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Hematologic dysfunction in
cancer: Mechanisms, effects on
antitumor immunity, and roles
in disease progression

Viktoria Plackoska1,2†, Dania Shaban1,2† and Anastasia Nijnik1,2*

1Department of Physiology, McGill University, Montreal, QC, Canada, 2McGill University Research
Centre on Complex Traits, McGill University, Montreal, QC, Canada
With the major advances in cancer immunology and immunotherapy, it is

critical to consider that most immune cells are short-lived and need to be

continuously replenished from hematopoietic stem and progenitor cells.

Hematologic abnormalities are prevalent in cancer patients, and many

ground-breaking studies over the past decade provide insights into their

underlying cellular and molecular mechanisms. Such studies demonstrate

that the dysfunction of hematopoiesis is more than a side-effect of cancer

pathology, but an important systemic feature of cancer disease. Here we

review these many advances, covering the cancer-associated phenotypes of

hematopoietic stem and progenitor cells, the dysfunction of myelopoiesis and

erythropoiesis, the importance of extramedullary hematopoiesis in cancer

disease, and the developmental origins of tumor associated macrophages.

We address the roles of many secreted mediators, signaling pathways, and

transcriptional and epigenetic mechanisms that mediate such hematopoietic

dysfunction. Furthermore, we discuss the important contribution of the

hematopoietic dysfunction to cancer immunosuppression, the possible

avenues for therapeutic intervention, and highlight the unanswered questions

and directions for future work. Overall, hematopoietic dysfunction is

established as an active component of the cancer disease mechanisms and

an important target for therapeutic intervention.
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Introduction

Recent decades saw rapid advances in our understanding of

the immune mechanisms promoting cancer control and

mediating tumor progression, and resulted in the development

and adoption into clinical use of many novel immunotherapies

(1, 2). In light of these advances, we must consider that most

immune cells are short-lived and continuously replenished from

hematopoietic stem and progenitor cells (HSPCs) (3, 4).

Hematologic dysfunction is prevalent in cancer patients, and

the elevated neutrophil-to-lymphocyte ratio is a common

diagnostic and prognostic indicator (5–7). Importantly, in

recent years hematopoietic dysfunction is increasingly

recognized as more than a side-effect of cancer pathology, but

as an active contributor to disease mechanisms and a target for

therapeutic intervention (8, 9). Here we discuss hematopoietic

dysfunction as one of the systemic features of cancer disease,

covering data from patients and mouse models with solid

tumors, but excluding from the discussion hematologic

malignancies, tumor metastasis into the hematopoietic tissues,

or side-effects of cancer therapy (10, 11). We include an in depth

overview of the cancer associated HSPC phenotypes,

myelopoiesis dysfunction, recent advances in the study of

cancer associated aberrant erythropoiesis, and their

contributions to immunosuppression (Figures 1, 2). Cancer

associated thymic dysfunction and any effects on the primary

lymphocyte repertoire selection and cancer surveillance by the

adaptive immune system are however beyond our scope and are

reviewed elsewhere (2, 12, 13).
Hematopoietic stem and progenitor
cells in cancer

Hematopoietic stem and progenitor cells (HSPCs) are the

precursors of all blood and most immune cell lineages, except for

some pools of tissue-resident macrophages. HSPCs sense and

respond to diverse stresses, danger signals, and inflammatory

cytokines, and are recognized as active mediators of systemic

immune and inflammatory response (14–16) . Ful l

understanding of antitumor immunity therefore requires

in-depth knowledge of the effects of the tumor on the

pathways guiding immune cell production and on the

HSPC compartment.

Wu et al. demonstrated an increase in circulating HSPCs in

patients across seven different cancer types, with a strong

increase in granulocyte monocyte progenitors (GMPs), and

lesser but significant increases in multipotent progenitors

(MPPs) and hematopoietic stem cells (HSCs) (17).

Importantly, the frequency of circulating GMPs correlated

with advanced disease and predicted disease progression (17).

HSPC expansion was also observed in the blood of
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rhabdomyosarcoma and breast cancer patients, and high

circulating HSPCs at the time of diagnosis correlated with

metastatic progression (18). Mobilized HSPCs are also

detected within human tumors. In particular, the highly

aggressive and therapy-resistant brain tumors glioblastomas

harbor HSPCs with myeloid differentiation potential,

immunomodulatory properties, and capacity to promote

tumor cell proliferation in co-culture assays (19). Importantly,

HSPC abundance in such tumors corre la tes wi th

immunosuppressive phenotype, tumor grade, and poor

prognosis for the patients (19). All this indicates that major

dysregulation of hematopoiesis is prevalent in human cancer,

and suggests its association with disease mechanisms.

Studies in mouse models provide further support for

these conclusions. In the MMTV-PyMT transgenic mouse

model of spontaneous breast cancer the accumulation of

immunosuppressive myeloid cells within the tumor is

preceded by an expansion of HSCs, MPPs, and GMPs in the

bone marrow, driven by G-CSF and requiring G-CSFR

expression on the progenitor cell populations (20). Major

hematopoietic dysfunction is also observed in the MMTV-

neuOTI/OTII and other mammary tumor models and in a

mouse melanoma model induced via a subcutaneous injection

of B16-F10 cells (21, 22). This includes an expansion of bone

marrow MPP and GMP cells, anemia, thrombocytopenia, and

induction of extramedullary myelopoiesis and erythropoiesis in

the mouse spleen (21, 22). An independent study in mice

subcutaneously inoculated with MC57 fibrosarcoma, B16-F10

melanoma, MC38 colon adenocarcinoma, or Lewis lung

carcinoma (LLC) cells also demonstrated HSPC expansion and

myeloid biased hematopoiesis, with increased HSPC

proliferation and turnover (23). Similarly, mice with an

orthotopic inoculation of E0771 breast carcinoma and M3-9-

M rhabdomyosarcoma cells demonstrated HSC and MPP

expansion in the bone marrow, their mobilization into the

bloodstream, homing into tissues, and local differentiation into

myeloid cells with immunosuppressive properties (18).

While the expansion of myeloid biased HSPCs is widely

reported across the studies and cancer models discussed above,

the systemic effect of cancer disease on lymphoid progenitors is

less clear. For example, no consistent changes in the frequency of

cells with the surface marker profile of common lymphoid

progenitors (CLPs) are observed in the blood of patients

across seven different cancer types (17), and no changes in the

frequency of CLPs and lymphoid-biased Flt3+ MPPs are

observed in the bone marrow of mice bearing MC57

fibrosarcoma tumors (23). Furthermore, patients with non-

medullary thyroid carcinoma (TC) also showed no depletion

of lymphoid progenitors and a trend toward expansion of B cell

precursors based on single cell RNA-sequencing (scRNA-seq) of

bone marrow mononuclear cell samples (24). However, cells

with the CLP transcriptional signature are detected in human

glioblastoma tumor samples albeit at low frequencies (19),
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suggesting that HSPC mobilization in cancer is not limited to

myeloid-biased cells. Furthermore, in B16-F10 melanoma

bearing mice a reduction in circulating lymphocytes and a

depletion of bone marrow pre-B and immature B cells is

observed, indicating dysregulation in lymphopoiesis (21).

Similarly, in a murine cancer model induced with a

subcutaneous injection of syngeneic EL4 thymoma cells a

reduction in CLPs, NK precursors (CD122+NK1.1-CD3-), and

NK cells and B cells is reported, indicating a dysfunction in

lymphopoiesis (25).

Considering the widely reported expansion and mobilization

of HSPCs across cancer models, it is also interesting to note that

HSPCs express MHCII, co-stimulatory molecules (CD80, CD86)

(26, 27), and immune checkpoint receptors (PD-L1) (28), and

can act as bona fide antigen presenting cells (29). While this

suggests that the mobilized HSPCs enriched in the blood,

lymphoid organs, and the tumor tissues of cancer patients

may similarly engage in modulation of immune response,

given their low numbers it is difficult to assess if such activity
Frontiers in Immunology 03
is biologically significant. Overall, the immunomodulatory

properties of HSPCs are likely exerted primarily via their

differentiation into diverse immune cell lineages, rather than

through direct engagement with immune cells.
Aberrant myelopoiesis in cancer:
roles and mechanisms

Myeloid biased hematopoiesis is a major feature of

hematopoie t ic dysfunct ion in cancer . I t produces

heterogeneous populations of monocytes and neutrophils with

immunosuppressive properties, and the abundance of such cells

is a prognostic marker of poor outcomes in cancer patients (30,

31). The term myeloid-derived suppressor cells (MDSCs) has

been widely used for such cells, despite their significant

heterogeneity in surface markers, morphology, gene

expression, and life-span (32). However, in recent years mass
FIGURE 1

Dysfunction of hematopoiesis in cancer. Secreted mediators produced by cancer cells, tumor infiltrating leukocytes (TILs), and stromal cells (1)
promote the expansion of hematopoietic stem cells (HSC), multipotent progenitors (MPPs), common myeloid progenitors (CMPs), and
granulocyte monocyte progenitors (GMPs) in the bone marrow and their mobilization into the bloodstream (2). The cancer associated induction
of extramedullary hematopoiesis is characterized by the expansion of hematopoietic stem and progenitor cells (HSPCs) and myeloid progenitor
cells (MyPs) in the spleen and their local differentiation into heterogeneous populations of myeloid cells with immunosuppressive properties,
known as tumor associated neutrophils/monocytes or myeloid-derived suppressor cells (MDSCs) (3). Cancer associated myelopoiesis also
contributes to the production of monocyte-derived tumor associated macrophages (MoD-TAMs). Splenic extramedullary erythropoiesis is also
reported in cancer, characterized by the expansion of erythroid progenitor cells (EPCs) in the spleen and the production of erythroid
differentiated myeloid cells (EDMCs), with potent immunosuppressive properties (4). This model integrates findings from multiple cancer types
and experimental systems, and the indicated mechanisms may not be conserved across all cancers.
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cytometry (CyTOF), scRNA-seq, lineage tracing, and other

approaches have revolutionized our understanding of the

heterogeneity of myeloid cell states and the plasticity of the

developmental pathways driving their production in health and

disease (33–38). These studies indicate MDSCs as aberrant

myeloid cell states enriched in malignant disease, with some

distinct transcriptional signatures and functional properties, but

falling within the broader spectrum of myeloid cell heterogeneity

(39, 40).

Most such cancer-associated monocytes and neutrophils are

short-lived and continuously replenished from HSPC pools, and

this highlights myelopoiesis dysfunction as key to the

understanding of their origins (41). In this regard, recent

studies saw the identification of specialized monocytic

progenitor cells (MLPGs) that do not contribute to

granulopoiesis under steady-state conditions but expand in the

bone marrow and spleen of tumor-bearing mice and become an
Frontiers in Immunology 04
important precursor of tumor associate neutrophils (42). Other

notable studies identified unipotent neutrophil progenitors in

both mouse and human bone marrow (43–45), and

demonstrated that such cells can promote tumor growth in

humanized mouse models and are enriched in the blood of

melanoma patients (44) and in the tumors of non-small cell lung

carcinoma (NSCLC) patients (45). Here we review the role of

aberrant myelopoiesis in cancer, covering the importance of

extramedullary niches, the driving molecular mechanisms, and

key evidence supporting its pathogenic role in the disease.
Splenic extramedullary myelopoiesis
in cancer

The spleen is recognized as an important site for the homing

and proliferation of immunosuppressive myeloid cells in cancer
FIGURE 2

Molecular regulation of cancer associated myelopoiesis. Secreted mediators promoting cancer associated myelopoiesis include: inflammatory
cytokines such as IL-6, IL-1, and TNFa, chemokines such as CCL2, CCL3, and CCL4, growth factors G-CSF, GM-CSF, and others, and hormones
and other mediators, such as estrogen, a-MSH, osteopontin, and angiotensin II. Such mediators may exert their effects on the hematopoietic
system via both direct and indirect mechanisms. Cancer induced myelopoiesis and the production of tumor associated neutrophils and
monocytes with immunosuppressive properties are promoted by the activation of unfolded protein response (UPR), including kinase PERK and
transcription factors ATF4 and NRF2 in hematopoietic stem and progenitor cells (HSPCs). Cancer disease may also result in a long-term
epigenetic reprogramming of HSPCs and the induction of aberrant trained immunity. This model integrates findings from multiple cancer types
and experimental systems, and the indicated mechanisms may not be conserved across all cancers.
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(46), and also for the induction of tolerance to tumor antigens

(47). Recent studies further demonstrate that the spleen is also

the critical site of aberrant myelopoiesis that produces such pro-

tumorigenic myeloid cells (48).

In the KrasLSL-G12D/+ p53flox/flox (KP) mouse model, in which

lung adenocarcinoma is induced through an intranasal

administration of a Cre-expressing adenovirus, cancer

progression is linked to the expansion of GMPs in the mouse

spleen, leading to local differentiation of monocytes and

neutrophils and their relocation into the tumor (49). Similarly,

in an orthotopic mouse model of hepatocellular carcinoma

(HCC), induced with a subcapsular intrahepatic injection of

Hepa1-6 cells, a striking expansion of splenic HSPCs was

observed (50). Such HSPCs retained their capacity for long-

term self-renewal, but in contrast to bone marrow HSPCs, had

myeloid restricted differentiation potential and gave rise to

tumor associated neutrophils with potent immunosuppressive

properties (50). These studies further demonstrated the

accumulation of splenic HSPCs and myeloid progenitors in

human cancer patients (49, 50), which correlated with myeloid

cell expansion and in gastric cancer cohorts also with poor

prognosis (50). Recently scRNA-seq of HSPCs (Lin-cKit+Sca1+)

from the spleen and bone marrow in the orthotopic Hepa1-6

HCC mouse model demonstrated a strong expansion of myeloid

biased cells in the spleen, resembling the MPP3 subset of bone

marrow HSPCs, with the expression of many genes indicative of

myeloid lineage priming (51). In contrast, in mice transgenic for

a photoconvertible protein KikGR that allows to ‘timestamp’

myeloid cells with surgery and violet light exposure,

subcutaneous inocu la t ion of syngene ic LLC lung

adenocarcinoma cells demonstrated that the bone marrow

rather than spleen remained the major source of monocytes,

including those infiltrating the tumors (52).

Interestingly, splenectomy in the KP lung adenocarcinoma

mouse model impaired myeloid cell accumulation within the

tumor and delayed tumor growth (49). Similarly, in the

orthotopic Hepa1-6 HCC mouse model splenectomy

effectively reduced the suppressive activity of neutrophils and

increased the frequency of tumor-infiltrating IFNg+ CD8 T cells.

In this model splenectomy resulted in a mild but significant

extension in mouse survival and had further synergistic effects

when combined with anti-PD-L1 immunotherapy (50).

Furthermore, in mice inoculated with EG7-OVA lymphoma

cells via a subcutaneous injection splenectomy abolished the

induction of T cell tolerance to model tumor antigens (47).

However, the effects of splenectomy on cancer progression

demonstrated variable (53–55) and in many cases deleterious

(56, 57) outcomes across other mouse models and in cancer

patients, indicating the need for more precise and refined

interventions to counteract aberrant myelopoiesis in cancer.

Liver is also a major site of extramedullary hematopoiesis in

many disorders. Accumulation of myeloid cells with

immunosuppressive properties (CD11b+GR1+) within the liver
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is reported in mice inoculated subcutaneously with DA-3 and

4T1 mammary , B16-F10 melanoma, or LLC lung

adenocarcinoma tumors (58). Furthermore, in DA-3 tumor

bearing mice an enrichment of myeloid progenitors in

the liver is demonstrated with colony forming assays

(CFU-GEMM, CFU-GM), and is associated with an

immunosuppressive reprogramming of Kupffer cells (58).

Nevertheless, the role of the liver as a site of myelopoiesis and

a source of immunosuppressive monocytes and neutrophils in

cancer remains relatively poorly understood.
Secreted mediators promoting
cancer myelopoiesis

The growing understanding of the molecular signals that

drive splenic HSPC recruitment and myelopoiesis in cancer may

offer novel strategies for therapeutic intervention. Increased

levels of growth factors and cytokines, such as GM-CSF, G-

CSF, M-CSF, IL-6 and others, are commonly seen in cancer

patients and mouse models, both systemically or in the tumor

microenvironment (59–61). However, such mediators have

pleiotropic effects that span hematopoiesis, immune cell

development, the regulation of immune effector functions, as

well as direct effects on the malignant cells within the tumor.

Thus it is often challenging to selectively analyze the role of such

secreted factors as drivers of the cancer associated myelopoiesis

independently of their other functions, and to define the specific

contribution of this activity to their pro-tumorigenic effects.

Nevertheless, a number of important studies in this area are

reviewed here.

Despite the largely redundant role of GM-CSF in steady-

state myelopoiesis under homeostatic conditions (62, 63), it has

more recently emerged as an important inflammatory mediator

(64). The effects of GM-CSF in cancer onset and progression are

widely studied, but complex and variable across cancer models

and modes of administration (60, 61). GM-CSF has been shown

to potentiate cancer associated myelopoiesis in several models

(61). For example, in an orthotopic Hepa1-6 HCC mouse model

splenic HSPCs express high levels of GM-CSF, and further GM-

CSF supplementation in this model enhances, while its

inhibition supresses the production of immunosuppressive

neutrophils (CD11b+Ly6G+Ly6Clo) and other myeloid cells

(CD11b+Gr-1+) (50). However, GM-CSF can have potent

immunostimulatory and adjuvant properties, and early clinical

trials administering cancer patients with irradiated GM-CSF-

transduced tumor cells showed enhanced antitumor immunity

and favourable outcomes, for example in metastatic melanoma

(65, 66), non-small cell lung cancer (67), and prostate cancer

(68). On the other hand, GM-CSF can also have direct effects on

many cancer cells, promoting their proliferation and migration

(60). The effects of GM-CSF on antitumor immunity may also

encompass its role in the adaptive immune system, in particular
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in the induction and maintenance of Th17 T cells (69, 70).

Overall, the multifunctional nature of GM-CSF makes it a highly

challenging tool or target for therapeutic intervention.

M-CSF is a highly important mediator for the development

and maintenance of monocytes and tissue resident macrophages

(71). It is produced by many tumors (72), and its elevated serum

levels or the high expression of its receptor CSF-1R on the tumor

cells correlate with tumor grade and poor prognosis in cancer

patients (73–75). Tumor M-CSF production also correlates with

increased monocyte infiltration (76), can enhance the

immunosuppressive properties of monocytic cells in some

cancer models (77), although the expression of a membrane-

bound form of M-CSF was also reported to promote tumor cell

killing by macrophages (78). Therapeutic blockade of CSF-1R

(79–82) or the inhibition of its signal transduction (83) have

shown protective activity across different murine cancer models

(84, 85), and are investigated in ongoing clinical trials (85).

However, administration of M-CSF was also tested and

promoted immune recovery from chemotherapy-induced

immunosuppression in ovarian cancer patients (86), showed

minimal adverse effects and some favorable outcomes in

metastatic melanoma patients (87), and was not associated

with increased risk of disease remission in hematologic cancers

(88, 89). In summary, M-CSF is a well-established regulator of

myeloid cell biology in health and disease; and given its

pleiotropic functions it is often difficult to differentiate the

role of M-CSF as a driver of myelopoiesis in cancer

models from its other functions systemically and in the

tumor microenvironment.

Other growth factors and cytokines are also implicated in

hematopoietic dysfunction in cancer models. TNFa has been

shown to promote HSPC activation and myelopoiesis in mice

bearing subcutaneous MC57 fibrosarcoma tumors (23). TNFa is

also essential for the accumulation of immunosuppressive

myeloid cells (CD11b+GR1+) and for tumor growth in mice

inoculated subcutaneously with FB61 fibrosarcoma or J558L

plasmacytoma cells (90), and for disease progression in

chemica l l y - induced sk in cance r mode l s ( 91 ) . A

pharmacological blockade of either G-CSF or IL-1 was shown

to normalize immune cell numbers across multiple tissues in

eight murine tumor models (92). In the MMTV-PyMT

transgenic breast cancer model HSPC expansion and the

production of tumor associated neutrophils required G-CSFR

expression (20). Moreover, tumor derived G-CSF in mice with

orthotopic MMTV-PyMT mammary tumors was also

implicated as the key factor repressing the development of the

cDC1 subset of conventional dendritic cells, by downregulating

the expression of IRF8 in cDC-precursors (93). Furthermore, IL-

6 is implicated in promoting cDC1 apoptosis and depletion in

the KrasLSL-G12D p53LSL-R172H/+ Pdx1-CRE murine model of

pancreatic ductal adenocarcinoma (PDAC) (94).

Chemokines and their receptors are also widely investigated

for their roles in aberrant myelopoiesis in cancer. Thus, recent
Frontiers in Immunology 06
studies in the orthotopic Hepa1-6 HCC mouse model identify

the CCL2/CCR2 axis as critical for HSPC recruitment to the

spleen of tumor bearing mice, and establish its effective

suppression by CCR2 antagonists (50). In other studies such

CCR2 antagonists showed favourable activities beyond the

repression of splenic HSPC recruitment and myelopoiesis, but

also impaired myeloid cell survival, Treg homing, and tumor cell

growth (95). High serum levels of CCL2 in renal cell carcinoma

patients correlated with myeloid cell levels and were predictive of

poor survival (47). Further studies demonstrated that HSPCs

primed by tumor derived factors produce CCL3-4, which act via

autocrine or paracrine mechanisms on CCR5 and CCR1 to

promote the differentiation of tumor associated neutrophils

with immunosuppressive properties (96). The silencing of

CCR5 and CCR1 expression on myeloid cells, including the

myeloid precursors, was sufficient to inhibit tumor progression

across multiple mouse models (96).

A number of secreted mediators with primary functions

beyond immune regulation are also implicated as drivers of

aberrant myelopoiesis in cancer. Thus in mice inoculated

subcutaneously with CT26 colon carcinoma, tumor-derived

osteopontin promoted extramedullary myelopoiesis, while its

antibody-mediated blockade in vivo effectively inhibited tumor

growth (97). Furthermore, in the KP lung adenocarcinoma

model tumor-derived angiotensin II promoted HSPC

expansion, splenic accumulation, and myeloid differentiation,

while treatment with an inhibitor of angiotensin converting

enzyme suppressed the aberrant myelopoiesis and significantly

delayed tumor-induced mortality (98). Estrogen also promotes

cancer progression in mice bearing intraperitoneal syngeneic

ID8-Defb29/Vegf-a ovarian cancer tumors and in several

heterotopic murine cancer models, and this effect can be

independent of estrogen receptor expression by the tumor, but

require its expression on the hematopoietic and immune cells.

This study indicated that estrogen can act on myeloid

progenitors in the bone marrow of tumor bearing mice to

promote aberrant myelopoiesis and inhibit antitumor

immunity (99). Similarly, the production of a-melanocyte

stimulating hormone (a-MSH) by the pituitary gland was

shown to promote HSPC expansion and cancer myelopoiesis,

and to repress antitumor immunity across several murine cancer

models, with a-MSH acting on the MC5R receptor on HSPCs

(100). Increased a-MSH serum levels were also observed in

cancer patients and correlated with myeloid cell expansion,

suggesting that similar neuroendocrine mechanisms may

promote cancer myelopoiesis in human (100).
Signaling pathways regulating
cancer myelopoiesis

Recent studies demonstrated the key role of unfolded protein

response (UPR) and its mediator kinase PERK in the production
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and immunosuppressive activity of tumor associated neutrophils

and monocytes (101). Various experiments in this study utilized

mice inoculated subcutaneously with LLC, B16-F10, or EG7

tumor cells, intraperitoneally with ovarian carcinoma cells, as

well as the KPmouse model (KrasLSL-G12D/+ p53flox/flox) receiving

an intramuscular delivery of a Cre-expressing adenovirus for

sarcoma induction (101). Both a pharmacological inhibition of

PERK and its selective deletion within the myeloid cell lineage

resulted in enhanced antitumor immunity and slowed disease

progression across multiple cancer models, and this protective

activity was associated with the repression of NRF2 and

upregulation of STING signaling in myeloid cells (101).

Further studies in an orthotopic Hepa1-6 hepatoma mouse

model using a micro-osmotic pump for targeted PERK inhibitor

delivery demonstrated that the delivery of the inhibitor to the

spleen rather than the tumor was most effective at limiting

cancer associated myelopoiesis, and resulted in enhanced tumor

infiltration by IFNg+ CD8 T cells and delayed disease

progression (51). Mouse HSPCs co-cultured with splenic

stromal cells from tumor bearing mice or human cord blood

HSPCs cultured with IL-6 and other cytokines demonstrated

activation of PERK and its downstream signaling mediators, and

gave rise to neutrophils with immunosuppressive properties in a

PERK dependent manner (51). Furthermore, PERK activation

was observed in splenic HSPCs of patients with hepatocellular

carcinoma and gastric cancer, and correlated with myeloid cell

abundance. Overall, this indicates PERK as a promising drug

target to prevent cancer immune evasion (51). This study also

supports the specialized role of the splenic environment and the

aberrant signaling events in splenic HSPCs as drivers of cancer

associated myelopoiesis in hepatocellular carcinoma (51),

although it remains to be explored to what extent the same

mechanisms apply in other cancer models.

Pattern recognition receptors (PRRs) comprise multiple

families of cell-surface, endocytic, and intracellular proteins

responsible for the sensing of microbial compounds and

endogenous danger signals (102), leading to the activation of

innate immune and inflammatory responses (103). HSPCs

express diverse PRRs, and cell-intrinsic PRR stimulation on

HSPCs contributes to the induction of emergency

myelopoiesis in response to infections (15, 104). In the context

of cancer, PRR functions are widely investigated in tumor cells

and in tumor infiltrating leukocytes (TILs) (103, 105, 106),

however whether cell-intrinsic stimulation of certain PRRs on

HSPCs contributes to the induction of cancer-associated

emergency myelopoiesis and immunosuppression remains

poorly understood.

Several other novel pathways were recently identified as

important for cancer associated myelopoiesis and

immunosuppression. In the MMTV-PyMT mammary

carcinoma mouse model retinoic-acid-related orphan receptor

RORC1 was found to be essential for the differentiation of tumor

associated neutrophils and monocytes, and its ablation in the
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hematopoietic compartment inhibited tumor growth and

metastasis (107). Recent studies further demonstrated the

essential role of the fatty acid transport protein 2 (FATP2) in

tumor associated neutrophils across multiple murine cancer

models, including mice inoculated subcutaneously with EL4

(lymphoma), LLC (Lewis lung carcinoma), CT26 (colon

carcinoma), and TC-1 (lung epithelial cancer) cells (108).

FATP2 was shown to mediate arachidonic acid uptake and

facilitate prostaglandin E2 production, although its roles in

myelopoiesis were not fully explored. FATP2 pharmacological

inhibition impaired the suppressive activities of tumor

associated neutrophils and delayed tumor progression, both

alone and in synergy with other forms of immunotherapy

(108), suggesting novel avenues for cancer treatment.
Epigenetic reprogramming and trained
immunity in cancer myelopoiesis

Induction of emergency myelopoiesis in the context of

infectious diseases and some chronic inflammatory disorders is

characterized by long-term epigenetic reprogramming of HSPCs

that can result in altered immune responses to subsequent

challenges (109–112), and is collectively described as trained

immunity (113). Early studies in MMTV-neuOTI/OTII and other

mammary tumor models demonstrated alterations in the overall

levels of histone modifications in HSPCs, including H3K27me3

and H3K4me3 (22). Such changes were reproduced with bone

marrow exposure to tumor conditioned media, and correlated

with altered expression of genes encoding essential epigenetic

and transcriptional regulators, like Ezh2 and Hoxa9 (22).

Overall, this supports epigenetic reprogramming of HSPCs as

a possible contributing mechanism for hematopoietic and

immune dysfunction in cancer.

Recent studies provide further definitive demonstration that

trained immunity can be induced in cancer models, with both

protective and deleterious outcomes. Thus, pre-treatment with

fungal b-glucan, which is a prototypic inducer of trained

immunity, resulted in impaired growth of B16-F10 melanoma

and LLC lung adenocarcinoma tumors following subcutaneous

inoculation into mouse models (114). These effects were

independent of the adaptive immune system, required type-I

interferon signaling, and involved large-scale transcriptional and

epigenetic reprogramming of bone marrow granulopoiesis

(114). The protective trained immunity was transferred to

recipient mice with adoptive transfers of the trained

neutrophils, and with bone marrow transplantation from the

b-glucan treated donors, persisting for at least 6 weeks post-

transplantation (114). In a related study, b-glucan pre-treatment

was also shown to promote hematopoietic recovery following

myeloablative treatment, further supporting its potential

favourable effects in the context of cancer therapy (110). In

contrast, studies addressing the mechanisms of accelerated
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breast cancer progression following myocardial infarction (MI),

using either MMTV-PyMT transgenic mice or mice inoculated

orthotopically with a mammary cancer cell line E0771,

demonstrated an expansion of Ly6Chi monocytes in mouse

bone marrow, blood, and tumor tissues. Such Ly6Chi

monocytes had altered chromatin accessibility (ATAC-seq) at

the genes engaged in ER-stress response, UPR, and

inflammation (115), which are also implicated in the induction

of aberrant myelopoiesis in other cancer models (51, 101).

Depletion of the Ly6Chi cells abrogated the MI-induced

increase in breast cancer progression, supporting their

pathogenic activity (115). While the epigenetic analyses in this

study did not encompass HSPCs, mouse-to-mouse bone marrow

transplantation showed enhanced tumor growth in mice grafted

with bone marrow from MI-donors, supporting long-term

HSPC reprogramming and the induction of deleterious tumor-

promoting trained immunity in this model (115).

Other studies however argue against stable reprogramming

of immune function in cancer, and instead demonstrate its

highly dynamic regulation. For example, recent immune

profiling across multiple tissues in eight murine tumor models

demonstrated reversion of the major disease associated changes

in immune cell states with tumor resection or blockade of G-CSF

or IL-1 signaling (92). However, such dynamic regulation does

not rule out that cancer associated epigenetic changes may

persist in HSPCs and affect immune responses to subsequent

challenges. Systematic comparative analyses of HSPC

reprogramming and immune dysfunction across cancer

models and other established models of trained immunity in

infectious and chronic diseases may provide further insights in

this area and suggest new avenues for therapeutic intervention.
Cancer regulation of the hematopoietic
niche induces aberrant myelopoiesis

HSPC activities are tightly regulated by their niche (116);

and the aberrant myelopoiesis and hematopoietic dysfunction in

cancer may therefore also involve complex effects of the tumor

on the cellular components of the hematopoietic niche. For

example, in lung adenocarcinoma models in KP (KrasLSL-G12D/+

p53flox/flox) mice or mice injected intravenously with LLC or

KP1.9 tumor cells the induction of osteocalcin-expressing

osteoblasts promotes the development of SiglecFhigh

neutrophils, with distinct transcriptional profiles and cancer-

promoting properties (117). Increased trabecular bone density is

also reported in lung adenocarcinoma patients, and an

enrichment of SiglecFhigh neutrophil transcriptional signatures

in patient tumors is associated with deleterious outcomes,

indicating that similar mechanisms are relevant in human

(117). Furthermore, the protective effect of bisphosphonates,

such as zoledronic acid, against breast cancer onset and

recurrence are reported to be mediated via a reduction in
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marrow niche, with downstream effects on HSPCs and

myelopoiesis (118). Furthermore, melanoma derived exosomes

were reported to reprogram bone marrow vascular endothelial

progenitors to promote tumor metastasis (119, 120). Studies in

the B16-F10 melanoma bearing mice also showed that

fibroblastic reticular cells undergo proliferation, structural

remodelling, and large-scale transcriptional reprogramming in

the tumor draining relative to control lymph nodes (121), and

this is characterized by downregulation of cytokine and

chemokine gene expression and may contribute to cancer

immune evasion (121).
Cancer myelopoiesis and the ontogeny
of tumor associated macrophages

Tumor associated macrophages (TAMs) are heterogeneous

in their ontogeny, and include both monocyte derived

macrophages (MoD-TAMs) and the expanded populations of

tissue resident macrophages (Res-TAMs) (122, 123). In many

tissues such resident macrophages originate from embryonic

and fetal hematopoietic progenitors and self-renew locally and

independently of bone marrow hematopoiesis (124, 125). The

abundance of these developmentally distinct macrophage

subsets differs between tissues, with the age of the host, as well

as across cancer models. It is increasingly studied in murine

models using lineage tracing, parabiosis, and chimera systems

(122, 123), and also by analyzing for TAM depletion in mice

with the disruption of the CCL2/CCR2 chemokine axis that

plays a major role in monocyte recruitment into tissues (126).

Here we review the evidence for the importance of TAMs of both

monocyte derived (MoD-TAM) and resident macrophage (Res-

TAM) origins in different murine tumor models.

In the KPC mouse model of spontaneous pancreatic ductal

adenocarcinoma (KrasLSL-G12D p53flox/+ p48-CRE) distinct

TAMs originated from monocytes and from resident

macrophages of embryonic ontogeny, and of these MoD-

TAMs were reported to have stronger capacity for antigen

presentation, while Res-TAMs exhibited a pro-fibrotic

transcriptional signature (127). Similarly, in a murine lung

cancer model, induced with an intravenous injection of TC-1

lung epithelial cells transformed with the c-Ha-Ras and HPV16

E6 and E7 oncogenes, distinct Res-TAMs and MoD-TAMs were

observed with different abundance based on the location of the

tumor nodules and distance from the vasculature (128). Both

TAM subsets were sensi t ive to cyclophosphamide

chemotherapy, however only the MoD-TAMs rapidly

recovered in numbers and promoted phagocytic clearance of

cancer cells after the treatment (128). In contrast, in the ApcMin/+

murine model of spontaneous or DSS-induced colon adenoma

CCR2-independent Res-TAMs were shown to self-renew and

expand within the tumors independently of bone marrow
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hematopoiesis (129). Furthermore, in a mouse model of

metastatic ovarian cancer induced with an intraperitoneal

injection of ID8 tumor cells, Res-TAMs in the omentum with

embryonic ontogeny and a CD163+ Tim4+ cell surface marker

profi le were shown to promote metastat ic disease

progression (130).

TAM ontogeny is also widely studied in the MMTV-PyMT

mouse model that develops spontaneous mammary

tumors. MoD-TAMs were shown to be an important

immunosuppressive macrophage population particularly

within advanced tumors in this model, and their depletion

could enhance CD8 T cell infiltration and suppress tumor

growth (131). Further studies also characterized the

heterogeneity among Res-TAMs in this model in gene

expression, tissue localization, and functional properties. Such

heterogeneous Res-TAMs were suggested to arise from the

stromal and ductal populations of resident mammary

macrophages, and had distinct capacity for tumor cell

phagocytosis and CD8 T cell activation (132).

TAM ontogeny is also extensively studied across glioma

models. Lineage tracing studies in mouse glioma induced

through an orthotopic intracranial tumor cell injection

demonstrated the dominant role of monocytes as TAM

precursors (133–135). Such studies defined the distinct

transcriptional and epigenetic signatures of MoD-TAMs and

microglia derived Res-TAMs, and Itga4/Cd49d as a marker of

MoD-TAMs in glioma in both mouse and human (133).

Studies in xenograft models demonstrated that the microglia

derived Res-TAMs are the dominant effector cells that mediate

glioma cell phagocytosis in response to CD47-blockade

therapy, to extend mouse survival (136). Furthermore,

transcriptional signature of MoD-TAMs rather than

microglia-derived TAMs correlated with poor prognosis in

human glioma (137).

It is interesting to note that there is no strong correlation

between TAM ontogeny and their pro- versus anti-carcinogenic

functions across the different models and studies discussed

above (122, 123). We can therefore conclude that ontogeny is

only one factor accounting for TAM heterogeneity, and local

education within the tumor microenvironment plays a major

role in defining TAM functional properties. However, an in

depth discussion of TAM education within the tumor and the

epigenetic, metabolic and other mechanisms that reprogram

both infiltrating monocytes and resident macrophages with

cancer onset and progression are beyond the scope of the

current review, and have been reviewed elsewhere (138). It is

also important to note that TAM ontogeny is highly challenging

to study in human. With the growing use of transcriptional data

for TAM classification, commonalities are starting to emerge

between mouse and human (37, 38, 137), however it remains to

be established whether the developmental origins of human

TAMs can be inferred based on shared transcriptional

signatures with mouse studies.
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Erythropoiesis dysfunction
contributes to cancer
immunosuppression

While anemia has been recognized as a common feature of

advanced cancer for many decades (139–141), recent studies

shed new mechanistic insights into the cellular and molecular

dysregulation of erythropoiesis in cancer, and into its

unexpected roles as a mediator of cancer progression. Thus, in

mouse models inoculated subcutaneously with Lewis lung

carcinoma (LLC) or B16-F10 melanoma, disease progression

was linked to an accumulation of erythroid progenitor cells

(EPCs) in the mouse spleen (142). Unlike splenic EPCs observed

in extramedullary erythropoiesis of severe anemia, the splenic

EPCs of tumor bearing mice had strong immunosuppressive

properties, inhibiting proliferation and cytotoxic activity of CD8

T cells ex vivo, and accelerating melanoma progression in vivo.

Importantly, such aberrant EPCs capable of repressing CD8 T

cell proliferation were also observed in the blood of cancer

patients and their abundance correlated with both anemia and

immunosuppression (142).

Further work by the same team demonstrated a major

restructuring of the hierarchical organization of erythropoiesis

in patients with advanced cervical carcinoma and in mouse

models, including the MMTV-PyMT transgenic model of

spontaneous breast cancer and mice inoculated subcutaneously

with LLC lung carcinoma, B16-F10 melanoma, or MC38 colon

adenocarcinoma (143). Both patients and mouse models with

advanced cancer harboured myeloid cells that co-expressed

markers and transcriptional signatures of the erythroid cell

lineage (143). Furthermore, EPCs in these models, but not in

the corresponding healthy controls, had a significant potential

for myeloid differentiation, and this was further enhanced with

GM-CSF exposure or transplantation into tumor bearing mice.

The resulting erythroid differentiated myeloid cells (EDMCs)

had potent immunosuppressive activities even in comparison to

conventional myeloid cells (CD11b+Gr1+TER119-CD71-) from

the same model, suppressing CD8 T cell proliferation and IFNg
production in ex vivo assays. Furthermore, when administered to

mice EDMCs promoted melanoma metastasis and resistance to

immune checkpoint inhibitor (ICI) therapy. Importantly,

EDMC transcriptional signatures in human cancers also

correlated with CD8 T cell exhaustion, other markers of

cancer immune evasion, and with an impaired response to ICI

therapy (143).

A related population of splenic cancer promoting

erythroblast-like cells, known as Ter-cells, was characterized in

parallel studies in a mouse orthotopic hepatocellular carcinoma

(HCC) model, in mice inoculated subcutaneously with EG7 T

lymphoma or B16-F10 melanoma cells, as well as in a

diethylnitrosamine-induced primary HCC (144) and xenograft

HCC mouse models (144). These cells displayed Ter119+CD45-
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CD71+CD41+CD44+ cell surface markers and a transcriptional

profile resembling megakaryocyte-erythroid progenitors

(MEPs), with the co-expression of genes of erythroid and

megakaryocyte, but not myeloid lineages (145). The cells were

also characterized by their high expression of the neurotrophic

secreted mediator artemin. In the mouse models, Ter-cell

derived artemin promoted cancer progression, while artemin

knockout, pharmacological inactivation, or tumor-restricted

knockdown of its receptor GFRa3 delayed cancer progression

(145). Importantly, increase in serum artemin levels and elevated

tumor expression of GFRa3 were also observed in human HCC

patients and correlated with poor prognosis (145). The exact

developmental and functional relationships of EPCs, EDMCs,

and Ter-cells with each other (142, 143, 145), as well as with the

rare extramedullary and immunomodulatory subsets of

erythroid cells observed under healthy homeostatic

hematopoiesis in human and mouse (146–149) remain to be

addressed in future work.

The secreted mediators and signaling pathways driving such

cancer associated erythropoiesis dysfunction are not well known,

however a role for the platelet-derived growth factor family

member PDGF-BB in promoting extramedullary erythropoiesis

was previously proposed (150). In this study tumor specific

overexpression of PDGF-BB in the T241 fibrosarcoma and LLC

lung carcinoma cells subcutaneously inoculated into mouse

models was shown to induce erythropoietin production by

stromal cells, stimulating extramedullary erythropoiesis in

both spleen and liver, and promoting angiogenesis and tumor

growth (150).
Development of other immune
and hematopoietic cell lineages
in cancer

Comparatively less is known about the effects of cancer

associated hematopoietic dysfunction on the development of

other blood and immune cell lineages, but some recent highly

relevant studies, as well as discussion points are included here.

Thymic dysfunction, primary lymphocyte repertoire selection,

and cancer immunosurveillance by the adaptive immune system

are beyond our scope and are reviewed elsewhere (2, 12, 13).
Dendritic cells

Dendritic cells (DCs) are the major professional antigen

presenting cells, critical for the activation of naïve T cells and the

induction of adaptive immunity. DCs therefore play a key role in

antitumor immune response and in the response to cancer

immunotherapy (151, 152). Tumor microenvironment can
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however impair DC infiltration and activation, and induce

immunosuppressive DC states (153). At steady state DCs can

be broadly classified into the conventional (cDC) and

plasmacytoid (pDC) subsets, but under inflammatory

conditions also include a monocyte derived DC (MoDC)

subset. Many recent scRNA-seq studies provide us with a deep

understanding of the heterogeneity of DC states in human

cancer, and a meta-analysis of such data across human lung,

breast, liver, colorectal, and ovarian tumors has defined cDC1,

cDC2, DC3, pDC, and cDC2/MoDC cell subsets and their

transcriptional signatures (154). Of these, cDC1 cells in

particular are considered critical for the priming of CD8 T

cells and for effective induction of antitumor immunity (155).

Less is however known about how tumors affect systemic

DC development.

cDCs originate from the common myeloid (CMP) and the

downstream common DC (CDP) progenitors (156). They can

commit to the cDC1 or cDC2 fate in the bone marrow (157),

however exit bone marrow as pre-cDCs that retain proliferative

capacity and complete their maturation within tissues. cDCs

have a limited lifespan (10-30 days in mice) and are therefore

maintained through ongoing HSPC differentiation (158, 159).

Dysregulation in DC development has been reported in the

context of systemic inflammation, including infections and

sepsis (160, 161). This and the major dysfunction in

myelopoiesis across the many cancer models suggests that DC

development in cancer may be similarly affected. Indeed, a

depletion of cDC precursors, including CDPs and pre-DCs,

was observed in the bone marrow of patients with breast

cancer and pancreatic ductal adenocarcinoma (PDAC), and

correlated with a systemic reduction in cDC1 cells and a poor

response to therapy (93). A depletion of cDC precursors and

cDC1 cells in this study was also observed in mouse models,

including transgenic models of breast cancer (MMTV-PyMT

FvB/N) and PDAC (KrasLSL-G12D p53flox/+ p48-CRE), and in

mice with an orthotopic engraftment of syngeneic breast cancer

or PDAC cells. Myeloid progenitors in mice with such MMTV-

PyMT tumors were impaired in their capacity for cDC1

differentiation, and primed for granulocyte production. The

defect in cDC1 development was mediated by tumor-derived

G-CSF and correlated with impaired CD8 T cell mediated

antitumor immunity (93). Thus G-CSF blockade with a

neutralizing antibody could restore cDC1 numbers, and

synergize with Flt3L and immunotherapy to promote

an t i tumor immuni ty in th i s mouse mode l ( 93 ) .

Mechanistically, G-CSF was shown to downregulate the

expression of the IRF8 transcription factor in DC precursors

(93); and the low IRF8 expression in pre-DCs in cancer patients

correlated with poor prognosis, indicating the relevance of such

mechanisms in human (93).

In a related study in the KPC (KrasLSL-G12D p53LSL-R172H/+

Pdx1-CRE) mouse model of PDAC cancer a systemic decline in
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cDC1 cells with disease progression was also reported, however

here it was not associated with a significant depletion of cDC

precursors or abnormalities in cDC1 development in the bone

marrow. Instead cDC1 loss in this study was attributed to

increased cell apoptosis, and could be rescued with a blockade

of IL-6 (94). Nevertheless, treatment with Flt3L to stimulate DC

development had a favourable effect in a related KPC (KrasLSL-

G12D p53flox/+ p48-CRE) mouse model when applied at early

stages of tumorigenesis, and synergized with anti-CD40, STING-

agonist, and radiotherapy in the treatment of advanced tumors,

promoting the infiltration of cDCs and CD8 T cells and

antitumor immunity (162). Similarly, in mice bearing

subcutaneous B16 melanomas and in the transgenic Tyr :

CreER BrafCA PtenloxP Ctnnb1lox-ex3 mouse model where

melanoma is induced with a cutaneous application of 4-

hydroxytamoxifen, Flt3L treatment expanded pre-DCs and

DCs both in the bone marrow and systemically, and resulted

in enhanced antitumor immunity and delayed tumor growth in

synergy with anti-PD-L1 and poly(I:C) immunotherapy (163).

All this indicates stimulation of DC development as an approach

for cancer therapy.

Recent studies have applied cutting-edge cellular barcoding

and fate mapping approaches in mouse models to study the so-

called “emergency DCpoiesis” induced either with Flt3L-

treatment (164) or influenza A viral infection (165). Thus

HSPC barcoding demonstrated a clonal expansion of cDC1-

primed HSPCs and an enhanced cDC1 output with Flt3L

treatment, and no associated defects in the production of other

blood and immune cell lineages (164). Furthermore, in situ cDC

fate mapping using Clec9aCre Rosa26Confetti mice demonstrated

an increased turnover of cDC clones and influx of pre-cDCs

from the bone marrow with influenza A infection (165).

Applications of similar methods in murine cancer models

could be highly revealing to further address the effects of

cancer disease and therapy on DC development.
Platelets

Platelets are widely recognized as important mediators of

immune and inflammatory responses (166, 167). In the

context of cancer, platelets engage with both tumor cells and

immune cells through the formation of tumor cell induced

platelet aggregates (TCIPA), platelet-derived microvesicles

(PMVs) (168), and secreted mediators. Overall, such

interactions promote cancer progression and metastasis

(169, 170). Platelet production holds a unique place in the

hierarchical organization of hematopoiesis, due to their

steady-state output from megakaryocyte-biased HSCs,

independently of bi-potent megakaryocyte-erythroid

progenitors (MEP) or other hematopoietic lineages
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(171, 172). Furthermore, under homeostatic conditions

efficient platelet production can take place outside of the

bone marrow, as for example in healthy lungs (173, 174).

How cancer associated hematopoietic dysfunction affects

platelet differentiation pathways, and the impact of such

mechanisms on antitumor immunity and cancer progression

remain to be addressed in future work.
Cross-talk of immunity,
hematopoiesis, and other
physiological systems in cancer

Greater understanding of the systemic interactions between

tumors, immunity, hematopoiesis, and other physiological systems

promises further advances in the understanding of cancer disease

mechanisms. For example, microbiota, obesity, and cardiovascular

disease can all have complex effects on antitumor immunity (175–

177) and also on hematopoiesis (178–180) across various studies.

The link between increased risk of breast cancer progression and

obesity or myocardial infarction is known to be mediated by pro-

tumorigenic myeloid cell populations, which implicates

myelopoiesis dysfunction as an important component of such

mechanisms (115, 181, 182). Further dissection of the systemic

crosstalk between antitumor immunity and hematopoiesis in cancer

models may provide deeper understanding the mechanisms

governing disease outcomes and suggest new strategies for

therapeutic intervention.

Hematopoietic dysfunction in cancer patients is commonly

exacerbated by the damage to the hematopoietic system from

chemotherapy and radiotherapy regimens (10). These have

complex effects on anti tumor immunity , inducing

immunogenic cancer cell death to prime the immune response

against tumor antigens (183–185), while also disrupting the

production of both immunogenic and immunosuppressive

leukocyte subsets (186, 187). Such regimens also increase the

incidence of clonal hematopoiesis among cancer patients and

predispose to therapy-related myeloid neoplasms (11, 188, 189).

The growing understanding of the interplay between the

physiology of the hematopoietic process, the immune system,

and the tumor promises the development of optimized

therapeutic regimens to maximize cytotoxic activity against the

tumor, while also preserving hematopoietic function and

boosting antitumor immunity.
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