
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Yuheng Luo,
Sichuan Agricultural University, China

REVIEWED BY

Taiyong Yu,
Northwest A&F University, China
Hongbin Pan,
Yunnan Agricultural University, China
Zhaolai Dai,
China Agricultural University, China

*CORRESPONDENCE

Kangning Xiong
xiongkangning2021@126.com

SPECIALTY SECTION

This article was submitted to
Microbial Immunology,
a section of the journal
Frontiers in Immunology

RECEIVED 13 September 2022

ACCEPTED 10 November 2022
PUBLISHED 24 November 2022

CITATION

Tang X, Xiong K, Fang R and Li M
(2022) Weaning stress and intestinal
health of piglets: A review.
Front. Immunol. 13:1042778.
doi: 10.3389/fimmu.2022.1042778

COPYRIGHT

© 2022 Tang, Xiong, Fang and Li. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Review
PUBLISHED 24 November 2022

DOI 10.3389/fimmu.2022.1042778
Weaning stress and intestinal
health of piglets: A review

Xiaopeng Tang1, Kangning Xiong1*, Rejun Fang2

and Meijun Li3

1School of Karst Science, Guizhou Normal University, State Engineering Technology Institute for
Karst Desertification Control, Guiyang, China, 2College of Animal Science and Technology, Hunan
Agricultural University, Changsha, China, 3College of Animal Science and Technology, Hunan
Biological and Electromechanical Polytechnic, Changsha, China
Weaning is considered to be one of the most critical periods in pig production,

which is related to the economic benefits of pig farms. However, in actual

production, many piglets are often subjected to weaning stress due to the

sudden separation from the sow, the changes in diet and living environment,

and other social challenges. Weaning stress often causes changes in the

morphology and function of the small intestine of piglets, disrupts digestion

and absorption capacity, destroys intestinal barrier function, and ultimately

leads to reduced feed intake, increased diarrhea rate, and growth retardation.

Therefore, correctly understanding the effects of weaning stress on intestinal

health have important guiding significance for nutritional regulation of

intestinal injury caused by weaning stress. In this review, we mainly reviewed

the effects of weaning stress on the intestinal health of piglets, from the aspects

of intestinal development, and intestinal barrier function, thereby providing a

theoretical basis for nutritional strategies to alleviate weaning stress in

mammals in future studies.
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Introduction

As the main site of nutrients digestion and absorption and an important defense line

against the invasion of bacteria and endotoxins into the intestinal lumen (1, 2), the

intestinal tract is an important organ in response to stress in piglets. Therefore, it is

important to maintain intestinal health in animal production. However, in actual

production, piglets may suffer from many stresses, such as birth stress (3), weaning

stress (4), heat stress (5), transport stress (6), etc., which usually affect the intestinal health

of piglets, eventually, lead to economic losses.

In modern intensive farming systems, early weaning techniques are often used to

improve the productivity of sows, which can increase the annual litter size of sows,
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improve the utilization rate of breeding equipment, and bring

more economic benefits for breeding enterprises (7). However,

due to sudden separation from the sow, and the rapid changes in

the diets, physical environments, and social environments,

piglets may suffer from weaning stress, which jointly results in

perturbation of intestinal microbiota, host physiological and

biochemical functions, intestinal digestion and absorption

capacity, and mucosal immune function (8, 9), which

eventually leads to decrease of feed intake, occurrence of post-

weaning diarrhea (PWD), and growth restriction (10, 11). That’s

because, the intestinal development of the piglets is not mature,

and the digestive system and immune system are not perfect at

this stage, which leads to a poor ability of weaning piglets to

adapt to the complex environment (11). Simultaneously, due to

the insufficient secretion of digestive enzymes in the

gastrointestinal tract, early-weaned piglets cannot digest solid

food well, leading to the destruction of the intestinal physical

barrier, including the destruction of the tight junctions (TJ), the

reduction of mucins secretion, the increase of intestinal

permeability and the un-balanced gut microbiota (12–14).

When piglets suffered weaning stress, the intestinal

environment is susceptible to invasion by pathogenic

microorganisms such as Escherichia coli (E. coli), which

stimulates the intestinal mucosa to secrete inflammatory

factors and damage the function of the intestinal mucosal

barrier (15–17). Weaning stress is not only closely related to

the immune system and intestinal barrier function but also can

damage the oxidation-antioxidant system and induce oxidative

stress (18–20). Furthermore, weaning stress causes the dysbiosis

of gut microbiota, and further increases the risk of

gastrointestinal diseases in piglets (21, 22). A correct

understanding of the effects of weaning stress on intestinal

health has an important guiding significance for nutritional

regulation of intestinal injury caused by weaning stress.

Therefore, here we reviewed the effects of weaning stress on

the intestinal health of piglets, from the aspects of intestinal

development, and intestinal barrier function, thereby providing

a theoretical basis for nutritional strategies to alleviate weaning

stress in mammals in future studies.
Weaning stress and intestinal
development

Weaning stress damages intestinal
morphology

The intestines display various functions including providing

a main site for nutrient digestion and absorption as well as acting

as a selective barrier to prevent the entry of exogenous harmful

substances into the circulation system while allowing the

selective absorption of nutrients including electrolytes and

water (2, 23). The integrity of the intestinal structure is the
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guarantee of nutrient digestion and absorption of piglets. The

intestinal morphology, including villus height (VH), crypt depth

(CD), and the ratio of villus height and crypt depth (VCR) reflect

the health and absorption status of the intestinal function (24).

The reduction in VH and VCR means that intestinal mucosal

function was impaired, and intestinal digestion and absorption

capacity was reduced.In contrast, a higher VH and VCR, and a

lower CD of the intestines indicated better intestinal function

(25, 26). As is well-known that alterations in the villus−crypt

structure are universal in weaned animals, such as intestinal

villus shedding, crypt hyperplasia, and intestinal mucosa

atrophy, which further destroys intestinal mucosal barrier

function and digestive and absorptive capacity (10, 11, 25, 27,

28). For example, a study by Bomba et al. (29) showed that, 5

days after weaning (33 days of age), the VH and VCR in the

ileum of piglets were significantly lower than that before

weaning (28 days of age). Similarly, Hu et al. (30) verified the

deterioration of intestinal morphology induced by weaning,

which showed that VH and VCR on day 3 and day 7

postweaning were decreased compared with the preweaning

stage, and VH and CD did not return to preweaning levels

until day 14 postweaning. Furthermore, Boudry et al. (31)

reported that weaning induced long-lasting structural changes

in the small intestine of piglets, which showed that the VH of the

jejunum was still significantly lower on day 15 postweaning than

preweaning. In addition, weaning stress has been shown to cause

a decrease in the relative weight of the small intestine, with the

total weight of the intestine at 15 days after weaning being only

50% of that before weaning (32). Taken together, early weaning

can lead to intestinal morphological damage of piglets, including

deeper CD, lower VH, reduced VCR, and lower intestinal

relative weight. Therefore, to maximize pig production, it is

necessary to reduce physiological changes in the small intestine

caused by weaning stress.
Weaning stress disrupts the balance
between intestinal epithelial cell
proliferation and apoptosis

The intestinal tract is a dynamically self-renewing tissue, and

its structural and functional integrity depends on the

homeostatic maintenance of the dynamic balance between

proliferation and apoptosis of intestinal mucosal epithelial cells

(24, 33, 34). The renewal of intestinal epithelial cells is known to

be primarily involved in the proliferation of crypt stem cells, the

differentiation and shedding of villus cells (35). Crypt stem cells

undergo symmetric differentiation to generate stem cells to

maintain self-renewal or asymmetric differentiation to generate

rapidly proliferating cells (progenitor cells) (36). The progenitor

cells then continuously migrate along the crypt–villus axis and

finally differentiate into cells with specific functions, mainly

including absorbing epithelial cells (enteroendocrine cells),
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Goblet cells, Endocrine cells, and Paneth cells (37, 38).

Apoptosis, also known as programmed cell death, is a

physiological process of cell suicide that plays an important

role in the growth and development of the body (18, 33).

However, due to physiological, environmental, and social

challenges, piglets are easily prone to weaning stress, which

disrupts the balance between cell proliferation and apoptosis of

intestinal mucosal epithelial cells, and disorder of apoptosis and

proliferation would increase intestinal mucosal permeability and

affect intestinal barrier function (28, 39–42). Increasingly, data

are available showing that the expression of genes related to

proliferation and differentiation was decreased (41, 43), while

the expression of genes related to apoptosis was increased in

jejunal cells of weaned piglets (28, 33, 44). Montagne et al. (32)

suggested that weaning disrupts the balance between intestinal

cell proliferation and apoptosis in piglets, resulting in intestinal

villus atrophy and crypt hyperplasia, which further leads to

intestinal morphological injury. Yang et al. (45) reported that

weaning-induced malnutrition in piglets would affect energy

metabolism, macromolecular composition and localization, and

protein metabolism, thus affecting the proliferation of intestinal

crypt cells. Therefore, the reduction in intestinal cell

proliferation and the increase of apoptosis caused by weaning

stress may be the main mechanism responsible for intestinal

mucosal injury during the postweaning period (28, 33, 41–45).
Weaning stress inhibits the secretion of
intestinal digestive enzymes

The gastrointestinal digestive enzymes are involved in the

regulation of growth and development of animals, because

digestive enzymes can improve the feed efficiency by digestion

and in turn to modulate the process of nutrient metabolism (46).

Therefore, the activities and secretion of digestive enzymes in the

small intestine are important indicators to evaluate intestinal

development and digestive capacity in weaned pigs (38, 47).

Absorptive intestinal epithelial cells are the main cell type in the

crypt-villus axis (48), which has the function of secreting a

variety of digestive enzymes such as disaccharidase, peptidases,

and phosphatase (49–52). In general, during the first 3 weeks

after birth, the digestive system of piglets develops rapidly due to

adequate nutrition intake from sows, and the activities of

digestive enzymes such as intestinal lactase, protease, and

lipase are significantly increased (53). However, due to the

change in diet, the activities of enzymes on the brush border

of the intestinal mucosa, such as disaccharidases, protease, and

lipase are dramatically changed after weaning (27, 31, 38, 54, 55).

It has been confirmed that intestinal morphology is associated

with changes in intestinal digestive enzyme activities (14, 27, 32,

56, 57). Small intestinal disaccharidases (lactase, maltase, and

sucrase) are the key enzymes of carbohydrate digestion and

absorption in piglets (47). However, the activity and digestion
Frontiers in Immunology 03
ability of disaccharidases decreased significantly after weaning,

which is considered to be an important cause of diarrhea in

weaned piglets (57–59). In addition, the alkaline phosphatase

(AKP) in the small intestinal villus epithelium is a landmark key

enzyme associated with intestinal digestion and absorption

function, which helps to increase the uptake and transport rate

of nutrients, and also converts adenosine diphosphate (ADP)

into adenosine triphosphate (ATP) (24, 26, 60, 61). Previous

studies had demonstrated that early weaning significantly

decreased small intestinal AKP activity in piglets (27, 62, 63),

which indicated that weaning stress has adverse effects on

intestinal digestion and absorption function. In conclusion,

one possible explanation for the decrease of intestinal digestive

enzymes activity in piglets caused by weaning may be due to the

negative effect of weaning stress on intestinal morphology, which

in turn inhibits the secretion of endogenous enzymes (51,

64, 65).

The negative effects of weaning on the development of

intestinal function can be explained as follows: first, weaning

will destroy intestinal morphology and then destroy the balance

between intestinal cell proliferation and apoptosis, resulting in

reduced secretion of digestive enzymes; second, increased

intestinal cell apoptosis further aggravated intestinal

morphological damage and the decrease of digestive enzyme

activity; finally, decreased digestive enzyme activity also affects

intestinal morphology and apoptosis (Figure 1). Therefore, the

decrease in digestion and absorption related enzyme activities is

an important reason for the growth retardation of

weaned piglets.
Weaning stress and intestinal
barrier function

The intestinal tract is constantly in contact with foreign

substances, selectively absorbs effective nutrients, and resists and

eliminates the invasion of toxins and enteric pathogens, and the

normal operation of this mechanism depends on the integrity of

intestinal barrier function (1, 24, 61). The intestinal barriers are

mainly composed of intestinal epithelial cells, intestinal mucus

layer, immune cells, and normal microorganisms and their

metabolites, and are often artificially divided into the

mechanical (physical) barrier, chemical barrier, immune

barrier, and microbial barrier, which cooperate in structure

and function to effectively maintain intestinal homeostasis

(66–68). Separation of piglets from sows at weaning is known

to induce immediate and long-term deleterious effects on gut

defense mechanisms, including intestinal barrier dysfunction,

intestinal inflammation, and increased intestinal permeability

(30, 69–71). Intestinal barrier function was impaired at the

beginning of weaning and recovered after 2 weeks of weaning.

However, studies have shown that the earlier weaning occurs,

the longer barrier impairment persists (71).
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Weaning stress affects the intestinal
mechanical barrier

The intestinal epithelial barrier is mainly formed by a

continuous monolayer of proliferating and differentiating

intestinal epithelial cells tightly linked by the apical

junctional complex (AJC) (72, 73). AJC is mainly composed

of TJs, adherens junctions (AJ), and desmosomes (Figure 2),

which establishes the cellular polarity and reduces the space

between adjacent cells, therefore selectively allowing the

absorption of nutrients and limiting the access of pathogens,

toxins, and xenobiotics from the intestinal lumen to the

mucosal tissues (72, 74). Among these structures, TJs

constitute the main determinant of the intestinal physical

barrier (75). TJs are formed by a multiple-protein complexes

located in the apical portion of the lateral membrane

of intes t ina l epi the l ia l ce l l s , mainly composed of

transmembrane proteins, such as Claudin, Occludin, and

junctional adhesion protein molecule-A (JAM-A), Myosin, F-

actin, Myosin light chain kinase (MLCK), as well as

cytoplasmic proteins such as zonula occludens (ZO)-1, ZO-2

and ZO-3 (Figure 2), which play an important role in
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maintaining the intestinal mechanical barrier and regulating

intestinal permeability (1, 75–77).

Previous studies have shown that weaning stress could lead

to impaired physical barrier function in piglets, characterized by

the disruption of intestinal epithelial TJs and increased intestinal

permeability (30, 31, 71, 78). Increased intestinal permeability

makes it easier for intestinal pathogenic microorganisms,

endotoxins, and other antigenic substances to break the

intestinal mucosal barrier and enter other tissues, organs, and

the blood circulation system, which can eventually cause

enteroborne infections (30, 79). In general, intestinal

permeability can be reflected by the measure of transepithelial

electrical resistance (TER) of the intestinal mucosa using the

Ussing chamber system (4, 30, 71, 80–82). A decreased TER

reflects an altered intestinal barrier (4, 82). For instance, Cao

et al. (42), Hu et al. (30), Boudry et al. (31), Smith et al. (71), and

Wijtten et al. (79) used Ussing chamber system to detect the

intestinal TER, and the results all showed that early weaning

resulted in a decreased TER in piglets, indicated that weaning

stress had a destructive effect on intestinal barrier function. The

detection of intestinal TJ protein expression also can be used as

an important index to evaluate intestinal mechanical barrier
FIGURE 1

Relationship between weaning stress and intestinal development (By Figdraw).
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function. Weaning stress has been established to disrupt

multiple TJ proteins, including claudin-1, occluding, ZO-1

ZO-2, and ZO-3 (4, 30, 83–85), possibly by activating

mitogen-activated protein kinase (MAPK) (30) and

transforming growth factor-b1 (TGF-b1) signaling pathways

(84), although further studies are needed to confirm this. The

effects of weaning stress on the intestinal mechanical barrier

function of piglets are summarized in Table 1. These studies

suggested that weaning can damage intestinal TJ structures and

increase intestinal permeability.
Weaning stress affects the intestinal
chemical barrier

The intestinal chemical barrier is formed by the mucus

layer, which is composed of mucins (MUCs) secreted by goblet

cells and antimicrobial proteins secreted by epithelial cells (86,

87). The intestinal mucus layer is the first line of defense to

protect intest inal epithel ia l ce l l s from pathogenic

microorganisms, which can effect ively prevent the

colonization of pathogenic microorganisms and plays an

important role in maintaining the homeostasis of the

intestinal environment (88–90). Mucins are glycosylated

proteins with a high molecular weight characterized by an

important element, the ‘mucin domain’, which comprises the
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main components of intestinal mucus (90, 91). Mucins can be

classified into gel-forming secretory mucins (eg, MUC2,

MUC5, and MUC6) and membrane-bound mucins (e.g.,

MUC1, MUC3, MUC4, MUC13, and MUC17) according to

their structure and localization (92, 93). Among all mucins,

MUC2 forms the bulk of intestinal mucus, which participates

in intestinal lubrication, pathogenic bacteria antagonism, and

intercellular signal transduction (61, 89, 92–95).

Mucins are synthesized mainly by goblet cells in the gut (41,

88, 94). Therefore, any factors that affect the differentiation of

goblet cells would affect the secretion of intestinal mucins.

Weaning stress has been reported to injures secretory cells

(mucus-producing goblet cells) differentiation and thus

resulted in decreased mucins secretion (41, 96). For instance,

Hedemann and Jensen (97) indicated that early weaning would

not only lead to a decrease in intestinal mucin secretion but also

change the glycosylation pattern of mucin, thereby weakening

the intestinal chemical barrier function and increasing the

probability of intestinal infection. Similarly, Yang et al. (41)

reported that theMUC2 gene was negatively regulated in weaned

piglets, suggesting that weaning destructed the chemical barrier

in the intestinal tract. Normal mucins secretion and expression is

very important for maintaining intestinal barrier function

(Figure 3). Firstly, when the secretion of intestinal mucins

decreased, the intestinal mucosa mucus layer became thinner,

and pathogenic microorganisms could easily pass through the
FIGURE 2

Construction of the intestinal epithelial barrier (By Figdraw). The intestinal epithelial barrier is mainly formed by a layer of epithelial cells joined
together by the apical junctional complex (APC), including tight junctions, adherent junctions, and desmosomes. The tight junctions constitute
the major determinant of the intestinal physical barrier, which is mainly composed of Claudin, Occludin and junctional adhesion protein
molecule-A (JAM-A), zonula occludens (ZO)-1, Myosin, F-actin, and Myosin light chain kinase (MLCK).
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mucus layer to destroy the function of the intestinal chemical

barrier (94); secondly, invasive pathogenic microorganisms

compete with the normal microbiota on the surface of the

intestinal mucosa for adhesion sites, destroying the normal

microbial barrier (98); thirdly, invasive pathogenic

microorganisms such as salmonella and shigella could destroy

the intestinal mucosal mechanical barrier by inducing apoptosis

of intestinal epithelial cells as well as by disrupting the

distribution of TJ proteins between intestinal mucosal cells

(39, 99); finally, changed in mucins secretion and expression

would cause inflammation and damage the intestinal mucosal

immune barrier (100, 101).
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Weaning stress affects the intestinal
immune barrier

The intestinal immune barrier is a well-developed and complex

local immune system, which mainly composed of immune organs,

immune cells (intraepithelial lymphocytes, lamina propria

lymphocytes, neutrophils, and macrophages), and immune

molecules (antibacterial peptides, immunoglobulins, and

cytokines) (2, 67, 102, 103). The intestinal immune barrier is

important for recognizing exogenous antigenic stimuli while

ensuring that the animal body is not over-sensitive to harmless

antigens (35, 104). Generally, intestinal epithelial cells recognize
FIGURE 3

Roles of intestinal mucins in intestinal barrier function. Mucins maintain intestinal barrier function by affecting the mechanical barrier, chemical
barrier, immune barrier, and microbial barrier.
TABLE 1 A summary of the effects of weaning stress on intestinal mechanical barrier function in piglets.

Weaning age Sampling time
points

Significant results References

21-d-old piglets Piglets are killed at 0, 1, 3,
and 7 d after weaning

The jejunal transepithelial electrical resistance (TER) and levels of occludin, claudin-1, and
zonula occludens (ZO)-1 are decreased on d 3 and d 7 postweaning compared to d 0

Cao et al. (4)

21-d-old piglets Piglets are killed at 25
days of age

The protein expression ofZO-1, occludin, and claudin 3 are significantly lower in the weaning
piglet group (WP) group than in the suckling piglet group (SP) group

Tang et al.
(28)

21-d-old piglets Piglets are killed at 0, 3, 7,
and 14 d postweaning

The jejunal TER and occluding, andclaudin-1 mRNA expression on d 3, 7, and 14 postweaning
and ZO-1 mRNA expression on d 3, and 7 postweaning are decreased compared to d 0

Hu et al. (30)

21-d-old piglets Piglets are killed at 0, 2, 5,
8, or 15 d postweaning

The jejunal TER is dropped sharply, and returned to preweaning values by d 5; ileal TER
increased on d 5 and is stable thereafter

Boudry et al.
(31)

Piglets weaned at 15, 18,
21, 23, or 28 days of age

Piglets are slaughtered at
35 days of age

The jejunal TER is decreased in early weaning (15 to 21-day weaning age) piglets compared
with that shown in late-weaned pigs (23- to 28-day weaning age)

Smith et al.
(71)

21-d-old piglets Piglets are killed at 28
days of age

The expression of occludin, claudin-1, ZO-2, and ZO-3 in the jejunum of weanling piglets are
decreased compared with age-matched suckling controls

Wang et al.
(83)

21-d-old piglets Piglets are killed at 0, 3, 7,
and 14 d postweaning

The level of tight junction proteins occludin and claudin-1 are reduced on d 3, 7, and 14 post-
weaning, and ZO-1 protein is reduced on d 3 and d 7 postweaning

Xiao et al.
(84)

21, 28, 35, and 42-d-old
piglets

Piglets are killed at 56
days old

Piglets weaned at 21 days of age has a lower mRNA level of occludin and ZO-1 in jejunal and
ileal mucosa, and claudin in ileal mucosa

Xun et al.
(85)
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pathogenic molecules and beneficial substances through pattern

recognition receptors (PRR), such as toll-like receptors (TLRs) and

nucleotide binding oligomerization domain (NOD) like receptors

(TLRs) (105, 106). It promotes the immune response and inhibits

inflammation by regulating the signaling pathways of the nuclear

factor kappa B (NF-kB), MAPK, and peroxisome proliferator-

activated receptor g (PPAR-g) (107).
Conventionally, the intestinal immune system of pigs does not

reach the level of adult pigs until 7 weeks of age (108, 109).

However, in modern pig production, piglets are usually weaned at

3-4 weeks of age, when the intestinal immune barrier is not mature,

which resulted in increased disease susceptibility (35, 109). The

intestine can be regarded as the largest immune organ in animals,

where up to 70% of the immune cells are localized in the mucosa

and submucosa of the intestine (109, 110). Due to physiological

and psychological factors, piglets would encounter many

pathogenic and nonpathogenic challenges after weaning, which

disrupt the immune barrier function (111, 112). Firstly, weaning

resulted in intestinal immune cells, such as T lymphocytes (113,

114), and intestinal mast cell dysfunction (70, 71). McCracken et al.

(113) showed that during the first 2 days postweaning, the number

of intestinal inflammatory T cells and matrix metalloproteinase

(i.e., stromelysin) were significantly increased; and Spreeuwenberg

et al. (114) showed that the CD4+/CD8+ T lymphocytes ratio

decreased after weaning, which indicated that weaning induced

transient gut inflammation in pigs. Mast cell hyperactivation is an

important pathophysiological mechanism in inflammatory

diseases, such as irritable bowel syndrome (70, 71, 115). Studies

have shown that compared with late-weaned pigs (weaned at 28

days of age), the early-weaned pigs (weaned at 19 days of age) have

higher numbers of intestinal mast cells at 24 h after weaning (70)

and sustained hyperplasia of intestinal mast cells at 7 weeks (116), 9

weeks (71), and 20 weeks (116) after weaning. Secondly, weaning

stress activates the intestinal immune system and produces a large

number of pro-inflammatory cytokines, including tumor necrosis

factor-a (TNF-a), interferon-g (IFN-g), interleukin (IL)-1b, IL-6,
IL-8 (14, 30, 117–121), and the overproduction of these cytokines

can lead to intestinal damage and dysfunction (122). Thirdly,

weaning leads to the destruction of intestinal integrity, microbial

invasion stimulates the expression of secreted immunoglobulin A

(sIgA) and defensin in the jejunum of piglets (118, 123), which is

beneficial to recovering intestinal barrier function after weaning.

The effects of weaning stress on the intestinal immune function of

piglets are summarized in Table 2. These studies suggested that

weaning stress can induce transient intestinal inflammation and

damage the intestinal immune barrier in piglets.
Weaning stress affects the intestinal
microbial barrier

Hundreds of millions of microbiota populations inhabit the

mammalian gastrointestinal tract, which play an important role
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in the regulation of nutrients digestion, intestinal barrier,

immune response, endocrine and other physiological processes

(2, 102, 124–126). It has been basically clear that dysregulation

and translocation of the intestinal microbiota can cause

intestinal cell apoptosis, intestinal physical barrier damage,

and intestinal immune dysfunction (73, 110, 127, 128), which

is not conducive to animal intestinal health. Previous studies

have demonstrated that the development of the intestinal

microbiota in pigs is age-dependent, with birth and weaning

being the most critical periods of life (124, 129). At birth,

colonization of the gut microbiota (such as Escherichia coli

and Streptococcus spp.) begins once the newborn is exposed to

microbes from the mother and the surrounding environment

and is influenced by the consumption of colostrum and milk in

sows (130). Subsequently, aerobic bacteria, facultative anaerobes,

and obligate anaerobes gradually colonized the intestinal tract of

piglets, and about 2 days later, the intestinal tract was completely

colonized by microorganisms, and Lactobacillus was the

dominant bacteria (17, 131).

Weaning is one of the most stressful events in piglet life, this

particular period also provides an important window to shape

the gut microbiota (126, 130, 132, 133). In early weaning, the diet

of piglets is changed from good digestible breast milk to poor

digestible solid feed, piglets cannot fully digest and utilize these

nutrients due to the immature digestive system, which provides a

good source of nutrients for some pathogenic bacteria to

multiply, thereby altering the composition of the gut

microbiota (e.g., increasing the ratio of Escherichia coli to

Lactobacillus) and destroying the microbial barrier function of

the intestinal tract (17, 31, 134, 135). Diarrhea is a common

symptom of weaning stress, which can also lead to changes in the

intestinal microbiota of piglets. Yang et al. (136) showed that the

diarrheic piglets had lower relative abundances of Bacteroides,

Ruminococcus, Bulleidia, and Treponema, the genera that play

key roles in nutrient metabolism than healthy piglets after

weaning. Similarly, Sun et al. (137) showed that the diarrheic

pigs had lower relative abundances of Bacteroidales than non-

diarrheic pigs during weaning. While the disruption of gut

microbiota, in turn, aggravates post-weaning diarrhea of

piglets. Of note, some pathogens can also disrupt the

microbiome composition of weaned piglets (138, 139). For

example, Arguello et al. (140) showed that there was an

increase in pathogenic bacteria (Citrobacter), and a decrease in

the population of beneficial bacteria such as Bifidobacterium and

Lactobacillus at the ileum mucosa of weaned piglets infected

with Salmonella Typhimurium.

Studies have shown that Firmicutes, Proteobacteria,

Bacteroidetes, Tenericutes, and Spirochaetes were the five

dominant bacterial phyla in the intestinal tract of piglets,

regardless of weaning or not (141, 142). Although weaning

stress generally did not change the species of the phyla, it did

change the relative abundance of some phyla, especially the

levels of families and genera in the corresponding phyla (143–
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1042778
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tang et al. 10.3389/fimmu.2022.1042778
145). For example, the abundance of Prevotella, a bacterium

closely related to timely intake of solid feed, decreased

significantly within 3 days after weaning due to weaning

stress-induced feeding refusal (141, 146). However, once newly

weaned piglets started to consume food, the abundance of

Prevotella increased rapidly (144, 147, 148). Furthermore, Li

et al. (141) showed that the proportion of Alloprevotella and

Oscillospira decreased; and Zhong et al. (121) showed that

during the first week after weaning, the relative abundances of

the dominant bacterial families Erysipelotrichaceae and

Lachnospiraceae increased. Alloprevotella has been suggested to

mainly produce succinate and acetate, and the Oscillibacter

species can produce butyrate, which plays a role in improving

the intestinal barrier and exhibits anti-inflammatory function (9,

149). Butyrate production is negatively correlated with the
Frontiers in Immunology 08
relative abundances of Erysipelotrichaceae and Lachnospiraceae

(121). Recent reports demonstrated that Erysipelotrichaceae has

a potential role in host physiology and/or inflammation related

diseases in the gastrointestinal tract (150, 151) and the increased

abundance of Lachnospiraceae would lead to increased secretion

of pro-inflammatory cytokines in the intestine (121, 152). Taken

together, changes in intestinal microbiota caused by weaning

stress may be related to the short-chain fatty acids (SCFA)

driven by microorganisms, which might be a key modulator in

the ma in t enance o f in t e s t ina l homeos t a s i s a f t e r

weaning (Figure 4).

In summary, weaning stress plays a vital role in host health,

which is believed to be closely associated with the function of the

intestinal barrier, including the physical barrier, chemical

barrier, immune barrier, and microbial barrier. First, weaning
TABLE 2 A summary of the effects of weaning Stress on intestinal immune function in piglets.

Weaning age Sampling time points Significant results References

21-d-old piglets Piglets are divided into Sucking group (S), Weaned group
(W), and FMT + Weaned group (FW), and 4 piglets were
killed at 24 days of age

mRNA expression of IL-6 and TNF-a is increased, while IL-10 is
decreased in the jejunum and colon after weaning

Ma et al. (13)

28-d-old piglets Piglets are killed at 0, 1, 2, 5, and 8 d postweaning the levels of IL-1b, IL-6,and TNF-a are increased during the first 2
days postweaning

Pie et al. (14)

21-d-old piglets Piglets are divided into two treatments: suckling piglet
group (SP) and weaning piglet group (WP), and piglets
were killed at 25 days of age

the WP group has significantly higher colonic IL-1b and lower IL-
10 content than the SP group

Tang et al. (28)

21-d-old piglets Piglets are killed at 0, 3, 7, and 14 d postweaning mRNA levels of TNF-a and IL-6 are increased at 3 d and 7 d post-
weaning

Hu et al. (30)

21-d-old piglets Weaned and sucking piglets are killed at 25 days of age pro-inflammatory signals (tumor necrosis factor and NO synthases
2 are increased in weaned piglets

Zhu et al. (44)

19-d-old piglets; 28-
d-old piglets

Piglets are killed at twenty-four hours postweaning the early-weaned pigs (weaned at 19 days of age) have higher
numbers of intestinal mast cells than late-weaned pigs (weaned at
28 days of age)

Moeser et al.
(70)

Piglets weaned at 15,
18, 21, 23, or 28
days of age

Piglets of the five groups with different weaning days are
slaughtered at 35 days of age

Lamina propria immune cell density particularly mucosal mast
cells is increased in early weaning (15 to 21-day weaning age)
piglets

Smith et al.
(71)

21-d-old piglets Piglets are killed at 0, 0.5, 1, 2, 4, and 7 d after weaning inflammatory T-cell numbers and local expression of matrix
metalloproteinase stromelysin are increased

McCracken
et al. (113)

26-d-old piglets Piglets are killed at 0, 1, 2, and 4d after weaning the CD4+/CD8+ T-lymphocytes ratio is decreased after weaning Spreeuwenberg
et al. (114)

16-d-old piglets; 28-
d-old piglets

The pigs were killed at 7 weeks and 20 weeks the early-weaned pigs sustained hyperplasia of intestinal mast cells
at 7 weeks and 20 weeks

Pohl et al.
(116)

21-d-old piglets Piglets are killed at 0, 1, 3, 7, and 14d after weaning TNF-a mRNA expression is enhanced from day 7 to 14; the
abundance of TLR4 and IFN-g mRNA expression are increased
during the first 24 h after weaning

Deng et al.
(117)

21-d-old piglets Piglets are killed at days 0, 15, 30, and 45 postweaning IFN-g, IL-1a, IL-8, IL-10, IL-12a, and TGF-b in the jejunum,
ileum, and colon are increased during 15 d postweaning

de Groot et al.
(118)

21-d-old piglets Piglets are sacrificed at 0, 1, 7, or 14 d after weaning the mRNA levels of IFN-g, iNOS, IL-6, IL-8, IL-12, and IL-22 are
increased in the jejunum at 7 and 14 d after weaning

Yi et al. (119)

14-d-old piglets Piglets are slaughtered until they were on d 0, 3, 7, 14, and
21 after weaning

early weaning disrupted IFN-g/IL-4, IL-2/sIL-2R, and T
lymphocyte balance

Cao et al. (120)

28-d-old piglets Piglets are slaughtered at 0, 7, 14, and 21 d after weaning the mRNA and protein expression of TNF-a and IFN-g are
increased at post-weaning day 7

Zhong et al.
(121)
TNF-a, tumor necrosis factor-a; IFN-g, interferon-g; IL-1b, interleukin-1b; IL-2, interleukin-2; IL-4, interleukin-4; IL-6, interleukin-6; IL-8, interleukin-8; IL-10, interleukin-10; IL-12a,
interleukin-12a; TLR4, toll-like receptor 4; TGF-b, transforming growth factor-b1.
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stress disrupts the intestinal mucosal mechanical barrier by

reducing the expression of tight junction proteins (28, 30, 83–

85), which makes it easier for bacteria and toxins to break

through the intestinal mucosal barrier, and cause the release of a

variety of cellular inflammatory factors, thereby leading to the

occurrence of intestinal inflammation (156). Second, weaning

stress disrupts the intestinal chemical barrier by inhibiting goblet

cell differentiation and mucins secretion (41, 97), and decreased

mucins secretion further disrupts the intestinal mechanical

barrier (99), immune barrier (100), and microbial barrier (98).

Third, weaning stress disrupts the intestinal chemical barrier by

promoting the secretion of inflammatory factors (13, 14, 28, 30,

117–120), while pro-inflammatory cytokines including IL-1b,
TNF-a, and IFN-g, have important intestinal TJ barrier-

modulating actions (157, 158). Finally, weaning stress destroys

the intestinal microbial barrier by inducing intestinal microbial

disorder (121, 144, 147, 148), which also adversely affects the

function of the intestinal mechanical barrier (159), immune

barrier (160), and chemical barrier (90).
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Conclusions

Early weaning is considered one of the most critical periods

in pig production, during which the animal must face multiple

stressors, such as separation from their mothers and littermates,

sudden changes in feeding patterns, and environment,

eventually leading to varying degrees of weaning stress

symptoms. Weaning stress has a great influence on the

intestinal function of piglets. At the early stage of weaning,

due to the incomplete development of the intestinal function of

piglets, intestinal morphology, digestive function, and the

balance between apoptosis and proliferation of intestinal

epithelial cells of piglets are damaged to a certain extent after

sudden weaning. At the same time, weaning stress also leads to

damage to the intestinal barrier function of piglets, manifested as

the damage of intestinal epithelial tight junction structure; the

proliferation of intestinal goblet cells and reduced secretion of

intestinal mucins; increased release of intestinal pro-

inflammatory factors; and increased colonization of the so
FIGURE 4

Weaning stress may affect intestinal homeostasis through microbial-driven short-chain fatty acids (SCFA) (By Figdraw). Weaning stress caused a
reduction in SCFAs producing bacteria, such as Alloprevotella and Oscillospira (141), and an increase in the relative abundances of
Erysipelotrichaceae and Lachnospiraceaet which is negatively correlated with butyrate production (121). SCFAs had a good regulatory effect on
cell apoptosis (153), anti-inflammatory factors secretion (154), and tight junction proteins expression (155). Therefore, the intestinal dysfunction
caused by weaning stress may be related to the secretion of SCFA driven by microorganisms.
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called “harmful bacteria”. In conclusion, weaning stress is

detrimental to gut health, but this disadvantage gradually

disappears as piglets adapt to the new environment. At

present, the use of nutritional interventions to alleviate stress

from weaning is the mainstream research direction. Due to this,

we need to correct the understanding of the effects of weaning

stress on intestinal health, which is of important guiding

significance for the nutritional regulation of weaning stress-

induced intestinal injury.
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