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Purpose: Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is an

important regulator of necroptosis and inflammatory responses. We present

the clinical features, genetic analysis and immune work-up of two patients with

infanti le-onset inflammatory bowel disease (IBD) resulting from

RIPK1 mutations.

Methods: Whole exome and Sanger sequencing was performed in two IBD

patients. Mass cytometry time of flight (CyTOF) was conducted for in-depth

immunophenotyping on one of the patient’s peripheral blood mononuclear

cells, and compared to control subjects and patients with Crohn’s disease.

Results: The patients presented with severe colitis and perianal fistulas in the

first months of life, without severe/atypical infections. Genetic studies

identified pathogenic genetic variants in RIPK1 (Patient 1, A c.1934C>T

missense mutation in Exon 11; Patient 2, c.580G>A missense mutation

residing in Exon 4). Protein modeling demonstrated that the mutation in

Patient 1 displaces a water molecule, potentially disrupting the local

environment, and the mutation in Patient 2 may lead to disruption of the

packing and conformation of the kinase domain. Immunofluorescence RIPK1

staining in rectal biopsies demonstrated no expression for Patient 1 and

minimal expression for Patient 2, compared to controls and patients with
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active Crohn’s disease. Using CyTOF unbiased clustering analysis, we identified

peripheral immune dysregulation in one of these patients, characterized by an

increase in IFNg CD8+ T cells along with a decrease in monocytes, dendritic

cells and B cells. Moreover, RIPK1-deficient patient’s immune cells exhibited

decreased IL-6 production in response to lipopolysaccharide (LPS) across

multiple cell types including T cells, B cells and innate immune cells.

Conclusions: Mutations in RIPK1 should be considered in very young patients

presenting with colitis and perianal fistulas. Given RIPK1’s role in inflammasome

activation, but also in epithelial cells, it is unclear whether IL1 blockade or

allogeneic hematopoietic stem cell transplantation can suppress or cure the

hyper-inflammatory response in these patients. Additional studies in humans are

required to better define the role of RIPK1 in regulating intestinal immune

responses, and how treatment can be optimized for patients with RIPK1 deficiency.
KEYWORDS

IBD, RIPK1, monogenic, VEOIBD, inflammasome, Crohn’s disease
Introduction

Significant progress has been made in the last 15 years in

understanding the role of genetics in the pathogenesis of

inflammatory bowel disease (IBD), including Crohn’s disease

(CD) and ulcerative colitis (UC) (1). More than 240 single

nucleotide polymorphisms, typically with a relatively high

mean allelic frequency (MAF) in the general population, have

been identified as conferring risk for CD, UC or both (2). On the

other hand, rare deleterious variants directly causing intestinal

inflammation were identified using advanced sequencing

technologies (3, 4). To date, nearly a 100 distinct monogenic

disorders associated with IBD were characterized, resulting from

deleterious and rare mutations in genes important for immune

responses, epithelial cell function, or both (5, 6). Consequently,

in many of these diseases intestinal inflammation is

accompanied by an immunodeficiency state, manifesting as

recurrent or atypical infections. Identification of a monogenic

disorder can have a marked impact on care provided for these

patients through the possibility of providing targeted therapies,

as we and others have shown before with anakinra for patients

with IL10 receptor mutations (7) and abatacept for LPS

Responsive Beige-Like Anchor Protein (LRBA) deficiency (8).

Mutations in Receptor-interacting serine/threonine-protein

kinase 1 (RIPK1) associated with monogenic IBD were recently

reported (9, 10). The RIPK1 pathway along with other kinases,

including RIPK3 and mixed-lineage kinase domain-like

pseudokinase (MLKL) (11) is important for necroptosis, a

regulated necrotic cell death mechanism. We present the

clinical course, genetic analysis and immune work-up of two
02
patients from unrelated families who presented with severe

infantile-onset IBD and were found to harbor deleterious

mutations in RIPK1.
Methods

Whole exome sequencing

The study was approved by the IRB committee at Sheba

Medical Center and Rabin Medical Center. Informed written

consent was obtained from all individual participants included

in the study, including RIPK1-deficient patients, their parents,

control subjects and patients with active CD (see below). Whole

exome sequencing (WES) was performed for the two index

patients using an Agilent v5 Sureselect capture kit and Illumina

2500 sequencing technology. Paired end reads (2X100 bp) were

obtained, processed and mapped to the genome. The average

sequencing depth of the target region is 92X with 95.63% of

bases reached at least 10X coverage. We used the BWA mem

algorithm (version 0.7.12) (12) for alignment of the sequence

reads to the human reference genome (hg19). The

HaplotypeCaller algorithm of GATK version 3.4 was applied

for variant calling, as recommended in the best practice pipeline

(13). KGG-seq v.08 was used for annotation of identified

variants (14) and in house scripts were applied for filtering

based on family pedigree and local dataset of variants detected in

previous sequencing projects. Likely pathogenicity was assessed

if the variant was truncating (splicing or non-sense) or missense;

in-frame indels were considered if they were predicted to be
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pathogenic by online prediction tools including PolyPhen-2,

SIFT, CADD and MutationAssessor.
Immune work-up

Cell surface markers of peripheral blood mononuclear cells

(PBMCs) were determined by immunofluorescent staining using

flow cytometry (Navios, Beckman Coulter, Brea, CA, US) with

antibodies purchased from Beckman Coulter. T cell receptor

excision circles (TREC) analysis was performed using DNA

extracted from the patient’s PBMCs. The amount of signal

joint TREC copies per DNA content was determined by real-

time quantitative PCR as previously described (15).
Sanger sequencing

Exons 4 and 11 of RIPK1 gene were amplified and sequenced

by the Sanger method. Briefly, polymerase chain reaction (PCR)

amplification was performed using three sets of the

following primers:

exon 4-Fw: CAGAATTTCATGTGAACGTTTCCT

exon 4-Rw: GGCTAAGTCCTCACAAGCAGAA

exon 11-Fw: CTGCCAGTGCATCAACAGCTA

exon 11 Rw: CCCATTCTCCAGCTATGAAGTACA

The PCR reaction took place in a 25-mL volume containing

50 ng of DNA, 10 ng of each primer, 1.5 mM dNTPs, in 1.5 mM

MgCl2, PCR buffer, with 1.2 units of Taq polymerase (Bio-Line,

London, UK). After an initial denaturation of 5 min at 95°C, 30

cycles were performed (94°C for 30 s, 60°C for 30 s, and 72°C for

30 s), followed by a final extension of 10 min at 72°C. PCR

amplicons were sequenced in both directions using a

commercial sequencing service [Hy Laboratories, Ltd. (Hylabs)

Park Tamar Rehovot, Israel].
Immunofluorescence staining

We obtained formalin-fixed, paraffin-embedded (FFPE)

rectal mucosa specimens from the two RIPK1-deficient

patients. As controls we used samples from two control

subjects with normal colonoscopies, without a history of IBD

(Control 1, 16-years-old male evalulated for bloody stools;

Control 2, 14-years-old female with recurrent diarrhea), and

two patients with CD (Patient 1, 15-years-old male with active

ileo-colonic disease; Patient 2, 10-years-old female with active

colonic disease). Rectal FFPE specimens were cut into 5 mm-

thick sequential sections, that were then dewaxed in xylene and

rehydrated stepwise in descending ethanol series followed by

antigen retrieval with Antigen Unmasking Solution, Citrate-

Based (Vector laboratories, H-3300) at 96°C for 10 min. The

slides were then washed with PBS followed by permeabilization
Frontiers in Immunology 03
and blocking with PBS with 1% BSA, 3%NDS, 0.05% Tween,

0.025% Triton for 30 minutes at room temperature. The sections

were then incubated with primary rabbit anti-human RIPK1

monoclonal antibody D94C12 (3493, Cell signaling technology,

dilution 1:50), overnight at 4°C, followed by staining with the

corresponding secondary antibodies for 1 hour at room

temperature and counterstaining with DAPI, which was

included in the mounting medium (GBI Labs, E-19-18,

Mukilteo, WA). Samples were visualized by confocal

microscope (LSM 800, Zeiss, Oberkochen, Germany). All

images within each experiment were acquired under the

same conditions.
Protein Modeling

Visualization of the structural consequences of the

mutations to RIPK1 was performed using PyMOL (Version

2.4.1) by using the mutagenesis wizard on the indicated

experimentally determined structures.
Mass cytometry (CyTOF) studies

Peripheral blood mononuclear cells (PBMCs) from a RIPK1-

deficient patient, both parents, three controls and three patients

with active CD were stained with a panel of metal-chylated

surface antibodies targeting markers of major immune cell

lineages (Supplementary Table 1) per previously published

protocol (16). For controls we used PBMCs from 2 females

and 1 male aged 14-17 years, with normal endoscopic evaluation

and no concern of IBD, while for the CD group we obtained

PBMCs from 3 males, aged 11-17 years, one treated with

infliximab and two newly-diagnosed treatment-naïve.

The samples were run on Helios2 mass cytometer (Fluidigm,

San Francisco, CA, USA). FCS files obtained were analyzed with

premium Cytobank software and pre-gated on CD45+/viable/

single/DNA+ events before initiating the analysis. Normalization

beads were used and gated out of the analysis. The data was

automatically clustered with Pheongraph through cytofkit

package in R and visualized with tSNE using all leukocytes

(CD45+ cells) as input and manually labeled based on markers

expressed in the individual clusters. Cluster abundance (% of

CD45+ viable single events) and fold change over the RIPK1

abundance were computed and plotted for comparison between

groups using Prism8 software. Additionally, clusters of similar

cellular subtype were combined, and similarly, the ratio of CD4/

CD8 cells was calculated.

To identify dysregulation in activation and cytokine production

of the immune cells in RIPK1 deficiency, we stimulated PBMCs

from Patient 1 and his parents with either lipopolysaccharide (LPS)

or phorbol 12-myristate 13-acetate (PMA) and Ionomycin. PBMC’s

from patient and parents were thawed and washed with T cell
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media, then centrifuged at 300g. The supernatant was discarded and

pelleted PBMC’s were resuspended in 1ml of T Cell media.

GolgiStop and GolgiPlug were then added to each stimulation

tube and each sample was stimulated with either LPS 1mg/ml or

PMA 0.5ng/ml and Ionomycin 1mg/ml for 4 hours at 37°C.

Samples were then centrifuged and washed again in T cell media

then prepped for CyTOF where they were stained with heavy metal

chelated antibodies (Supplementary Table 2) first for surface

antigens, then fixed and permeabilized and finally stained with

antibodies for intracellular antigens (16). All samples were analyzed

as above. In addition, mean expression of various cytokines (mean

metal intensity) was calculated in the various populations indicated.
Results

Case description

Patient 1 was referred at the age of 16 months for evaluation of

IBD. He was born to a consanguineousMuslim family (parents first

degree cousins) and presented at the age of 9 months with fever and

diarrhea that were initially attributed to amebiasis. Despite

metronidazole treatment his condition deteriorated, and he

developed perianal abscesses with multiple fistulas. Blood tests

were significant for anemia (hemoglobin 6.5 gram/dL),

hypoalbuminemia (albumin 1.5 gr/dL) and elevated inflammatory

markers (CRP 94mg/L, normal <5mg/L). Due to the severity of the

perianal disease, the patient underwent double barrel protective

ileostomy. Despite this intervention, his condition did not improve.

At the age of 16 months the patient appearead cachectic. Weight

was 7.4 kg (Z score -3.2) and length 73 cm (Z score -2.8).

Abdominal exam showed double barrel ileostomy, with severe

inflammation in the surrounding skin, and multiple perianal

fistulas with deep ulcerations and perianal fissures. Colonoscopy

demonstrated patchy areas of severe colonic ulcerations with

pseudopolyps, with normal mucosa in between, while an upper

endoscopy was unremarkable. Colonic biopsies revealed chronic

active inflammation with focal cryptitis.

Following a course of broad-spectrum antibiotics and

nutritional supplementation, the patient was started on

metronidazole, mesalamine and azathioprine, and later began

adalimumab. Nevertheless, the patient failed to respond to this

TNFa antagonist despite adequate drug levels and absence of anti-

drug antibodies, thus experiencing primary pharmacodynamic

failure, and at the age of 2.5 years developed colo-vesical fistula

that required fistulectomy. Follow up colonoscopy showed severe

ulcerations at the sigmoid and ascending colon. Anakinra, an IL1

receptor antagonist, was commenced with escalation of the dose up

to 3mg/kg daily, though clinical or laboratory responses were not

documented. Importantly, the patient did not develop severe or

atypical infections until the age of 3 years.

Patient 2 was also born to a consanguineous Muslim family

(parents first degree cousins) and presented at the age of 1 month
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with recurrent fevers, non-bloody diarrhea, oral ulcers, poor

weight gain, abdominal distention and arthritis. During infancy

he developed recurrent perianal abscesses. At the age of 20

months his weight was 9.7 kg (Z score -1.4) and length 81 cm

(Z score -1.1). Physical exam was noted for abdominal distention

and hepatosplenomegaly, along with a draining perianal abscess.

Blood tests demonstrated anemia (hemoglobin 8.8 g/dL) and

mildly elevated inflammatory markers (ESR 29 mm/hour). Blood

cultures were positive for Providencia stuartii and Pseudomonas

aeruginosa, which were treated with Piperacillin-Tazobactam for

two weeks. Colonoscopy showed patchy colitis, predominantly at

the right colon, while an upper endoscopy was unremarkable.

Pathologic assessment showed patchy chronic active colitis. The

patient temporarily responded to mesalamine, metronidazole

and azathioprine, with a 3 kg weight gain over 10 months and

normalization of inflammatory markers. However, he continued

to suffer from recurrent febrile episodes, oral ulcers, diarrhea,

arthritis and perianal abscesses.
Basic immune studies

Immunoglobulin levels, including IgM, IgA and IgG were

within normal limits for both patients (Supplementary Table 3).

Moreover, immunoglobulin E was also normal for Patient 1. In

addition, lymphocyte subset analysis was within normal limits

for both patients, beside slightly elevated CD8+ T cells

(Supplementary Table 3). Finally, TREC levels for both

patients were within normal limits, reflecting intact

thymic function.
Identification of RIPK1 mutation

Following WES analysis, we identified 7,928 and 6,887

homozygous variants for Patients 1 and 2, respectively, that

affect protein sequences. These numbers were reduced to 49 and

77 variants, respectively, after filtration for common variants

(MAF ≥0.01) in either our local in-house exomes database

(n~3500) or external databases such as 1000 Genomes Project

(1 KG; https://www.internationalgenome.org/1000-genomes-

browsers) or dbSNP 135 database, the NHLBI Exome

Sequencing Project (ESP) (http://evs.gs.washington.edu/EVS/)

or gnomAD database (https://gnomad.broadinstitute.org/). A

c.1934C>T missense mutation residing in Exon 11 was

identified in Patient 1, and a c.580G>A RIPK1 missense

mutation residing in Exon 4 was identified in Patient 2

(Figures 1A, B). Both mutations were verified using Sanger

sequencing. The c.1934C>T mutation has been charactarized

previously as a deleterious variant (9). The c.580G>A mutation

was assessed as damaging by SIFT and POLYPHEN2 as well as

by other tools that predict pathogenicity and had a high CADD

score over 29. Moreover the Alanine at position 194 is
frontiersin.org
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evolutionarily conserved across most vertebrate species which

suggests that it has a role in the RIPK1 function.

To further understand how these variants affect protein

function, we visualized RIPK1 structural sequences. RIPK1 is

composed of two major structured domains: the kinase domain

(aa 17-289) and a death-domain (aa 583-669). There are
Frontiers in Immunology 05
numerous x-ray structures of the kinase domain (e.g. PDB:

4ITJ) and one crystal structure of the death-domain (PDB:

6AC5). We used these structures to visualize the potential

consequence of the mutations we identified.

Thr645 mediates a hydrogen bond to a structured water

molecule, that is also bound by neighboring backbone carbonyl
B

C D

E F

A

FIGURE 1

Identification of RIPK1 mutations in index patients. Figure depicts chromatogram of RIPK1 gene sequencing at the site of designated mutations for
(A) Patient 1 and (B) Patient 2. Visualization of the structural consequences demonstrates that (C) Ala194 is buried in RIPK1 kinase domain C’ lobe
(PDB: 4ITJ), and that (D) the mutation of Ala194 to Thr introduces clashes (indicated by red disks) with Tyr212 and His197. (E) Thr645 is found on
the surface of the death domain of RIPK1 and mediates a hydrogen bond to a nearby water molecule (PDB: 6AC5). (F) The mutation of Thr645 to
Methionine displaces this water molecule and may affect local structure and death domain dimerization.
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of Asn578 (Figure 1C). A mutation to Methionine (Figure 1D),

as identified in Patient 1, would have to displace this water

molecule, potentially disrupting the local environment.

Moreover, it was shown that even conservative mutations at

the death domain (K599R) are sufficient to impair its function

(17). In addition, Ala194 is buried in the C’ lobe of the kinase

domain (Figure 1E). Its mutation to Thr, as identified in Patient

2, may cause significant clashes and as such disrupt the packing

and conformation of the kinase domain, which may hamper its

activity (Figure 1F).

Finally, we performed immunofluorescence staining for

RIPK1 in rectal biopsies from the two patients presented

above with RIPK1 deficiency. Results were compared to

staining in two non-IBD subjects (evaluated for abdominal

pain and diarrhea, with normal macroscopic and histologic

colonoscopy) and two patients with active CD. In comparison

to control subjects, expression of RIPK1 in patients with active

CD was increased in rectal tissue (Figures 2A, B). Among the

two index patients, there was no RIPK1 expression for Patient 1

and minimal expression for Patient 2 (Figure 2C).
Abnormal cytokine production in RIPK1-
deficient patient

To evaluate changes in the architecture and function of

peripheral immune system in one of the RIPK1-deficient

patients, we performed mass cytometry (CyTOF) using a panel

of 36 antibody markers, and compared the results to both

maternal and paternal blood samples, non-IBD subjects

(controls) and CD patients, An unbiased clustering algorithm

(Phenograph) was performed on multiple immune populations.

To begin, we clustered on all immune cells (CD45+) and were

able to identify 28 unique populations (Figures 3A–C). When

comparing abundances of major immune subsets, we identified

an increased abundance of T cells, particularly CD8 effector

population, in the RIPK1-deficient patient, compared to

controls, along with a decrease in all other cell types including

monocytes, dendritic cells and B cells (Figures 3C–E).

Interestingly, we also observed a reversal of the CD4+ to CD8+

ratio compared to all other samples (Figure 3F).

To gain further insight into the functional effects of RIPK1

deficiency, we examined cytokine production by PBMCs following

stimulation with either LPS or PMA/Ionomycin (PMA/I), using

CyTOF, and clustering on all leukocytes (CD45+ cells,

Supplemental Figures 1A–C). We were able to identify 17 unique

populations, again demonstrating a CD8 predominance in the

patient (Supplemental Figures 1A, B). RIPK1-deficient patient’s

immune cells exhibited decreased IL-6 production in response to

LPS, but not to PMA-I stimulation, across multiple cell types

including T cells, B cells and innate immune cells (Figure 4A). In

addition, we observed an increase in IL-22 production across the
Frontiers in Immunology 06
majority of immune cells, particularly in response to LPS

stimulation condition (Figure 4B).

Focusing on the individual cell populations, monocytes and

dendritic cell’s ability to produce inflammatory cytokines was

drastically reduced in the patient, consistent with documented

reduced NFkB activity (18) (Figure 4C). On the other hand,

patient’s T cells produced higher amounts of IFNg than healthy

controls upon PMA/I stimulation (Figure 4D). Interestingly,

when analyzing immune populations with inhibitory potential,

including myeloid derived suppressor cells (MDSC) and CD24+

B cells (containing the putative regulatory B cell populations), we

demonstrate higher production of inflammatory cytokines (IL-

23, IL1b, and IL-8), but also IL-10, compared with cells obtained

from the parents (Figure 4C), suggesting a possible dysfunction

of these cells.
Discussion

With the expanding use of next generation sequencing

platforms in patients with unique IBD phenotypes, the list of

monogenic disorders associated with intestinal inflammation is

steadily growing, and many of them present with an increased

susceptibility to severe and/or atypical infections. RIPK1 is a

central regulator of apoptosis, inflammation, and necroptosis,

and therefore, it is not surprising that patients that lack RIPK1-

dependent signaling develop a severe multi-systemic disease

with inflammatory phenotypes and infectious complications in

some of them. To date, 14 patients with deleterious RIPK1

mutations have been reported in the literature (9, 10, 19, 20).

All patients developed colitis, mostly in the first months of life,

and in all but two patients perianal inflammation (abscesses or

fistulas) was evident (9, 10). Chronic upper gastrointestinal tract

inflammation was also reported as a phenoyte of RIPK1

deficiency (19). Additional clinical features included

susceptibility to severe viral and bacterial infections, arthritis,

skin lesions, recurrent fever and oral ulcers. Differences in

clinical phenotype may be attributed to the functional

consequences of the RIPK1 mutation and whether it abrogates

protein expression. This disorder should not be confused with a

different autosomal dominant autoinflammatory disease caused

by heterozygote mutations in RIPK1, leading to its abnormal

cleavage by caspase-8, and manifesting as recurrent fever,

lymphadenopathy and hepatosplenomegaly (21).

The patients we present here manifested with severe colitis

and perianal inflammation in the first months of life, but without

recurrent severe infections. Nevertheless, due to their young age

it is possible that susceptibility to specific pathogens as well as

additional inflammatory manifestations will develop later in life.

Both patients harbored variants that are predicted to be

deleterious to protein function based on genetic and protein

modeling. We did identify minimal expression of RIPK1 protein

in rectal samples from Patient 2, but this does not necessarily
frontiersin.org
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A

B

C

FIGURE 2

Reduced RIPK1 expression in rectal samples of RIPK1-deficient patients. Figure depicts RIPK1 Immunofluorescence microscopy staining of rectal
FFPE sections from (A) two control subjects, (B) two patients with active Crohn’s disease and (C) the two studied patients with RIPK1 deficiency.
Sections were stained with anti-RIPK1 antibody (red) and counterstained with DAPI (blue). Magnification 20× (scale bar = 50 µm).
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imply normal function, especially given the high pathogenicity

score of the genetic variant. Interestingly, expression of RIPK1

was increased among the two patients with CD, compared to

controls. Additional larger-scale studies are required to define

whether this observation is consistent in states of active IBD, and

whether it implies enhanced inflammasome activation in the

inflamed tissue.
Frontiers in Immunology 08
One of the pathways that has been shown to be upregulated

in RIPK1-deficient macrophages is activation of the

inflammasome, an intracellular complex that induces the

secretion of the pro-inflammatory cytokines IL-1b and IL-18

in response to different stimuli, including LPS (22). Impaired

inflammasome activation has been reported in other monogenic

disorders associated with intestinal inflammation, including
B

C

D E F
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FIGURE 3

Alterations in circulating leukocytes in a patient with RIPK1 deficiency. tSNE of Phenograph analysis of PBMCs as a (A) conglomerate of all
samples with individual cellular population shown or as (B) density plots of the individual groups. (C) Heatmap of the markers expressed in each
cluster on the left-hand-side, cluster abundance as a percent of all leukocytes in the middle and fold change of each cluster for each group
shown as compared to the RIPK1-deficient Patient 1. (D, E) Clusters combined by the immune populations indicated. (F) CD4 to Cd8 ratio. Blue
arrow-relative reduction and red arrow-relative increase in the RIPK1 patient compared to all other groups.
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B

C D

A

FIGURE 4

Changes in the cytokine profiles of PBMCs in a patient with RIPK1 deficiency. (A) IL-6 and (B) IL-22 expression in the various populations indicated
obtained from phonograph analysis of stimulated PBMCS from RIPK1-deficienct Patient 1 vs. controls, in response to LPS or PMA/I stimulation. (C)
Cytokine production by the immune populations indicated. (D) IFNg production with stimulation by LPS or PMA/I in T cells. DC, dendritic cells; MDSC,
myeloid-derived suppressor cells.
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Caspase-8 deficiency (23), mutations in IL-10 receptor (IL10R)

(7), mevalonate kinase (MVK) deficiency (24) and in gain-of-

function mutations of NLRC4 (25). We have previously shown

than anakinra, an IL1 receptor antagonist, was effective in

suppressing intestinal inflammation in two patients with

deleterious IL10RA mutations and history of severe infantile-

onset IBD (7), and, similarly, blocking IL-1 is effective in patients

with MVK deficiency (26). Over-activation of the inflammasome

in patients with RIPK1mutations may suggest that IL-1 blocking

agents can be effective in suppressing the IBD phenotype, though

additional pro-inflammatory cytokines and pathways may also

be dysregulated and contribute to the hyper-inflammatory

immune response observed in this disorder. A trial of anakinra

(IL-1 receptor antagonist) was performed in Patient 1, but the

dose provided was only 3mg/kg, much lower than the does we

successfully used for the IL10R-deficient patients (10mg/kg) (7).

Our CyTOF data of PBMCs from a single RIPK1-deficient

patient highlighted alterations in both innate and adaptive

immune cells. The patient displayed increased frequency of

naïve CD4+ and CD8+ T cells, compared to controls as well as

patients with active CD, similar to observations by Li and

colleagues (9). In addition, we demonstrated decreased IL-6

production by various innate and adaptive immune subsets.

This finding is in-line with reports from Cuchet-Lourenco and

colleagues who found decreased ERK and NfkB phosphorylations

and a reduction in pro-inflammatory cytokines such as IL-6 in

RIPK-deficient fibroblasts. In addition, the TLR4-dependent

(LPS-induced) signaling was affected more than TLR

independent pathways (10). The dysfunction of B cells and

MDSC has been reported in IBD patients (27, 28); however,

this is the first report, to the best of our knowledge, in RIPK1

deficient patients.

The question whether hematopoietic stem cell transplantation

(HSCT) can cure RIPK1 deficiency is unclear at this point. Cuchet-

Lourenço and colleagues reported 3 siblings (One was sequenced

and found to harbor a RIPK1 mutation and the others with the

presumable same mutation) that underwent HSCT; two of them

died within weeks of the procedure due to multi-organ failure or

disseminated viral infections. The third patient underwent HSCT

at the age of 30 months with resolution of IBD and arthritis (up to

5 years of follow-up), though is still on antibiotics due to chronic

and probably irreversible lung disease (10). Mice with a specific

deletion of RIPK1 in epithelial cells develop spontaneous lethal

intestinal inflammation due to enhanced apoptosis and necroptosis

of epithelial cells (29, 30). Moreover, RIPK1-deficient intestinal

epithelial cells show altered cell death responses in response to

TNFa stimulation (9). Given RIPK1’s roles in governing both

immune and epithelial responses, using HSCT to cure these

patients should be carefully considered, as it might ameliorate

the immunodeficiency phenotype but not intestinal inflammation.

This might be similar to Nuclear factor-kappa B essential

modulator (NEMO) deficiency due to IKBKG mutations, in
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which HSCT eliminates the increased susceptibility to recurrent/

atypical infections, but does not cure the IBD phenotype (31).

In conclusion, mutations in RIPK1 are a new monogenic

form of IBD that should be suspected in patients with very early-

onset IBD with inflammatory and fistulizing features. Given

RIPK1’s involvement in regulating inflammasome function it is

plausible that targeting IL-1 and/or IL-18 may be effective, to

some extent, in suppressing intestinal inflammation.

Nevertheless, murine and human data, as well as in vitro

studies, suggest that RIPK1 is important for epithelial cell

function, and therefore, therapies targeting immune cells may

be only partially effective in these patients. Moreover, the ability

of HSCT to cure this disorder is still unclear. Additional clinical

studies and observations are required to determine the role of

RIPK1 in epithelial cells in sustaining mucosal homeostasis.
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