample in TCGA-HCC

cohorts to compare the high- and low-risk patients.
Analyses of stemness and drug
susceptibility

The stemness of cancer cells has recently been recognized as

a valuable predictive or prognostic factor (51–53). Thus, we used

one-class logistic regression (OCLR) to compare stemness for

clusters and risks in TCGA (54). Based on the half-maximal

inhibitory concentration (IC50) of commonly used

chemotherapeutics, including doxorubicin (55), 5-fluorouracil

(56), gemcitabine (57), and sorafenib (58), we investigated the

molecular subtypes and risk groups associated with them.
Validation of IICDL expression in vivo
and vitro

The Cancer Cell Line Encyclopedia (CCLE) (https://portals.

broadinstitute.org/ccle) database was used to obtain the cell line

IICDL expressionmatrix of tumors. IICDL expression in the HCC

tissues and healthy liver tissues was analyzed in TCGA (https://

portal.gdc.cancer.gov/), lnCAR (http://lncar.renlab.org/ ), and

Gene Expression Profiling Interactive Analysis (GEPIA) (http://

gepia.cancer-pku.cn/) databases.
Statistical analysis

The Student’s t-test was used to compare gene expression

between tumor and adjacent non-tumor tissue, and the Mann-
Frontiers in Immunology 04
Whitney U test was used to evaluate proportional differences.

K-M analysis was performed to compare the OS between the risk

groups and the subtypes via the log-rank test. A multivariate and

univariate Cox regression analysis was used for the independent

prognosis analysis. Wilcox test was used to compare immune

scores between two groups. Statistical analyses were conducted

using the R (v4.0.3) software. A significance level of 0.05 was

used for all tests. We did not adjust P values for multiple testing

(59, 60).
Results

Identification of differentially
expressed irlncRNAs and
icdrlncRNAs and their intersection

Figure 1 shows the flow diagram of this study. TCGA

database, which contains 50 standard samples and 371 tumor

samples, was used to obtain the HCC RNA-seq data. Based on

the Ensembl gene annotation file, 16,013 lncRNA RNA-seq were

obtained, and 147 differentially expressed lncRNAs

(DElncRNAs) were initially identified, 25 of which were

upregulated and 122 downregulated (Figure 2A). There were

143 differentially expressed irlncRNAs (DEirlncRNAs), 24 of

which were upregulated and 119 downregulated (Figure 2B).

Moreover, of the 81 differentially expressed icdrlncRNAs

(DEicdrlncRNAs), 16 were upregulated and 65 were

downregulated (Figure 2C). The intersection of these two

DElncRNA datasets was defined as IICDLs, comprising 81

lncRNAs (Figure 2D).
Identification of clusters associated
with IICDLs

The univariate Cox analysis revealed 20 IICDLs associated

with prognosis, with AL606489.1 and AC0794666.1 acting as

protective factors and the remaining 18 acting as risk factors

(Figure 3A). According to correlation analysis, most genes were

related to one another (Figure 3B). Cluster analysis was

performed on the 20 prognosis-related IICDLs. Patients with

HCC clustered into two subgroups showed the best cluster effect,

with good subgroup internal consistency and stability

(Figures 3C–F). Heatmaps showed that the two clusters

significantly differed in gene expression of IICDLs (Figure 3G).

Cluster 2 had a better prognosis than Cluster 1 according to the

survival analysis (Figure 3H). In Cluster 2, prognosis was

significantly associated with male sex (p < 0.05), better T stage

(p < 0.05), early clinical stage (p < 0.01), and early pathological

grade (p < 0.05) (Figures 4A–F).
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Analysis and enrichment of differential
expression of C1 and C2

We also analyzed differentially expressed genes in C1 and

C2. Compared to C2, C1 had 1757 downregulated genes and

7901 upregulated genes (Figures 5A, B). Among 1794 IRGs, C1

had 569 upregulated genes (e.g., S100P), 713 downregulated

genes (e.g., AQP9), and 512 unregulated genes (e.g., SLP1) in

comparison to C2 (Figure 5C). Among 33 ICDRGs, C1 had 20

upregulated genes (e.g., BAX), one downregulated gene

(FOXP3), and 12 unregulated genes (e.g., PIK3CA) in

comparison to C2 (Figure 5D).

KEGG and GO analyses were performed based on

differentially expressed IRGs and ICDRGs. KEGG analysis

revealed that the differentially expressed ICDRGs were mainly

involved in the IL-17 signaling pathway, necroptosis, and

antigen processing and presentation (Figure 5E), whereas the

differentially expressed IRGs were involved primarily in the

cytokine–cytokine receptor interaction, chemokine signaling

pathway, and T cell receptor signaling pathway (Figure 5F).

GO analysis suggested that the differentially expressed ICDRGs

were mainly involved in T cell activation, endocytic vesicle, and

MHC protein binding (Figure 5E), whereas the differentially

expressed IRGs were primarily involved in leukocyte migration,

the external side of the plasma membrane, and cytokine receptor

binding (Figure 5F).
Frontiers in Immunology 05
Correlation analysis between clusters
and immune status, ICB response, and
chemotherapy response

We used the TIMER algorithm, the only method that

considers tissue specificity when estimating immune cell

populations (61), to determine whether there was a difference

in immune infiltration between the two clusters. We found

significant differences in the CD4+ T cells (p < 0.001),

neutrophils (p < 0.001), macrophages (p < 0.001), B cells (p <

0.001), and myeloid dendritic cells (p < 0.001), suggesting that

C2 exhibited stronger immunosuppression than C1 (Figure 6A).

The presence of stromal and immune cells in tumor tissues is

indicated by stromal and immune scores; the interaction of

cancer cells and tumor stroma affects cancer development,

facilitates metastasis, and evades immune surveillance.

Therefore, we further investigated the immune and stroma

score differences between C1 and C2, revealing that C1 had a

higher immune score and a lower stroma score than C2

(Figures 6B, C). Additionally, we used the ggplot2 package

(v3.3.3) to analyze the ICGs in C2 and C1 and found that

CTLA4 , HAVCR2 , LAG3 , PDCD1 , and TIGIT were

downregulated (Figure 6D, p < 0.001). TIDE scores for C1

were significantly higher than those for C2 (p < 0.0001),

indicating that C2 might achieve greater clinical benefit with

ICBs (Figure 6E).
FIGURE 1

Workflow of the study.
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Stemness, a molecular marker associated with stem cells,

has emerged as a valuable predictor or prognostic factor (51–

53). A higher stemness in C1 was noted (Figure 6F), suggesting

a poorer prognosis for patients in C1. Notably, tumor

stemness considerably contributes to cancer chemotherapy

resistance (62). Therefore, we assessed whether C1 and C2

responded differently in recommending chemotherapeutic

drugs for the treatment of HCC, such as doxorubicin (55),

5-fluorouracil (56), gemcitabine (57), and sorafenib (58). C1

was associated with lower IC50 levels for doxorubicin (p <

0.0001), 5-fluorouracil (p < 0.0001), gemcitabine (p < 0.0001),

and sorafenib (p < 0.0001) (Figures 6G–J), suggesting that

chemotherapy may have more beneficial on C1 than on C2.

Additionally, we analyzed somatic mutations in C1 and C2

and found that C1 had a high frequency of TP53 (33%), TTN

(24%), and MUC6 (20%) (Figure 6K), whereas C2 had a high

frequency of CTNNB1 (31%), TTN (26%), and TP53

(26%) (Figure 6L).
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Developing an IICDL-related prognosis
signature in TCGA-HCC cohort

We then built a prognostic model based on 20 prognosis-

related IICDLs. Four IICDLs were tested and chosen for the

prediction model based on the results of the LASSO regression

analysis (Figures 7A, B). Risk score models were calculated based

on the following algorithm: risk score = (−0.2854) * TMEM220-

AS1 + (−0.0614) * LINC02362 + (−0.0418) * LINC01554 +

(−0.0114) * LINC02499. Patients with HCC were divided into

two groups based on their risk scores. Figure 7C shows the

distribution of risk scores, survival status, and gene expression

for these four genes. The KM curves showed that the OS for

high-risk patients was significantly worse than that for low-risk

patients (p < 0.0001, HR = 2.215) (Figure 7D).

The area under curves (AUCs) of time-dependent ROC

curves for 1-, 3-, and 5-year OS were 0.706, 0.662, and 0.672,

respectively (Figure 7E), indicating a good predictive
D

A B

C

FIGURE 2

Identification of differentially expressed IICDLs in TCGA (A) Identification of differentially expressed lncRNAs in TCGA-HCC cohort. Volcano
diagram showing DEirlncRNAs (B) and DEicdrlncRNAs (C). (D) Intersection of the two sets of differentially expressed lncRNAs. DEirlncRNAs:
differentially expressed immune-related lncRNAs; DEicdrlncRNAs, differentially expressed immunogenic cell death-related lncRNAs; IICDLs,
immune-related and immunogenic cell death-related lncRNAs; TCGA, The Cancer Genome Atlas.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1043827
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


He et al. 10.3389/fimmu.2022.1043827
performance. The AUCs of the IICDL-based prognostic model

were 0.75, 0.77, and 0.77 for the 1-, 3-and 5-year survival

times, respectively.

Furthermore, we identified the differences in risk scores

between subgroups based on different clinical pathological

factors. The risk score was significantly associated with age (p

< 0.05), sex (p < 0.001), T stage (p < 0.05), clinical stage (p <

0.05), and pathological grade (p < 0.05) (Figures 7F–L).
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Developing a predictive nomogram for
OS prediction

We performed univariate and multivariate Cox regression

analyses to determine whether other traditional clinical

characteristics affected the prognostic model. The TNM stage

(p < 0.001, HR = 2.535) and risk score (p < 0.001, HR = 4.6) were

independent prognostic factors for OS (Figures 8A, B). A
ED

A B

F G H

C

FIGURE 3

Consensus clustering of HCC molecular subgroups based on IICDLs. (A) Forest plot of 20 prognostic IICDLs using univariate Cox analysis. (B)
Correlations between the 20 genes. CDF curve (C), delta area curve (D), PCA plot (E), and heat map (F) of consensus clustering. (G) Heat map of
IICDL expression in different subtypes. (H) KM survival curve of various subgroups in TCGA data sets. CDF, cumulative distribution function; PCA,
principal component analysis; KM, Kaplan–Meier. (*P < 0.05; **P < 0.01).
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predictive nomogram was built to assist in the accurate

prediction of clinical outcomes (Figure 8C). The predicted OS

outcomes matched the actual observations more closely,

according to the calibration plot for the internal validation of

the nomogram (Figure 8D). Additionally, the predictive

accuracy of the nomogram and individual prognostic factors

were compared using time-dependent ROC curves. The AUCs of

the nomogram at 1-, 3-, and 5-year OS were 0.674, 0.716, and

0.721, respectively, which were better than those of the models

with only one independent factor (Figures 8E–G). DCA was

used to determine the clinical relevance of these models, with the

combined model predicting outcomes with the highest accuracy

(Figures 8H–J).
Frontiers in Immunology 08
Correlation of immune status,
MSI score, ICB response, stemness,
and chemotherapy response with
IICDL signature

Previous research has linked different clusters to immune

status, ICB response, stemness, and chemotherapy response.

Accordingly, we aimed to determine whether there were any

significant differences between the high-risk and low-

risk groups. The TIMER algorithm was applied to

investigate the relationship between the tumor immune

microenvironment and the signature. The high-risk group

had more extensive infiltration of immune cells, including B
E

D

A B

F

C

FIGURE 4

Distribution of clinical characteristics between clusters C1 and C2. Distributions in terms of sex (A), T stage (B), N stage (C), M stage (D), clinical
stage (E), and pathological grade (F) of clusters C1 and C2. The horizontal axis represents a group of samples, whereas the vertical axis
represents the percentage of clinical information contained in the corresponding grouped samples. In the table, the p-value (−log10) of clinical
feature significance is shown (based on chi-square test). *p < 0.05.
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cells (p < 0.0001), CD4+ T cells (p < 0.0001), neutrophils (p <

0.0001), macrophages (p < 0.0001), and myeloid dendritic

cells (p < 0.0001), than that in the low-risk group (Figure 9A).

We also compared the immune, stroma, and MSI scores

between the risk groups and found that high-risk patients

had lower immune and stroma scores (Figures 9B–D) and

expressed high levels of five immune checkpoint inhibitors

(CTLA4, HAVCR2, LAG3, PDCD1, and TIGIT) (Figure 9E).

A higher TIDE score was obtained in the high-risk group
Frontiers in Immunology 09
(Figure 9F). The OCLR algorithm indicated a higher stemness

in the high-risk group (Figure 9G).

We also investigated whether the high-risk and low-risk

groups responded differently to doxorubicin, 5-fluorouracil,

gemcitabine, and sorafenib. The high-risk group had lower

IC50 levels for doxorubicin (p < 0.001), 5-fluorouracil (p <

0.001), gemcitabine (p < 0.001), and sorafenib (p < 0.01)

(Figures 9H–K), indicating that chemotherapy may have a

greater impact on high-risk patients.
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FIGURE 5

Differential expression and enrichment analysis of C1 and C2. Heat map (A) and volcano plot (B) showing differential gene expression between
C1 and C2. Rank order plot showing differential expression of IRGs (C) and ICDRGs (D) in C1 and C2. KEGG and GO analysis of differentially
expressed IRGs (E) and ICDRGs (F). IRGs, immune-related genes; ICDRGs, immunogenic cell death-related genes.
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Biological validation and independent
prognostic analysis of IICDL expression

To verify IICDL expression, we collected data from HCC

patients and cell lines. TCGA data revealed a significant decrease

in the expression levels of TMEM220-AS1, LINC02362,

LINC01554, and LINC02499 in HCC samples. (Figure 10A).

According to the GEPIA database analysis, LINC01554 and

TMEM220-AS1 were downregulated in HCC (Figure 10B).

CCLE data indicated that LINC02499, TMEM220-AS1, and
Frontiers in Immunology 10
LINC01554 were expressed at low levels in most HCC cell

lines (Figure 10C). The lnCAR database further confirmed

these results. TMEM220-AS1, LINC02362, LINC01554, and

LINC02499 were significantly downregulated in HCC tissues

compared to that in the healthy liver tissues (p < 0.0001)

(Figures 10D–G). Finally, the effect of single genes on HCC

prognosis was analyzed using multivariate Cox regression

analysis. The results suggest that LINC01554 and LINC02499

could be used as independent risk factors for determining HCC

patient prognosis (Figure 10H).
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FIGURE 6

Comparisons of immune status, stemness, ICB response, and chemotherapy response between C1 and C2. Box plots present differential
immune infiltration (A), immune score (B), stroma score (C), immune checkpoint gene expression (D), TIDE score (E), mRNAsi score (F),
doxorubicin IC50 (G), 5-fluorouracil IC50 (H), gemcitabine IC50 (I), and sorafenib IC50 (J). Oncoprint visualization of the top 10 most
commonly mutated genes in C1 (K) and C2 (L). mRNAsi, mRNA expression-based stemness index. (*P < 0.05; **P < 0.01; ***P < 0.001; ****P <
0.0001; ns, not significant).
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Discussion

This study revealed an IICDL-related signature comprising

four lncRNAs that could predict clinical outcomes and
Frontiers in Immunology 11
treatment responses in patients with HCC. Our proposed

model predicted the survival of patients with HCC accurately.

Various types of immunotherapies and new chemotherapy

modalities rely on tumor immunogenicity for their success (63).
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FIGURE 7

Prognostic model of HCC based on 20 IICDLs. (A) LASSO coefficient profiles of the four IICDLs. (B) A plot of the error rates from ten-fold
cross-validation. (C) An overview of the risk score distribution, survival status of each patient, and a heat map of four IICDLs. (D) KM survival
curve illustrating the predictive value of the risk model. (E) ROC curve of the predictive value of the risk model. Correlations between risk score
and age (F), sex (G), T stage (H), N stage (I), M stage (J), clinical stage (K), and grade (L). (*P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant).
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Surprisingly, certain types of stress can cause specific cells to

initiate a proinflammatory process, increasing T cell activation, a

process known as ICD. ICD has been identified to trigger

adaptive immune responses by releasing danger-associated
Frontiers in Immunology 12
molecular patterns, which play an immunogenic role when

they reach the tumor microenvironment (TME) (64). Hence,

we speculated that patients with HCC may benefit from ICD

occurring in the TME and that an ICD/immune lncRNA model
E

D

A B

F
G

IH J

C

FIGURE 8

Construction of the nomogram for predicting OS of HCC patients in TCGA cohort. Univariate (A) and multivariate (B) forest plots of the risk
score model and clinicopathological characteristics associated with overall survival. (C) The nomogram was constructed based on two
independent prognostic factors. (D) Calibration plot for internal validation of the nomogram. Time‐dependent ROC (E–G) and DCA curves
(H–J) of the TNM stage model, risk score model, and the combined model for 1‐, 3‐ and 5‐year OS prediction.
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would be an accurate predictor of patient prognosis and

medication response.

As a first step, DEirlncRNAs and DEidcrlncRNAs were

identified from TCGA data. Intersections of the two lncRNA

sets were referred to as IICDLs. Of the 81 IICDLs, 20 were

significantly associated with prognosis of patients with HCC,

namely, AL606489.1, AC004160.1, AC099508.2, TMEM220-

AS1, AC079061.1, AC115619.1, LINC02754, LINC02037,

AC008549.1, AP001065.3, LINC01018, LINC00261,

LINC02362, AC009093.5, AC079466.1, LINC01554,

AC010280.2, AP001781.1, LINC02499, and AL161645.2.

Among them, AC079466.1 (65), LINC01554 (66), LINC00261
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(67–69), LINC02499 (70–73), and AC008549.1 (74) were closely

correlated with the prognosis of patients with HCC. In addition,

patients with HCC had low levels of TMEM220-AS1, a protein

that inhibits malignant behavior by increasing TMEM220

expression and inactivating Wnt/b-catenin (75). Another study

found that TMEM220-AS1 promoted metastasis and

proliferation in HCC through the microRNA(miR)-484/

MAGI1 axis (76). Further, TMEM220-AS1 was found to be

upregulated in gliomas and positively correlated with their

progression (77). LINC01554 has been identified as a

significant lncRNA involved in the pathogenesis of esophageal

cancer and nonalcoholic fatty liver disease (78, 79). Additionally,
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FIGURE 9

Correlation analysis of prognostic signature and tumor immune cell infiltration, immune checkpoint inhibitors, ICB response, MSI, tumor
stemness, and common chemotherapeutic agents. Associations between the IICDL signature and tumor immune cell infiltration (A), immune
score (B), stroma score (C), MSI score (D), immune checkpoint inhibitors (E), TIDE score (F), mRNAsi score (G), and IC50 of chemotherapeutic
drugs (H–K). (*P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant).
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LINC01554 inhibits the glycolytic action of cells in

hepatocellular carcinoma, suppressing tumor growth (67).

LINC01018 was poorly expressed in HCC; however, sponging

miR-182-5p conferred a novel tumor suppressor role (80).

LINC02362 suppressed HCC growth by modulating miR-

516b-5p and SOSC2 (81). LINC02499 inhibits the

proliferation, migration, and invasion of hepatocellular

carcinoma cells (70). These results are consistent with those

of ours.

Precision medicine is emerging as a powerful clinical

strategy in oncology, with the goal of improving clinical

outcomes and patient progression (82). Genotyping patients
Frontiers in Immunology 14
and targeting therapies are key components of precision

medicine. Consequently, we divided patients with HCC into

two clusters, C1 and C2, according to the 20 IICDLs. There were

significant differences between HCC patients in C1 and C2 in

terms of prognosis, clinical stage, histopathological grade, and

ICG expression. Specifically, patients in C2 had a higher immune

score, higher ICB response, and lower stemness score than those

in C1. Furthermore, patients in C1 and C2 responded differently

to doxorubicin, 5-fluorouracil, gemcitabine, and sorafenib.

Notably, these findings are consistent with those of a previous

study, reporting that HCC patients with high immune

infiltration and ICB response had a longer OS (83).
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FIGURE 10

Expression validation and independent prognostic analysis of four IICDLs. IICDL expression in HCC tumor tissues and healthy tissues according
to TCGA (A) and GEPIA (B) databases. (C) IICDL expression in HCC cell lines according to the CCLE database. (D–G) IICDL expression in HCC
tumor tissues and normal tissues according to the lnCAR database. (H) Multivariate Cox regression analysis of the four IICDLs for prognosis
prediction of patients with HCC. (**P < 0.01; ***P < 0.001; ns, not significant).
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Four IICDLs (TMEM220-AS1, LINC02362, LINC01554,

LINC02499) were identified and used to develop prognostic

models for HCC patients using LASSO Cox analysis. Patients

with HCC were divided into high- and low-risk groups based on

risk scores for OS. We found that the high-risk group of HCC

patients had a worse prognosis than the low-risk group. The

four-lncRNA signature had an independent effect on HCC

prognosis, and the model had a better predictive performance.

Previous studies have reported similar results. Hong et al.

developed an immune-related lncRNA signature to predict the

prognosis of HCC patients (84). Another prognostic signature

based on immune- and ferroptosis-related lncRNAs could

predict the prognosis and immune infiltration of HCC (78). In

addition, cuproptosis-related lncRNA signatures predicted the

patient outcomes and response to ICB therapy (79). Our study

also examined the correlation between prognostic risk scores

and HCC patient characteristics. The risk score increased along

with the T stage, clinical stage, and pathological grade. Overall,

the prognostic values of the IICDL signature in our study for

patients with HCC were consistent with the results of

previous studies.

We also compared the immune score, ICGs, TIDE score,

mRNAsi score, and chemotherapy response between the high-

and low-risk groups. The high-risk group had low immune cell

infiltration, low ICG expression, poor response to ICB therapy,

and high stemness. The high-risk and low-risk groups showed

significantly different reactions to several chemotherapy drugs

(doxorubicin, 5-fluorouracil, gemcitabine, and sorafenib).

Interestingly, low macrophage (85) and NK cell (86)

infiltration predicted a poor prognosis in patients with HCC.

High levels of ICGs, such as CTLA4 (87) and LAG3 (88), had a

negative impact on the prognosis of HCC patients. HCC patients

with high stemness genes tend to have more aggressive tumor

growth with poor prognoses (89). Taken together, these findings

were consistent with ours.

According to the molecular subtypes and prognostic

signatures constructed from prognostic IICDLs, personalized

treatment should depend on molecular subtypes and risk

groups. Using the TIDE algorithm, for instance, patients in

the low-risk group and with the C2 molecular subtype might

benefit more from immunotherapy. High-risk group and C1

were suggestive of a large number of immune cells (B cells,

CD4+ T cells, neutrophils, macrophages, and myeloid dendritic

cells) and a higher expression of ICGs (PD-L1, CTLA-4, TIGIT,

HAVCR2, LAG3, PDCD1LG2, and SIGLEC15), indicating

that the high-risk group and C1 exhibit resistance to

immunotherapy. This probably explains the poor prognosis of

patients with HCC in the high-risk group and with the C2

molecular subtype. In fact, overexpression of the PD-L1 surface

molecule inhibited T cell responses by engaging PD-1 on the

surrounding T lymphocytes, thereby promoting the progression

and diffusion of cancer (90, 91). PD-L1 is also expressed by

macrophages and interacts with PD-1 on cytotoxic T cells,
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contributing to the escape of tumor cells from the immune

system (92, 93). The overexpression of CTLA-4/TIGIT on T

lymphocytes and NK cells also plays an important role in

immune escape (94, 95). A recent study found that SIGLEC15

glycosylation promoted tumor growth and immune escape (96).

These findings suggest that the molecular subtypes and

prognostic signatures we identified may be useful for the

implementation of future immunotherapy strategies.

This study had some limitations. First, our signature was not

verified in another database. LncRNAs obtained from TCGA

may differ from those in other databases owing to differences in

chip technology and recording method. Our search of the ICGC

database did not yield any corresponding expression of the

IICDLs. Second, although we validated IICDL expression in

the GEPIA, CCLE, and lnCAR databases, in vitro experiments

may provide more convincing results. Since fresh tissue samples

are required for detecting lncRNA expression, it was impossible

to collect sufficient survival time within a short period. Our

follow-up research will focus on the analysis of bioinformatic

and clinical data.
Conclusions

Overall, we identified molecular subtypes based on IICDLs

in HCC and constructed a prognostic signature using IICDLs.

Different molecular subtypes and risk groups were also analyzed

for clinical characteristics, immune landscapes, ICB responses,

stemness, and chemotherapy responses. In the future, the

proposed signature may provide clinical evidence to support

decisions regarding HCC patient treatment and prognosis.
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