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Objective: Besides breast and gastric cancer, HER2 amplification/mutation are

also found in lung adenocarcinoma (LUAD). However, the correlation between

HER2 variations and the phenotype of immunogenicity and tumor immune

microenvironment (TIME) in LUAD compared with breast and gastric cancer

has yet to be fully elucidated.

Methods: We integrated public databases (discovery set) and internal data

(validated set) of 288 patients representing three distinct HER2-altered tumors.

Genomic data were used to identify somatic mutations, copy number

variations, and calculate tumor mutational burden (TMB) and microsatellite

instability score. RNA sequencing was conducted to estimate immune gene

signatures and contents of tumor-infiltrating immune cell populations. Finally,

IHC was used to determine PD-L1 expression and the tumoral-infiltration of

immune cells in 50 HER2-variant tumor specimens with no prior therapeutic

regimens.

Results: Compared with HER2-amplified breast and gastric cancers, patients

withHER2-amplified LUAD showed higher immunogenicity, mainly manifested

in immune checkpoints expression and tissue/blood TMB. Additionally, HER2-

amplified LUAD exhibited an inflamed TIME with remarkably increased genes

encoding HLAs, T-cell activity and immune cell-type, and accompanied with

tumor‐infiltrating lymphocytes. In LUAD, patients with HER2 amplification
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possessed higher tissue TMB than HER2 mutation, whereas no difference was

observed in PD-L1 expression. HER2 amplification (primary) was associated

with significantly higher PD-L1 expression and TMB than acquired HER2

amplification after resistance to EGFR-TKIs.

Conclusion: Patients with HER2-amplified LUAD have better immunogenicity

and/or an inflamed TIME among HER2-aberrant tumors. Our study may

provide clues for establishing the benefits and uses of ICIs for patients with

this disease.
KEYWORDS
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Introduction

Human epidermal growth factor receptor 2 (ERBB2, encoding

HER2) is an oncogenic driver that acts as an “orphan” due to the

lack of any known EGF family ligand, which is poised to

heterodimerize with other ERBB family members to mediate cell

proliferation through the Ras-Raf-MAPK and PI3K/Akt signaling

pathways (1). HER2 amplification and mutations are two distinct

gene alterations that are also observed in tumors other than breast

and gastric cancers, such as LUAD and colorectal cancer (2).

HER2, also a well-established therapeutic target, is amplified/

overexpressed in 12%–20% of breast cancers and 7%–25% of

gastroesophageal cancers, for which trastuzumab-based anti-

HER2 therapy has transformed the standard of care with a

demonstrated survival benefit (3). HER2 amplification and

mutations are also found in approximately 2-10% of non-small

cell lung cancer (NSCLC). HER2 mutation is recognized as an

oncogenic driver in LUAD but the role of HER2-amplified is

doubtful (4, 5). HER2 has been shown to participate in the

pathophysiology of LUAD, implicating its role as an actionable

driver in lung cancers and correlating with poor prognosis (6). In

addition, acquired amplification of HER2 has been proposed as a

mechanism of resistance to EGFR/ALK-TKIs, which further

confirms its role in tumorigenesis (7). In clinical trials to date,

neither trastuzumab nor EGFR/HER2-TKIs have produced

clinical benefits in HER2-positive NSCLC. Although several

novel compounds, such as trastuzumab deruxtecan (T-DXd,

DS-8201) and poziotinib, have emerged in recent years,

increasing the objective response rate (ORR) to approximately

50% for patients with HER2-mutant NSCLC (8, 9), there is

currently no approved targeted therapy for HER2-amplified

LUAD. In view of lacking effective treatment options, there is

an urgent need to explore new treatment strategies.

Immune checkpoint inhibitors (ICIs) reinvigorate antitumor

immune responses by targeting PD-1/PD-L1 pathways and show

remarkable clinical efficacy in driver oncogene-negative NSCLC
02
patients. However, it is generally believed that the response is

considerably less frequent in oncogene-addicted NSCLC patients,

particularly in patients harboring EGFR/ALK variations (10–12).

In the first line or above, ICIs among EGFR-mutated NSCLC

patients showed almost no response and outcomes were far

inferior to those of negative driver oncogenes patients (median

overall survival 9.8 vs. 16.3 months). However, heterogeneity in

response to immunotherapy may exist across different oncogenes

in NSCLC. Data from a limited number of patients have shown

that ICIs are feasible as monotherapy or combination among

HER2-mutant lung cancer, with an ORR of 16%-52% and a

median progression-free survival (PFS) of 4-6 months (13).

However, the place taken ICIs against advanced NSCLC

harboring HER2 amplification remains undetermined. Available

evidence shows controversial results in the introduction of ICIs in

different HER-2 amplified tumors. ICIs have generated robust

clinical benefits in advanced HER2-amplified gastric cancer,

whereas there is no significant benefit in HER2-amplified breast

cancer (14, 15). A higher degree of heterogeneity among tumor

types and genomic alteration status obscures our insight into

whether HER2-aberrant NSCLC and which HER2 genomic

variations would benefit from immunotherapy.

Accumulating evidence suggests that PD-L1 expression,

TMB, mismatch repair deficient (dMMR)/microsatellite

instability (MSI), immune-related gene expression profiles

(GEPs), and tumor‐infiltrating lymphocytes (TILs) represent

immunogenicity and TIME features, and correlate with the

response to ICIs (16–18). Here, to identify whether

immunotherapy has a role in HER2-amplified LUAD, we

explored and evaluated immunogenicity and TIME traits

among breast, lung and gastric tumors with HER2

amplification. We conducted an integrative analysis that

incorporated PD-L1 expression, TMB, MSI status, immune-

related and immune cell-type GEPs and measures of TILs

from cohorts of TCGA database as well as internal data and

patient tumor specimens from 3 hospitals.
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Materials and methods

Patients selection

Publicly available simple nucleotide variation (SNP), copy

number variation (CNV) and transcriptome profiling data from

3 different cohorts were directly downloaded from The Cancer

Genome Atlas (TCGA, https://portal.gdc.cancer.gov/repository)

dataset: breast invasive carcinoma (BRCA, n =1111), lung

adenocarcinoma (LUAD, n = 554), stomach adenocarcinoma

(STAD, n = 442).

As a validation set, we collected 298 patients from more than

60 medical institutions in China whose tumor specimens and/or

peripheral blood underwent next-generation sequencing (NGS)

from February 2019 to February 2021. Comprehensive genomic

profiling was screened according to the following criteria: a)

known or confirmed pathologic diagnosis of LUAD, STAD and

BRCA. b) identified as tier I variants with strong clinical

significance. c) exclusion of germline mutations by pairing

peripheral blood samples. Ultimately, 288 patients with

LUAD, STAD and BRCA were enrolled in our cohort.

Additionally, 61% (176/288) of patients’ tumor tissue was

tested for PD-L1 expression by Dako 22C3/Ventana SP142.

Detailed information including demographic and clinical

information is provided in Table 1.

To assess PD-L1 expression and immune cell infiltration, we

obtained 50 eligible patients’ paraffin blocks from three medical

institutions (The First Affiliated Hospital of Xi’an Jiaotong

University, Tangdu Hospital and Shaanxi Provincial People’s

Hospital), according to the following criteria: a) primary tumors,

excluding metastatic sites, b) not received chemotherapy/

radiotherapy or other prior to diagnoses, and c) all paraffin

blocks were available from January 2020 to May 2021. The

clinicopathologic characteristics of the patients are shown

in Table 2.
Sequencing data analysis

For the TCGA cohort, the masked somatic mutation data

were analyzed and visualized using the R package maftools (19).

GISTIC 2.0 was used to analyze the downloaded CNV segments.

As previously described in detail, A threshold of > 0.2 or < −0.2 is

a filtering criterion in the segment mean value for amplification

or deletion, respectively (20, 21).

For the validation set, tissue genomic DNA paired with

peripheral blood genomic DNA followed the process below: 1)

sheared into 150-200 bp fragments; 2) constructed DNA and

cell-free DNA libraries; 3) sequenced on an Illumina platform; 4)

mapped to the human genome assembly: GRCh37/hg19; 5)

filtered with public online genome databases: Exome

Aggregation Consortium (ExAC), Genome Aggregation

Database (gnomAD) and 1000 Genomes Project (1000G); and
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6) identified somatic genome variations. We defined somatic

mutation frequency > 1% and gene copy number > 3 as clinically

significant (21–23). Additionally, OptiType was used to

determine the HLA-I loci (24, 25).
TMB and MSI analysis

TMB was defined as the total number of somatic

nonsynonymous per megabase of tumor tissue which included

gene coding errors, base substitution insertions or deletions in

detected coding regions. As previously described in detail (26), in

the TCGA cohort, TMB was equal to the raw mutation count

divided by 38 Mb (the estimate of the exome size). In the validation

set, TMB was equal to the number of single-nucleotide variants

(somatic nonsynonymous with depth > 100X and allele frequency ≥

0.05) detected on 1Mb of the genome (23). As previously described

in detail (27), a total of 134 microsatellite loci with a 15-30 bp span

were used to calculate the MSI score. Quality control required over

40 loci to pass. TheMSI score is equal to the number of unstable loci

divided by the number of loci passing quality control, if ≥ 0.3, MSI-

H; if < 0.3, MSS/MSI-L.
Gene expression profiling analyses

In the TCGA cohort, following previous experimental

procedures, RNA-sequencing (RNA-seq) data were analyzed using

the R package edgeR and normalized by log2-transformation (28).

The mRNA expression levels of immune gene signatures, including

immune checkpoints, MHC-class-I/II signatures, T cell–inflamed

gene expression profiles (GEPs) and immune cell GEPs, were

compared among the TCGA-LUAD, TCGA-STAD, and TCGA-

BRCA cohorts using the R package limma and were quantified as

log2 fragments per kilobase million (FPKM).

The CIBERSORT algorithm, a deconvolution tool with default

parameters (29), used a knowledgebase of GEPs and linear support

vector regression to estimate the contents of the immune cell

expression matrix among the LUAD, STAD and BRCA cohorts.
IHC

Immunostaining was performed on a Ventana BenchMark

XT automated IHC stainer (Roche, Basel, Switzerland)

according to the manufacturers’ protocols. The primary

antibodies were HER2 (clone 4B5, Roche, Basel, Switzerland);

PD-L1 (clone SP263, Roche, Basel, Switzerland); CD4 (clone

2H4A2, Proteintech, Wuhan, China); CD8 (clone C8/144B, Cell

Signaling Technology, Danvers, MA, United States); FOXP3

(clone 236A/E7, Abcam, Cambridge, United Kingdom); and

CD68 (clone KP1, Maxim-Bio, Fuzhou, China), visualized by

the OptiView DAB IHC detection kit (Roche). The stained slides
frontiersin.org
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were evaluated separately by two specialized oncologic

pathologists blinded to the clinical parameters.

Except for nuclear staining of Foxp3, all markers were

positive for membranous staining. The expression of PD-L1

and HER2 was manually assessed according to clinical diagnosis

criteria (30, 31). For immune cell analysis, all section images

were scanned using a Leica SCN400 slide scanner (Leica

Microsystems). The intratumoral regions were evaluated for

the density of immune cells (number/mm2) under a 20×

objective lens field (equal to 0.195 mm2) or a 40× objective
Frontiers in Immunology 04
lens field (equal to 0.0495 mm2). Combined with cell

morphology and staining intensity, the number of positive

immune cells was counted at three to five hot spots and

calculated as the average (32, 33).
Statistical analysis

Data analysis was conducted using R software (version 4.04)

and GraphPad Prism (version 9.0.0). Parametric (Student’s t-test
TABLE 1 Characteristics of patients in the validation set.

Characteristics BRCA n=58 STAD n=55 LUAD1 n=58 LUAD2 n=54 LUAD3 n=63

Age, median (range) 52 (26-79) 61 (32-80) 61 (45-91) 58 (29-87) 61 (32-85)

Gender

Female 58 (100) 13 (24) 18 (31) 25 (46) 40 (63)

Male 0 (0) 42 (76) 40 (69) 29 (54) 23 (37)

Smoking history

Current or former 8 (14) 29 (53) 35 (60) 17 (31) 15 (24)

Never 26 (45) 20 (36) 13 (23) 21 (39) 35 (55)

Unknown 18 (31) 6 (11) 10 (17) 16 (30) 13 (21)

Treatment history

Chemotherapy 9 (15) 10 (18) 3 (5) 0 (0) 0 (0)

Targeted therapy 1 (2) 0 (0) 0 (0) 5 (9) 56 (89)

Chemo+ Target 19 (33) 8 (14) 0 (0) 1 (2) 7 (11)

Immunotherapy 0 (0) 1 (2) 0 (0) 1 (2) 0 (0)

Not-received 21 (36) 29 (53) 45 (78) 36 (67) 0 (0)

Unknown 8 (14) 7 (13) 10 (17) 11 (20) 0 (0)

Specimen Type

Tissue
Blood

56 (97)
2 (3)

46 (84)
9 (16)

50 (86)
8 (14)

51 (94)
3 (6)

40 (63)
23 (37)

Sequencing Platform

HiSeq X Ten 40 (69) 47 (85) 35 (60) 23 (42)4 44 (70)

NovaSeq6000 18 (31) 8 (15) 23 (40) 19 (35) 19 (30)

HER2 status

CNA 58 (100) 55 (100) 58 (100) – 63 (100)

20 exon insertion – – – 42 (87)5 –

Co-EGFR mut – – – – 62 (98)6

PD-L1 IHC 51 (88) 35 (64) 35 (60) 28 (52) 27 (43)

TMB detection 51 (88) 45 (82) 33 (57) 30 (56) 24 (38)

MSI detection 51 (88) 45 (82) 38 (67) 28 (52) 27 (43)

MSI-H 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

HLA-locus7 51 51 32 13 23

Heterozygosity 38 (75) 39 (76) 26 (81) 6 (46) 18 (78)

Homozygous 13 (25) 12 (24) 6 (19) 7 (54) 5 (22)
All values are n (%), unless otherwise specified.
BRCA, breast invasive carcinoma; STAD, stomach adenocarcinoma; LUAD, lung adenocarcinoma; CNA, copy number amplification; mut, mutation.
1HER2 amplification.
2HER2 mutation.
3HER2-acquired amplification.
412 patients detected HER2 mutation status by ADx-Amplification Refractory Mutation System (ADx-ARMS).
512 patients harboring HER2 p.S310F.
662 patients received anti-EGFR TKIs; 1 patient received anti-ALK TKIs.
7HLA I-heterozygosity, all of the three HLA-I loci (A, B, or C) were heterozygous; HLA I-homozygosity, at least one HLA-I locus (A, B, or C) was homozygous. Patients with HLA I-
heterozygous were associated with better survival than HLA I-homozygous when receiving immunotherapy.
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and one-way ANOVA) or nonparametric (Mann-Whitney U

test and Kruskal-Wallis test) tests were applied depending on

whether the data followed Gaussian distribution. Categorical

variables were analyzed by the Chi-square test or Fisher exact

test. A two-tailed P <0.05 was considered statistically significant

unless otherwise specified. Additionally, the ggplot2 R

package was applied to visualize the boxplot and violinplot,

the ComplexHeatmap R package was used to visualize the

Heatmap and the fmsb R package was used to visualize the

Radar Chart.
Frontiers in Immunology 05
Results

Correlation between HER2 amplification
and PD-L1/other immune checkpoints
expression in LUAD patients compare to
BRCA and STAD

PD-L1 expression has high predictive value in guiding

cancer immunotherapy (17). Thus, we first investigated PD-L1

expression levels between HER2 amplification and PD-L1
TABLE 2 Characteristics of patients enrolled for IHC analysis.

BRCA STAD LUAD1 LUAD2

Characteristics n=10 n=10 n=12 n=18

Age, median (range) 58 (44-70) 63 (39-78) 57 (44-76) 53 (31-71)

Sex

Female 10 (100) 5 (50) 2 (17) 5 (28)

Male 0 (0) 5 (50) 8 (83) 13 (72)

Smoking history

Current or former 1 (10) 5 (50) 7 (58) 8 (44)

Never 7 (70) 2 (20) 3 (25) 8 (44)

Unknown 2 (20) 3 (30) 2 (17) 2 (11)

ECOG performance status

0-1 10 (100) 8 (80) 9 (75) 14 (78)

2-4 0 (0) 2 (20) 3 (25) 4 (22)

Stage (TNM)

I 4 (40) 0 (0) 1 (8) 4 (22)

II 3 (30) 1 (10) 2 (17) 5 (28)

III 2 (20) 5 (50) 3 (25) 2 (11)

IV 1 (10) 4 (40) 6 (50) 7 (39)

Adjuvant therapy

None 1 (10) 0 (0) 1 (8) 5 (28)

Chemotherapy 0 (0) 6 (60) 3 (25) 6 (33)

Chemo + Target 8 (80) 0 (40) 0 (0) 0 (0)

First line therapy

Immunotherapy 0 (0) 1 (10) 1 (8) 1 (6)

Chemo + Target 1 (10) 2 (20) 4 (33) 4 (22)

Others 0 (0) 1 (10) 3 (25) 2 (11)

HER2 (IHC)

0 0 (0) 0 (0) 0 (0) 5 (28)

1+ 0 (0) 0 (0) 3 (25) 7 (39)

2+ 4 (40) 4 (40) 4 (33) 4 (22)

3+ 6 (60) 6 (60) 5 (42) 2 (11)

HER2 status

FISH ratio≥ 2 10 (100) 10 (100) – –

CN≥ 3 – – 12 (100) 2 (11)

20 exon insertions – – 0 (0) 18 (100)
fron
All values are n (%) unless otherwise specified.
BRCA, breast invasive carcinoma; STAD, stomach adenocarcinoma; LUAD, lung adenocarcinoma; ECOG, Eastern Cooperative Oncology Group; Chemo, chemotherapy.
1HER2 amplification.
2HER2 mutation.
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expression in BRCA, LUAD and STAD cohorts by interrogating

and analyzing RNA-seq data from TCGA. The level of PD-L1

mRNA expression in HER2-amplified LUAD was significantly

higher than that in HER2-amplified STAD and BRCA cohorts

(Figure 1A). However, no differences were noted betweenHER2-

amplified STAD and BRCA cohorts. Further analysis confirmed

this result at the PD-L1 protein level (Figures 1B–D).

Except for tumor cells, PD-L1 is also expressed in immune

cells. To eliminate the singleness of the PD-L1 evaluation method

and further confirm the association between HER2 amplification

and PD-L1 expression as the TCGA cohorts and validation set

demonstrated, we detected 10 BRCA, 12 LUAD, 10 STAD surgical

or biopsy specimens using IHC. Immunostaining showed that

HER2-amplified LUAD specimens tended to have stronger

staining for the PD-L1 protein assessed by the combined

positive score (CPS, Figure 1E). In addition, STAD harboring

HER2 amplification equally expressed higher PD-L1 owing to its

immune cell staining within the tumor stroma. However, HER2-

amplified BRCA continued to lower the expression of PD-L1

when assessing both tumor and immune cells (Figure 1F).

To figure out the association between HER2 amplification and

other non–PD-L1 immune checkpoints in BRCA, LUAD and

STAD patients, we next exploit RNA-seq data to depict the

expression levels of 7 key immune checkpoints. A heatmap

displayed remarkably increased expression of checkpoints in the

HER2-amplified LUAD cohorts while decreased expression in the

HER2-amplified BRCA and STAD cohorts. More interestingly, PD-

L1 mRNA expression was markedly increased in the HER2-

amplified LUAD subgroup, relative to other immune inhibitory

checkpoints. Finally, boxplots were constructed to represent the

other two most significantly different immune checkpoints (PD-1

and IDO1; Figures S1A, S1B).
Correlation between HER2 amplification
and TMB in LUAD patients compare to
BRCA and STAD

TMB is an independent predictor/indicator of response to

immunotherapy in pan-cancers (34). From TCGA cohort analysis,

patients with HER2-amplified LUAD showed significantly higher

tissue TMB than HER2-amplified BRCA and STAD cohorts

(Figure 2A). Consistent with the finding from the discovery set,

our validation set manifested a similar result:HER2- amplified LUAD

patients had higher tissue TMB and/or blood TMB than the other

two cohorts, particularlyHER2-amplified BRCA cohorts (Figure 2B).
The landscape of the TIME among HER2-
amplified BRAC, LUAD and STAD

Anti-tumor immunity requires antigen presentation, and T

cell priming and trafficking to the tumor tissue. These steps

require the coordinated activity of immune networks within the
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TIME. We used TCGA-RNAseq data and applied the IHC

method to depict the whole process as comprehensively as

possible. Compared with the other two cohorts, genes encoding

classical MHC class I/II antigens and related antigen processing

machinery proteins (TAP1 and B2M) were expressed at

significantly higher levels in HER2-amplified LUAD cohorts

(Figure 3A). Additionally, HER2-amplified LUAD possessed

increased immune-related GEPs (Figure 3B), such as T-cell

antigen receptor (CD3), costimulatory molecules (CD28, ICOS,

etc.) and cytotoxic effect-related genes (CD8A, IFNG, GZMA,

etc.). To sufficiently assess the contents of immune cell infiltration,

CIBERSORT algorithm and immune cell-related genes were used

to quantify various immune populations (Figures 3C, D). The

absolute number of multiple immune cell populations, including

CD4+, CD8+ T cells and M1 macrophages, were markedly

increased in HER2-amplified LUAD. Additionally, regulatory T

cells (Tregs), a type of suppressive T cell, were lower infiltration in

HER2-amplified LUAD cohorts.

To further make our preliminary results more convincing, we

conducted IHC to evaluate the density of immune cell infiltration

among patients withHER2-amplified BRCA, LUAD and STAD. As

expected, we observed increased CD8+ TIL densities and decreased

FOXP3+ TIL densities in HER2 amplified LUAD specimens

compared to HER2-amplified BRCA and STAD specimens. In

addition, we found increased CD4+ TILs densities in HER2-

amplified STAD specimens, corresponding to upregulation of

FOXP3+ Tregs. The densities of CD68 macrophages were similar

between theHER2-amplified STAD and LUAD groups (Figures 3E,

F). Regardless of the subtype of immune cells, HER2-amplified

BRCA exhibited lower TIL and macrophage densities than the

other two groups. Generally, the IHC results are consistent with the

RNA-seq analysis.
The immunogenicity and TME in HER2-
aberrant LUAD

Next, we investigated the PD-L1, TMB and immune cell

infiltrations between HER2 amplification and mutation in LUAD.

A significantly higher TMB was apparent for patients with HER2

amplification, but no difference was observed in PD-L1 expression

(Figures 4A–D). We next evaluated immune cell densities in patients

with HER2 amplification and HER2 mutation. Although no

significant difference was obtained regarding the TIL and

macrophage densities, there was a tendency for both CD8+ and

CD4+ TIL counts to be higher in tumors harboring HER2

amplification than in those harboringHER2mutation (Figures 4E, F).

In addition, amplification of HER2 is regarded as one of the

resistance mechanisms in NSCLC patients after receiving anti-EGFR/

ALK TKIs [7]. We distinguished acquired HER2 amplification

through co-mutation status and treatment history and

demonstrated that acquired HER2 amplification LUAD rendered

lower PD-L1 expression and TMB thanHER2 amplification (naïve or
frontiersin.org
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primary amplification, Figures 4G, H). Together, these findings

supported that HER2 amplification represents a high degree of

immunity and immunogenicity among HER2-aberrant NSCLC.
Discussion

The characteristics of the immunogenicity and TIME inHER2-

amplified LUAD have not yet been illustrated. The lower incidence

of HER2 amplification or mutation in LUAD leaves challenges in

depicting the landscape of immunogenicity and TIME features
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when compared with wild-type NSCLC patients. Thus, we explored

the correlation between HER2 amplification and characteristics of

immunogenicity and TIME in LUAD contrast to gastric cancer that

benefited from immunotherapy (15), and breast cancer that did not

(17), to establish a theoretical feasibility of ICIs for HER2-amplified

LUAD. Here, we found that patients with HER2-amplified LUAD

showed higher immunogenicity, mainly manifested in PD-L1

expression at the mRNA and protein level, as well as tissue and

blood TMB, in comparison withHER2-amplified breast and gastric

cancers. Additionally, HER2-amplified LUAD exhibited an

inflamed TIME with remarkably increased genes encoding HLAs,
A B

D

E F

C

FIGURE 1

Correlation between HER2 amplification and PD-L1 and/or other immune checkpoint expressions in patients with BRCA, LUAD and STAD. (A)
PD-L1 mRNA expression among the HER2-amplified BRCA cohort (n = 212), HER2-amplified LUAD cohort (n = 56) and HER2-amplified STAD
cohort (n = 71) based on analysis of the TCGA database. (B, C) Statistical results of PD-L1 staining in HER2-amplified cohorts of 51 BRCA
patients, 35 LUAD patients and 35 STAD patients. PD-L1 expression in tumor cells is classified as ≥ 50%, 1% to 49% and < 1%. (D) Representative
images of hematoxylin-eosin (HE) staining and PD-L1 IHC staining in BRCA, LUAD and STAD tissues with HER2 amplification. (E, F) Statistical
analysis (E) and images (F) of HE, HER2 and PD-L1 IHC staining were conducted. PD-L1 expression was assessed at cut-offs of ≥ 20, 10 to 19, 1
to 9 and < 1 based on the combined positive score (CPS). CPS = [(number of PD-L1-positive tumor cells and mononuclear inflammatory cells)/
(total number of tumor cells)] × 100. Amp, amplified; BRCA, breast invasive carcinoma; LUAD, lung adenocarcinoma; STAD, stomach
adenocarcinoma. P < 0.05 was regarded as significantly different. ***P < 0.001, **P < 0.01.
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T-cell activation and immune cell-type, and accompanied with

TILs. In LUAD, we observed that patients with HER2 amplification

possessed elevated TMB than those with HER2 mutation, whereas

no difference was observed regarding PD-L1 expression. HER2

amplification (naïve or primary amplification) was associated with

significantly increased PD-L1 expression and higher TMB than

acquired HER2 amplification after resistance to EGFR-TKIs. The

pooled results support that HER2-amplified LUAD captures a

higher likelihood of deriving benefits from ICIs.

It is well known that NSCLC as a whole has higher PD-L1

expression and TMB relative to breast and gastric cancers, but the

whole character could not accurately define the individuals, as

EGFR-mutant NSCLC and triple-negative breast cancer (TNBC),

which represented the different immunogenicity and generated an

opposite immune response to ICIs (10, 35). It is believed that

specific oncogenes represent their own unique immunogenicity and

TIME within the tumor. As per available literature in NSCLC,

higher PD-L1 expression and TMB are frequently observed in male

smokers and in patients harboringKRASmutation, whereas there is

no correlation with EGFR alterations (12, 36).We found that PD-L1

expression at the mRNA and protein level, as well as tissue and

blood TMB are dominant in HER2-amplified LUAD compared

with breast and gastric cancers harboring HER2 amplification. In

essence, it can be seen from the literature that HER2-amplified

LUADwas associated withmale smokers and invasive features (37).

An RTDs study confirmed that HER2 amplified NSCLC tumors

were associated with higher TMB (100% of tumors≥10 muts/Mb),

although the study only involved 6 patients (38). In comparison,

prior studies indicated that increased PD-L1 expression and TMB

in breast cancer were enriched in TNBC and lobular carcinomas

(39). In gastric cancers, HER2 amplification is inversely correlated

with PD-L1 expression (40). Bioinformatics research indicated that

HER2 amplification was not classified into PD-L1 amplification and

hypermutation subtypes of gastric cancer (41). Such findings could

be the reason HER2-amplified LUAD shows increased

immunogenicity compared with breast and gastric cancer.
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Little information is available regarding the correlation between

the TIME and HER2 amplification in NSCLC. Conventional

opinion is that breast cancers bearing HER2 amplification result

in a non-inflamed TIME, with relatively low infiltration of

intratumor TILs (39, 42). In contrast, HER2-amplified gastric

cancer was dominant in the gastroesophageal junction (GEJ) and

intestinal histology, connected with microbial infection, which

generates a chronic inflammation status (41, 43). In patients with

HER2-amplified LUAD, exposure to accumulated mutation load

can release neoantigens that trigger T cell activation and recruit

immune cell infiltration. Hence, as we demonstrated, HER2-

amplified LUAD samples showed increased immune-related and

immune cell-type gene expression profiles (GEPs) compared with

the other two cancer groups, especially the HER2-amplified BRCA

group. The presence of a greater number of TILs and fewer Tregs

has been observed in HER2-amplified LUAD regardless of RNA-

seq and IHC results. Of note, the upregulation of CD4+ TILs is

accompanied by FOXP3+ Treg infiltrations in HER2-amplified

gastric cancer. In general, in comparison with breast and gastric

tumors harboring HER2 amplification, these pooled results

implicated the possibility that HER2-amplified LUAD establishes

a favorable TIME for developing therapeutic efficacy in

cancer immunotherapy.

Among HER2-aberrant NSCLC, HER2 mutation mainly

occurs in female no-smokers , per forming s imi lar

clinicopathological characteristics to EGFR mutation, and

acquired HER2 amplification is a mechanism of resistance to

EGFR-TKIs (7). We observed that patients with HER2mutation

and acquired HER2 amplification possessed lower TMB than

HER2 amplification. Prior studies pointed out that the non-

inflamed TIME for patients with NSCLC harboring EGFR

mutation is thought to be reflective of and caused by their low

TMB (42), which naturally accounts for our observation.

However, unlike available literature suggesting that HER2-

mutant NSCLC has been shown to have lower PD-L1

expression than wild-type NSCLC (44), we discovered that
A B

FIGURE 2

Correlation between HER2 amplification and TMB in patients with BRCA, LUAD and STAD. (A) Tissue TMB driven by HER2 amplification among
three tumors from TCGA cohorts. (B) Tissue and blood TMB driven by HER2 amplification among three tumors from the validation set. TMB,
tumor mutation burden, was defined as the total number of somatic nonsynonymous per megabyte. P < 0.05 was regarded as significantly
different. ***P < 0.001, **P < 0.01, *P < 0.05.
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cases with HER2mutation exhibited higher PD-L1 expression at

the protein level, corresponding to dense TILs. This

phenomenon is similar to the conflicting results regarding the

relationship between PD-L1 and EGFR mutation (45). In

addition, we found that patients with acquired HER2

amplification had lower PD-L1 expression than those with

primary amplification. Although a recent study indicated that

EGFR-TKI treatment was associated with a significant increase
Frontiers in Immunology 09
in PD-L1 expression in EGFR-mutant NSCLC, the impact of

cytotoxic chemotherapy is not excluded and specific to acquired

HER2 amplification remains underdetermined (33). In brief,

HER2 amplification (naïve or primary amplification) represents

a high degree of immunity and immunogenicity among HER2-

aberrant LUAD.

The lower frequency of HER2 amplification or mutation in

NSCLC imposes restrictions on the analysis of the immunotherapy
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FIGURE 3

The landscape of the TIME among HER2-amplified BRAC, LUAD and STAD. (A) Heatmap depicting the expression of HLA-related gene profiles
among three distinct tumors from RNA-seq. (B) Heatmap depicting the process of T cell activation, including antigen recognition, signal
transduction and T cell immune efficacy from RNA-seq data. (C) Heatmap depicting the mRNA expression levels of the immune cell-associated
gene signature. (D) A radar chart displaying the fraction of infiltrated immune cells by CIBERSORT. The blue, red and yellow lines represent
HER2-amplified BRAC, LUAD and STAD, respectively. (E) Comparison of TIL and macrophage densities at intratumoral regions among patients
with HER2-amplified LUAD (n=12), HER2-amplified BRCA (n=10) and HER2-amplified STAD (n=10). Note: The paraffin section of 1 patient with
HER2-amplified LUAD failed the quality control after CD8 IHC staining and was not included in the statistical analysis. (F) Representative images
of HE staining and IHC staining of HER2, CD4, CD8, FOXP3 and CD68 among the above-mentioned tumors. P < 0.05 was regarded as
significantly different. ***P < 0.001, **P < 0.01, *P < 0.05.
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FIGURE 4

The immunogenicity and TIME in HER2-aberrant LUAD. (A, B) Difference in PD-L1 expression on tumor cells (A) and the level of TMB (B)
between amplification and mutation. (C, D) Statistical results (c) and images (D) of PD-L1 expression evaluated by CPS. (E, F) Densities of CD8+,
POXP3+ and CD4+ lymphocytes, and CD68+ macrophages (E) between LUAD patients with HER2 amplification (n=12) and mutation (n=18).
Corresponding IHC images are shown in (F). Note: The paraffin section of 3 patients with HER2-mutant LUAD failed the quality control after
CD8 IHC staining and were not included in the statistical analysis. 1 patient with HER2-mutant LUAD was not included after CD4 IHC staining
because of the same problem. (G, H) The PD-L1 (G) and TMB (H) levels in LUAD patients with HER2 amplification and acquired HER2
amplification. P < 0.05 was regarded as significantly different. ***P < 0.001, **P < 0.01, *P < 0.05.
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effect. Our study was necessarily limited in that the efficacy of ICIs

targeting NSCLC patients harboring HER2 alterations is lacking. It

is generally believed that tumors bearing an inflamed phenotype are

conducive to recognition by the immune system and further

improve the clinical benefits of immunotherapy. Existing evidence

demonstrated that patients with HER2-amplified gastric cancer

could benefit from ICIs treatment rather than HER2-amplified

breast cancer, and our findings suggest thatHER2-amplified LUAD

shows higher immunogenicity and a more “inflamed” TIME than

HER2-amplified breast cancer and gastric cancer. Thus, we

speculate that there are good prospects for practical applications

of ICIs in HER2-amplified LUAD that can benefit from

immunotherapy. However, the consistency between immune

markers and the efficacy of immunotherapy in HER2-amplified

LUAD remains elusive and represents an area of further

comprehensive evaluation.

In summary, we conducted an assessment of immune-related

biomarkers and elucidated an “inflamed” phenotype of HER2-

amplified LUAD among HER2-positive tumors, which would

provide a theoretical basis for the practical application of ICIs

and accelerate the pace toward immuno-precision direction.
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