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Human noroviruses are the major viral cause of acute gastroenteritis around

the world. Although norovirus symptoms are in most cases mild and self-

limited, severe and prolonged symptoms can occur in the elderly and in

immunocompromised individuals. Thus, there is a great need for the

development of specific therapeutics that can help mitigate infection. In this

study, we sought to characterize a panel of human monoclonal antibodies

(mAbs; NORO-123, -115, -273A, -263, -315B, and -250B) that showed

carbohydrate blocking activity against the current pandemic variant, GII.4

Sydney 2012. All antibodies tested showed potent neutralization against GII.4

Sydney virus in human intestinal enteroid culture. While all mAbs recognized

only GII.4 viruses, they exhibited differential binding patterns against a panel of

virus-like particles (VLPs) representing major and minor GII.4 variants spanning

twenty-five years. Using mutant VLPs, we mapped five of the mAbs to variable

antigenic sites A (NORO-123, -263, -315B, and -250B) or C (NORO-115) on the

major capsid protein. Those mapping to the antigenic site A showed blocking

activity against multiple variants dating back to 1987, with one mAb (NORO-

123) showing reactivity to all variants tested. NORO-115, which maps to

antigenic site C, showed reactivity against multiple variants due to the low

susceptibility for mutations presented by naturally-occurring variants at the

proposed binding site. Notably, we show that cross-blocking and neutralizing

antibodies can be elicited against variable antigenic sites. These data provide

new insights into norovirus immunity and suggest potential for the

development of cross-protective vaccines and therapeutics.
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Introduction

Noroviruses are the major cause of acute gastroenteritis in all

age-groups. In healthy individuals, norovirus disease symptoms

(diarrhea, vomiting, cramps, and abdominal pain) are self-limited

to 2-3 days and vary from mild to moderate in severity. In

contrast, norovirus symptoms can be prolonged and life-

threatening in immunocompromised individuals, the elderly,

and malnourished children (1). Notably, immunocompromised

individuals can be chronically infected with norovirus for years,

causing complications for the clinical management of this

susceptible population (1).

Despite the great disease burden, vaccines and specific

therapeutics are not yet available for noroviruses. One of the

obstacles for the development of therapeutics or preventive

vaccines is the extensive genetic and antigenic diversity presented

by norovirus strains (2, 3). Over 30 virus genotypes can infect

humans, and while predominance of each genotype can vary within

different spatiotemporal settings, GII.4 is the predominant genotype

infecting humans for over 2-3 decades. The predominance of GII.4

noroviruses has been linked to the chronological emergence of

variants. Thus, since the 1980’s, six major GII.4 virus variants have

emerged and caused large outbreaks worldwide: Grimsby 1995,

Farmington Hills 2002, Hunter 2004, Den Haag 2006b, New

Orleans 2009, and Sydney 2012. Other variants also have been

reported (Camberwell 1987, Sakai 2003, Osaka 2007, Yerseke

2006a, and Apeldoorn 2007), but the reason for their limited

dispersion and incidence in gastroenteritis is not well understood

(4). Most of the differences among these variants map to five

variable antigenic sites (designated A, C, D, E, and G) located on the

outermost region of the viral capsid protein VP1 (5, 6). Antigenic

site A consists of residues 294-298, 368, 372, and 373; site C consists

of residues 339-341 and 375-378; site D consists of residues 393-

397; site E consists of residues 407 and 411-414; and site G consists

of residues 352, 355-357, 359, and 364 (7). These antigenic sites

were identified using bioinformatics and were experimentally

confirmed with multiple monoclonal antibodies (5, 6, 8–13).

Most residues from these antigenic sites map on loops and play a

minimal role in the structural integrity of the capsid protein, which

explains their flexibility to acquire mutations (14). Recent studies

that examined a large collection of viruses showed major shifts in

the antigenic properties throughout the evolution of the GII.4

variants. These antigenic differences were associated with amino

acid changes occurring in synchrony in multiple antigenic sites

during the emergence of these variants (5, 15).

A major goal of current GII.4 norovirus research is the

identification and development of protective antibodies that target

conserved regions of the VP1 protein. VP1 is composed of two

structural domains, the shell and the protruding (P) domains (16).

The shell is a highly conserved domain that forms the scaffold of the

virus particle, while the P domain, which can be further divided into

the P1 and P2 subdomains, is highly variable and contains most

determinants of virus:host interaction during the early stages of
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infection. One of those determinants is the binding to histo-blood

group antigen (HGBA) carbohydrates, which are molecules that

facilitate norovirus infection (17–19). Unfortunately, only antibodies

targeting the P domain seem to be involved in protection as

measured by carbohydrate blocking assay or neutralization activity

in the enteroid cell culture system (20–23). Multiple mouse and

human cross-reactive monoclonal antibodies (mAbs) have been

reported (24), but only a fraction of them have been shown to

have potential neutralizing activity (25–27). One human neutralizing

antibody cross-reacts with multiple GII.4 viruses, and this antibody

maps to a conserved region of the P domain (25). Moreover, a

human antibody that binds to different norovirus genotypes has

shown neutralizing activity, providing hope for the development of

cross-protective norovirus vaccines (26).

In this study, we mapped the antigen binding site offive human

mAbs developed from individuals that presented with symptomatic

norovirus gastroenteritis in 2013 (27). Notably, while the majority

of these mAbs mapped to highly variable antigenic sites, they

reacted with multiple GII.4 variants that emerged over 20 years

prior to the infecting strain. These data provide new insights on the

immune response during natural infection with human norovirus

that could facilitate the development of efficient therapeutic

antibodies and cross-protective vaccines.
Materials and methods

VP1 sequence analysis

The VP1-encoding sequences of GII.4 viruses were collected

from GenBank and aligned with ClustalW as implemented in

MEGA7 (28). The structural model of the GII.4 norovirus P

domain dimer (Protein Data Bank accession number 4op7) was

rendered using UCSF Chimera (29).
Wild-type and mutant VLPs production

The VLPs of GII.4 viruses (Table 1) were produced using Bac-

to-Bac Baculovirus Expression System (Invitrogen) as described

previously (15). Briefly, the VP1-encoding sequences were

synthesized and cloned into pFastBac1 vectors (GenScript) and

transformed into MAX Efficiency DH10Bac cells (Invitrogen). The

isolated bacmid was transfected into Sf9 cells to produce VP1

proteins that formed VLPs. The produced VLPs were purified using

sucrose cushions and cesium chloride gradients, followed by dialysis

with 1× PBS (pH 7.4, Gibco). Mutant VLPs were produced by

synthesizing the VP1-encoding sequences with antigenic sites

transplanted from different viruses or mutated to alanine (13).

Similarly, VLPs from other genotypes, including GI.1, GII.1, GII.2,

GII.6, GII.12, and GII.17 (Table 1), were produced using publicly

available VP1-encoding sequences (23). All VLPs were checked for

integrity using transmission electron microscopy.
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Human mAb production

Human mAbs were isolated previously from healthy adults

who were naturally infected with a GII.4 Sydney virus in 2013

using an established human B cell hybridoma technique (27).

Here, cloned hybridoma cell lines that had been cryopreserved

were thawed and placed into culture and expanded gradually

from 48-well plates to 12-well plates, T-25, T-75, and eventually

to multiple T-225 flasks for each cell line. Following 4 weeks of

incubation at 37°C, supernatant from the T-225 flasks was

harvested and filtered through a 0.4-µm filter. The supernatant

was purified using column chromatography, specifically HiTrap

KappaSelect and Lambda FabSelect affinity resins (GE

Healthcare Life Sciences).
mAb-binding ELISA

To profile the binding pattern of human mAbs against the

VLPs, ELISAs with wild-type and mutant VLPs were performed

as described previously (5). Briefly, 96-well “U” bottom plates

were coated with 0.5 mg/mL of VLPs in 1× PBS (pH 7.4, Gibco)

overnight at 4°C and blocked for one hour at room temperature

with 5% blocking buffer (Bio-Rad). Human mAbs (2 mg/mL each

or serial dilutions starting at 2 mg/mL) were plated in duplicate

and incubated with VLPs for two hours at room temperature.

Plates were washed three times with 1× PBS (pH 7.4) containing
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0.1% Tween 20. Binding of mAbs to VLPs was visualized using

1:2,000 anti-human IgG, IgA, IgM conjugated with horseradish

peroxidase (HRP) and ABTS 1-Component Microwell

Peroxidase Substrate (SeraCare) and was quantified as an

optical density at 405 nm (OD 405 nm) using a SPECTROstar

Nano plate reader (BMG LABTECH). The 50% effective

concentration (EC50) values, or concentrations at which the

OD reading was 50% of the OD value at antibody saturation

per plate, were calculated using GraphPad Prism v9

(California, USA).
HBGA-blocking assay

Human saliva contains epithelial cells that expresses HBGA

carbohydrates. Thus, HBGA-binding and -blocking assays were

performed usingHBGA carbohydrates derived from human saliva

as described previously (23). Human saliva was collected from a

healthy adult volunteer, which showed positive signals against

anti-Lewis b, Lewis y, Lewis a (Millipore Sigma), H type-1, and H

type-2 antibodies (Invitrogen) in ELISA. The use of human saliva

was approved by the Institutional Review Board (protocol number

CBER IRB 16-069B). The saliva sample was boiled at 100°C for 10

min immediately after the collection and centrifuged at 13,000

rpm for 5 min. Saliva supernatant (1:200 in 1× PBS, pH 7.4) was

then coated on 96-well “U” bottom plates overnight at 4 °C and

blocked for 1 hour at room temperature with 5% blocking buffer
TABLE 1 Information on GII.4 and non-GII.4 viruses and the associated GenBank accession numbers used to produce the VLPs that are
referenced in this study.

Genotype or GII.4 variant Virus Year Accession Number

GI.1 8FIIa 1968 JX023285

GII.1 7EK-Hawaii 1971 JX289822

GII.2 HenrytonSP17 1971 MF405169

GII.6 BethesdaD1 2012 KY424341

GII.12 HS210 2010 HQ449728

GII.17 Gaithersburg 2014 KR083017

Sydney (SY) 2012 RockvilleD1 2012 KY424328

New Orleans (NO) 2009 Virginia 2010 KX353958

Ehime2 2009 AB933752

Apeldoorn (AP) 2007 Iwate4 2008 AB541274

Osaka (OS) 2007 Osaka 2007 AB434770

Den Haag (DH) 2006b Den Haag89 2006 EF126965

Yerseke (YE) 2006a Yerseke38 2006 EF126963

Hunter (HT) 2004 Nijmegen083 2004 AB303941

Sakai (SA) 2003 Sakai 2005 AB220922

Farmington Hills (FH) 2002 MD2004-3 2004 DQ658413

Grimsby (GR) 1995 Wild type: Grimsby
Swapped mutant: Arizona

1995
1996

AJ004864
AF080556

Camberwell (CA) 1987 MD145-12 1987 AY032605
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(Bio-Rad). Two-fold serial dilution of human mAbs (50 mg/mL or

12.5 mg/mL) was plated in duplicate and incubated with VLPs at

0.5 mg/mL for 1 hour at 37°C. Plates were washed four times with

1× PBS (pH 7.4) containing 0.1% Tween 20. Pooled sera from

guinea pigs immunized with GII.4 VLPs were used as primary

detection antibodies against bound VLPs. Binding (blocking of

binding) of VLPs on HBGA carbohydrates was visualized using

goat anti-guinea pig IgG-HRP and ABTS (SeraCare). The OD

values (OD 405 nm) were quantified and normalized with values

from negative and positive controls to calculate the EC50, or the

concentrations at which the OD reading was 50% of the positive

control. EC50 values were calculated using GraphPad Prism v9

(California, USA).
Neutralization assay using human
intestinal enteroids system

Human jejunal enteroids (J2) were kindly provided by Dr.

Mary Estes (Baylor College of Medicine, Texas). A human

intestinal enteroid neutralization assay was performed as

previously described (23). Briefly, human intestinal enteroids

were maintained as three-dimensional cultures in Human

IntestiCult Organoid Growth Medium (Components A and B;

Stem Cell Technologies). For neutralization experiments,

human intestinal enteroids were plated as monolayers on 96-

well plates. Monolayers were differentiated for 6 to 7 days until

confluent in 1:1 of Component A and CMGF- medium

(Advanced Dulbecco Modified Eagle Medium (DMEM/F12)

enriched with 1% GlutaMAX, 1% 1M HEPES, and 1%

penicillin/streptomycin, Thermo Fisher Scientific). The

monolayers were incubated in this differentiation medium +

0.5 mM of glycochenodeoxycholic acid (GCDCA), a glycine-

conjugated form of the primary bile acid chenodeoxycholic

acid, for 2 to 4 days prior to infection/neutralization. A Sydney

2012 variant virus, GII.4 011617/USA/2017 (GenBank

Accession Number: MN782359), was filtered from stool

suspensions and was used for all neutralization experiments

(23). The use of human stool was approved by the Institutional

Review Board (protocol number CBER IRB 16-069B). For

neutralization, the virus (with an input titer of approximately

156 genome copies/µL) was incubated with serial dilutions of

human mAbs for 1 hour. Two independent experiments were

performed. For the first experiment, the initial starting mAbs

concentration was 10 mg/ml. The second experiment was

performed with either 10 mg/ml or 0.1 mg/ml, depending on

the potency of the mAb as determined by the first experiment.

Human intestinal enteroids were inoculated with 100 µL of

virus or virus-mAb mixes (+ 0.5 mMGCDCA) and incubated at

37°C to allow for virus adsorption. Following washes, the

monolayers were overlaid with fresh differentiation medium

(+ 0.5 mM GCDCA) and incubated at 37°C for 3 days. At 1
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hour post-inoculation (HPI) or 3 days post-infection (DPI), the

cells were thawed and frozen three times. Viral RNA was

extracted from whole-cell content using the MagMAX-96

Viral RNA Isolation Kit (Applied Biosystem). Quantitative

RT-PCR was performed as described previously with a full-

length GII.4 RNA transcript as the standard curve (23, 30). The

results were analyzed with CFXMaestro software (Bio-Rad) and

visualized in GraphPad Prism v9.
Results

Human mAbs isolated from individuals
infected with GII.4 Sydney variant
specifically block and neutralize
GII.4 norovirus

A panel of twenty-five IgG and IgA mAbs was isolated from

humans naturally infected with a GII.4 Sydney variant. The

majority of these mAbs exhibited carbohydrate blockade activity

and several neutralized viruses in human intestinal enteroid

cultures (27). Based on competition-binding analyses, these

antibodies showed three binding patterns on the VP1 protein.

We hypothesized here that antibodies from each of the

competition groups would map to different antigenic sites

(A, C, D, E, or G) on the VP1. Thus, we sought to

characterize a subset of P-domain-binding IgG (NORO-123,

-115, -263, -315B, and -250B) and IgA (NORO-273A) mAbs

that showed different binding profiles (27).

All six mAbs blocked the HBGA binding of GII.4 Sydney

2012 virus-like particles (VLPs) based on the RockvilleD1/2012

virus (Figure 1A), with half-maximal effective concentration

(EC50) blockade values ranging from 0.8 to 7.4 mg/mL. To

determine the neutralizing capacity of the mAbs, we

inoculated monolayers of human intestinal enteroid cells with

GII.4/011617, a Sydney 2012 virus detected in 2017, in the

presence or absence of different concentrations of mAbs. The

GII.4/011617 virus differs from RockvilleD1/2012 by only three

amino acid residues on VP1 (S6N, P174S, and N285T), with

none of them in known antigenic sites. Like the results from the

blockade assay, all six mAbs neutralized the GII.4 Sydney 2012

virus (Figure 1B), reinforcing the concept that carbohydrate

blocking activity correlates with viral neutralization (13, 23, 31).

Although GII.4 viruses are the most common cause of

norovirus outbreaks worldwide, humans are often exposed to

viruses from multiple genotypes throughout their lifetimes (32–

36). As these mAbs were isolated from immunocompetent

adults, the humoral response may have been influenced by

previous norovirus infections. A binding assay tested against

representative VLPs from prototype (GI.1, GII.1) and prevalent

genotypes (GII.2, GII.6, GII.12, and GII.17; Figure 1C) showed

that all mAbs bound exclusively to GII.4 VLPs.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1040836
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ford-Siltz et al. 10.3389/fimmu.2022.1040836
B

C

A

FIGURE 1

Human mAbs isolated from individuals infected with a GII.4 Sydney 2012 variant exhibit blocking and neutralization against GII.4 Sydney 2012,
but not against non-GII.4 genotypes. (A) Carbohydrate blocking of human mAbs against a GII.4 Sydney 2012 variant virus (RockvilleD1/2012).
Blocking of serial dilutions of mAbs (starting at 50 mg/mL or 12.5 mg/mL) was determined by comparing the signal to that of the positive control,
binding of VLPs in the absence of mAbs. (B) Neutralization of a GII.4 Sydney 2012 virus (strain 011617) with different concentrations of human
mAbs. The dashed line represents 5 genome copies/µL, which is the copy number per µL for which the limit of detection is 50% (LOD50) or the
“neutralization threshold”, which was defined as the average of genome copies/µL after 1 hour post-inoculation (HPI) such that samples
presenting values below the line were unable to replicate and were therefore neutralized. All virus inoculations were performed in the presence
of 0.5 mM glycochenodeoxycholic acid (GCDCA), a glycine-conjugated form of the primary bile acid chenodeoxycholic acid. The graph
represents the average values of two independent experiments. The error bars represent the geometric standard deviation of the mean.
(C) Heat map of the binding of mAbs (at 2 mg/mL) to VLPs of selected genotypes. The value in each cell is the average of the optical density at
405 nm (OD 405 nm) in duplicate wells.
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Human mAbs present blocking activity
against multiple GII.4 variants
spanning decades

Similar to influenza viruses, new variants of GII.4 norovirus

emerge periodically to predominate in the population (4). To

determine the cross-reactivity within GII.4, we tested reactivity

against a panel of GII.4 VLPs representing major (denoted with

an asterisk) and minor pandemic variants reported since the

1980s: Camberwell (CA) 1987, Grimsby (GR) 1995 (*),

Farmington Hills (FH) 2002 (*), Sakai (SA) 2003, Hunter

(HT) 2004 (*), Yerseke (YE) 2006a, Den Haag (DH) 2006b (*),

Osaka (OS) 2007, Apeldoorn (AP) 2007, New Orleans (NO)

2009 (*), and Sydney (SY) 2012 (*). We first compared the

variant binding profile of NORO-273A IgA and the IgG isotype.

The variant binding profiles were identical between the IgG and

IgA isotypes (S1 Figure). Thus, we used the IgG isotype for

consistency with the rest of the experiments. All mAbs exhibited

various binding patterns with the panel of VLPs (Figure 2A),

with NORO-123 showing reactivity with all GII.4 variants tested.

Notably, the ability to block HBGA carbohydrate interaction

correlated with the binding profiles (Figure 2B; S2 Figure).

Despite being isolated from individuals infected with a GII.4

Sydney variant, all mAbs except NORO-115 blocked GII.4

Camberwell 1987 and GII.4 Grimsby 1995 VLPs. Interestingly,

NORO-123 blocked all variants tested, with EC50 values ranging

from 0.11 to 4.2 mg/ml. NORO-263 and -250B presented similar

binding and blocking profiles, and the other antibodies showed

unique reactivity patterns against the archival and contemporary

variants. The majority of antibodies that presented strong

binding (EC50 values <1 mg/ml) against the different variants

also presented blocking activity against those variants. NORO-

250B presented blocking activity against OS 2007 and AP 2007,

but binding to these VLPs required higher concentrations (EC50

values of 3.8 and 2.8 mg/ml, respectively; S3 Figure). Together,

these data suggest that these mAbs are broadly blocking, and

most likely neutralizing, against GII.4 variants spanning decades.
Cross-reactive mAbs map to variable
antigenic sites on norovirus VP1

The GII.4 norovirus variants are mainly characterized by

changes on the major antigenic sites (A, C, D, E, and G) of the

VP1 protein (5, 15). Thus, these antigenic sites are thought to be

major targets of the humoral immune response upon infection.

The majority (57%) of a panel of mouse mAbs isolated from

mice immunized with GII.4 Sydney variant map to one of these

variable antigenic sites, with antigenic sites A and G exhibiting

the strongest immunodominance (5, 13). To map the binding

sites of the human mAbs, we used a panel of mutant VLPs with

swapped residues from each of the antigenic sites (5, 13). For

example, the Farmington Hills (FH) 2002: A12 VLP consists of
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the FH backbone with all residues from antigenic site A from the

Sydney (SY) 2012 variant, and vice versa for SY 2012: A02.

Because NORO-123, -115, and -273A bind to both Farmington

Hills variant (FH 2002) and Sydney variant (SY 2012) VLPs, we

could not determine the binding sites for these antibodies using

this panel (S4 Figure). However, as NORO-263, -315B, and

-250B do not bind to FH 2002 VLPs (Figure 2A), we showed that

swapping the antigenic site A from Farmington Hills 2002 to the

Sydney 2012 backbone results in the loss of binding of these

three mAbs (Figure 3A, SY 2012: A02 VLPs). Similarly, addition

of the Sydney 2012 antigenic site A to the Farmington Hills 2002

backbone rescues the binding (Figure 3A, FH 2002: A12 VLPs),

confirming that NORO-263, -315B, and -250B all bind to

antigenic site A. As NORO-115 does not bind to the GII.4

Grimsby 1995 variant (Figure 2A), we performed a binding assay

using Grimsby VLPs (GR 1995) with swapped antigenic sites

from the Sydney 2012 variant. Interestingly, Grimsby 1995 VLPs

with the antigenic site C from the Sydney 2012 variant rescued

binding almost to the level seen with SY 2012 VLPs (Figure 3B).

As previously described, NORO-123 and -273A bind to both

Grimsby 1995 and Farmington Hills 2002 variants (Figure 2A);

thus, we were unable to determine their binding sites using the

swapped mutant VLPs. As an alternative, we performed a

binding assay using Sydney 2012 VLPs with all residues on

antigenic sites A or G mutated to alanine (12DA and 12DG,
respectively) (13). Although NORO-273A bound to all mutant

VLPs, the deletion of antigenic site A surprisingly abrogated the

binding of the cross-reactive NORO-123 (Figure 3C).

As antigenic site A is the most variable site and plays a

differential role in the antigenic diversification of GII.4 variants (5,

6, 9, 11), we sought to determine what residues play amajor role in

the binding from three mAbs (NORO-263, -315B, and 250B)

mapping to this site. Due to the extensive cross-reactivity of

NORO-123, we were unable to further map this antibody. Thus,

we divided the antigenic site into three regions or motifs:

designated A(I), A(II), or A(III), consisting of residues 294 and

295, 296-298 and 368, or 372 and 373, respectively (Figure 4A).

Reactivity of the mAbs against Sydney 2012 mutants for the

residues forming those three motifs showed that A(I) and A(II)

were important for the binding of NORO-263 and -315B, with the

loss of binding against 2012:A(I)02 and 2012:A(II)02 VLPs, while A

(II) was the sole binding site of NORO-250B (Figure 4B). To

determine the residues in antigenic site C that are important for

NORO-115 binding, we tested reactivity against two FH 2002

mutants: FH 2002: E376Q and FH 2002: G340A/E376Q

(Figure 4C) (11). NORO-115 showed reduced binding against

the mutant VLPs, with a slightly greater loss of binding with the

double mutant (Figure 4D). Thus, although residue 376 plays a

major role in the NORO-115 binding site, other residues, such as

340, should not be ruled out. The sequence alignment of antigenic

site C suggests a role for residues 340 and 341 (Figure 4E, S5

Figure). Variability on site 340 explains the lack of reactivity of this

mAb against Hunter 2004 VLPs and the decrease in reactivity
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A

FIGURE 2

Human mAbs present varying binding and blocking profiles against multiple GII.4 variants spanning over three decades. (A) Heat map of the binding
of mAbs to VLPs representing major and minor GII.4 variants. Each cell shows the average of the EC50 values calculated as the half-maximal
effective concentration that results in 50% binding to VLPs in duplicate wells, where 100% binding was set as the maximum average OD 405 nm
value calculated from each plate at or near antibody saturation. Major pandemic variants are labeled with an asterisk. (B) Heat map of the
carbohydrate blocking of human mAbs against VLPs representing major and minor GII.4 variants. Blocking of serial dilutions of mAbs was compared
to the signal of the positive control, binding of VLPs in the absence of mAbs. Each cell shows the average of the EC50 values calculated as the half-
maximal effective concentration that results in 50% blocking of VLPs in duplicate wells. Major pandemic variants are labeled with an asterisk.
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A

FIGURE 3

Human mAbs NORO-123, -263, -315B, and -250B bind to antigenic site A and NORO-115 binds to antigenic site C on the major capsid protein.
(A) Binding of mAbs NORO-263, -315B, and -250B to wild-type (wt) VLPs from Farmington Hills (FH 2002) and Sydney (SY 2012) variants, or to
mutant VLPs with swapped antigenic sites A, C, D, E, and G. (B) Binding of NORO-115 to wt VLPs from Grimsby (GR 1995) and SY 2012 variants,
or to mutant VLPs with antigenic sites A, C, D, E, and G derived from the SY 2012 variant. (C) Binding of NORO-123 to SY 2012 VLPs presenting
depleted antigenic sites A or G. Values represent the average binding at 2 mg/mL of each mAb. Each bar represents an average of duplicate
wells. The dashed line represents the cut-off value (OD 405 nm = 0.2). The error bars represent the standard deviation of the mean.
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against Yerseke 2006a VLPs, while an asparagine on residue 341

may hinder the binding to New Orleans 2009 VLPs. Indeed,

binding of NORO-115 is restored with a New Orleans 2009 virus,

Ehime2/2009 (15), that does not present the N341 mutation (S6

Figure). We also examined the antigenic site A residues to further

elucidate important residues for antibodies targeting this region

(Figure 4E; S5 Figure). Each motif of antigenic site A presented at
Frontiers in Immunology 09
least one highly variable residue: 294 [A(I)], 298 and 368 [A(II)],

or 372 [A(III)]. Each motif showed ≥ 4 mutations, explaining the

different binding profiles observed for NORO-263, -315B, and

-250B (Figure 2). Together, the reactivity patterns of mAbs against

multiple variants reveal a complex relationship between antibody

binding and the mutational profile of the residues forming the

antigenic sites.
B

C D

E

A

FIGURE 4

NORO-263, -315B, and -250B bind to motifs A(I) and/or A(II), while residues 376 and 340 contribute to the binding of NORO-115 to antigenic
site C. (A) Structure of the P domain dimer (top view) with motifs A(I), A(II), and A(III) highlighted in red, pink, and maroon, respectively. The
HBGA molecule is represented in dark grey. (B) Binding of mAbs NORO-263, -315B, and -250B to wt VLPs from Farmington Hills (FH 2002) and
Sydney (SY 2012) variants, or to mutant VLPs with swapped motifs A(I), A(II), or A(III). Values represent the average binding at 2 mg/mL of each
mAb. Each bar represents an average of duplicate wells. The dashed line represents the cut-off value (OD 405 nm = 0.2). The error bars
represent the standard deviation of the mean. (C) Structure of the P domain dimer (top view) with residues 376 and 340 from antigenic site C
(yellow) highlighted in gold. An HBGA molecule is represented in dark grey. (D) Binding of mAb NORO-115 to wt VLPs from Farmington Hills
(FH), Camberwell (CA) variants, or to mutant VLPs presenting the backbone of FH variant with residues exchanged with the CA variant (FH 2002:
E376Q and FH 2002: G340A/E376Q). The error bars represent the standard deviation of the mean. (E) Sequence alignment of antigenic sites A,
C, D, E, and G from selected GII.4 viruses. CA, Camberwell; GR, Grimsby; FH, Farmington Hills; SA, Sakai; HT, Hunter; YE, Yerseke; DH, Den
Haag; OS, Osaka; AP, Apeldoorn; NO, New Orleans; SY, Sydney.
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Discussion

The humoral immune response, in particular the production

of blocking and neutralizing antibodies, is thought to play a

major role in both norovirus clearance and protection (7, 37, 38).

Thus, a better understanding of the mechanisms governing host

antibody responses to fight the diversity presented by norovirus

is necessary to inform the development of therapeutics and the

design of new vaccine candidates. In this study, we characterized

a panel of human mAbs that were isolated from individuals

naturally infected with a GII.4 Sydney virus in 2013. All these

mAbs are potentially protective, as they show strong

carbohydrate blocking activity against multiple GII.4 variants

and neutralizing activity as measured by the human enteroid

in vitro culture system for noroviruses. Notably, the mAbs

neutralized a GII.4 Sydney virus that was detected five years

after predominance of this variant and that contains three amino

acid mutations in the major capsid protein, as compared to the

prototype Sydney 2012 virus. Although changes could result in

antigenic differences, intra-variant changes seem to have a

minimal effect on the antigenic characteristics of GII.4

viruses (15).

All six mAbs were specific to GII.4 viruses and exhibited

carbohydrate blockade against multiple GII.4 viruses

representing the major and minor pandemic variants that have

emerged since the mid-1980’s. Despite mapping to the highly

variable antigenic site A, mAb NORO-123 bound to all GII.4

variants tested, including Camberwell 1987. This mAb also

exhibited strong carbohydrate blocking activity against all

variants. Interestingly, while the variants tested showed up to

7 amino acid differences on this antigenic site (Figure 4), it took

mutations in all 8 residues (12DA VLPs) to abolish binding from

this antibody, showing that this antibody can accommodate

multiple mutations at this site. Structural analyses will confirm

whether NORO-123 binds directly to or indirectly interacts with

antigenic site A. Regardless, these properties make NORO-123 a

good candidate for a potential therapeutic molecule, and further

research is warranted for this mAb.

The extensive cross-reactivity of the mAbs described here

contrasts with our prior data that suggested little-to-no cross-

blockade of contemporary versus historical variants that

emerged prior to 2006 (15). However, the development of

cross-reactive antibodies might be influenced by the nature

(e.g., immunization versus infection) and the frequency

of exposure to the antigen. Thus, the mAbs described

here were developed from adult individuals who likely had

a history of previous norovirus infections that guided

their immune response towards the production of cross-

reactive antibodies.

One major difference between the cross-reactive antibodies

described here and those previously described is their binding site

on the VP1 protein.While A1431 andNORO-320 bind to a highly

conserved region at the P1/P2 subdomain interface (25, 26), the
Frontiers in Immunology 10
mAbs described in this study mapped to antigenic sites A

(NORO-123, -263, -315B, -250B) and C (NORO-115). These

antigenic sites are highly variable, and mutational patterns on

these sites are correlated with the emergence of new GII.4 variants

(5, 9, 39). In addition, antigenic site A is near the HBGA binding

site (7, 10, 40), suggesting that antibodies that bind this region

prevent the binding of the viral particle to the HBGA attachment

factors. Using sequence analyses and a panel of mutant VLPs with

swapped residues within antigenic site A, we further narrowed

down the residues involved in the binding of NORO-263, -315B,

and -250B. Interestingly, all three antibodies had differing binding

patterns within antigenic site A. We have shown previously that

murine mAbs that bind to A(I) or A(II) potently neutralize a GII.4

Sydney virus, while a murine mAb that binds to A(III) only

neutralized at a high concentration (13), suggesting that motifs A

(I) and A(II) are major targets of neutralizing antibodies. Our data

supports the finding that certain “anchor” residues within

antigenic site A are important for the binding of neutralizing

antibodies (25, 41). A previous study detected a human mAb that

mapped to antigenic site D and showed partial cross-reactivity

against contemporary GII.4 variants (Yerseke 2006a, DenHaag

2006b, and New Orleans 2009) and the Hunter 2004 variant,

showing that multiple variable antigenic sites could elicit cross-

reactive antibodies (6). Other studies have shown limited cross-

reactivity for human mAbs mapping to sites A and/or G, albeit

with distinct clustering in reactivity against either archival or

contemporary variants (6, 25, 42). One mouse mAb, GII.4-2006-

G3, which mapped to antigenic site A, presented blocking activity

against the FH 2002, DH 2006, and NO 2009 variants, but was

unable to block variants prior to 2002 and the pandemic SY 2012

variant (41, 43). To our knowledge, this is the first study to show

highly cross-reactive human antibodies to archival and

contemporary variants that map to antigenic sites A or C. These

results suggest that the immune response could be tailored to

areas of VP1 that, despite presenting some diversification, would

elicit cross-protective antibodies.

Taken together, these data suggest that human antibodies

that bind to highly variable antigenic sites on the norovirus

capsid are still able to recognize GII.4 variants that emerged

decades prior or that present extensive diversification. These

antibodies present neutralizing and potent HBGA blocking

activity against contemporary and historical GII.4 variants,

offering valuable insights on the cross-reactivity of the

humoral immune response following natural infection. Studies

on the role of prior infections on antibody responses would

inform vaccine design to mitigate GII.4 infection, the most

common norovirus genotype infecting humans.
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