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CD11c regulates late-stage T
cell development in the thymus
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Boston Children’s Hospital, Boston, MA, United States, 2Departments of Anaesthesia and
Immunology, Harvard Medical School, Boston, MA, United States
CD11c, also named integrin aX, has been deemed solely as a dendritic cell

marker for decades while the delineation of its biological function was limited.

In the current study, we observed in mice that CD11c deficiency led to a defect

in T cell development, demonstrated by the loss of CD4+CD8+ double positive

(DP) T cells, CD4+CD8-, and CD4-CD8+ single positive (SP) T cells in the

thymus and less mature T cells in the periphery. By using bone marrow

chimera, we confirmed that CD11c regulated T cell development in the

thymus. We further showed that CD11c deficiency led to an accelerated

apoptosis of CD3 positive thymocytes, but not CD4-CD8- double negative

(DN) T cells. Overall, this study added one more layer of knowledge on the

regulatory mechanism of late-stage T cell development that the presence of

CD11c in the thymus is critical for maintaining T cell survival.
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Introduction

The thymus is the primary lymphoid organ that supports T cell development

consisting of three main stages (double negative (DN), double positive (DP), and

single positive) (1), during which a dynamic relocation of developing lymphocytes

within multiple architectural structures occurs (2). During the last two decades, it has

been well elucidated that two crucial decision steps, positive and negative selections, are

needed to produce functional major histocompatibility complex (MHC)-restricted T

cells, while simultaneously restricting the production of auto-reactive T cells (3, 4). The

traditional knowledge is that cortical thymic epithelial cells (cTECs) are involved in

thymocyte positive selection, and medullary thymic epithelial cells (mTECs) and

dendritic cells (DCs) are involved in negative selection (5, 6). While it is well known

that events, such as T cell receptor (TCR) b chain rearrangement (7, 8), proper TCR-

MHC affinity and signaling strengths (9–12), finely regulate positive and negative

selections, the regulation of late-stage T cell maturation, survival, and emigration in

the thymus is less studied (5).
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b2 integrins are called leukocyte integrins, exclusively

expressed on leukocytes (13–15). They consist of four

members CD11a/CD18 (aLb2), CD11b/CD18 (aMb2),
CD11c/CD18 (aXb2), and CD11d/CD18 (aDb2) (16). CD11c
has been deemed primarily as a dendritic cell (DC) marker (17–

19), and its physiological function hasn’t been extensively

explored. Our recent study revisited CD11c and discovered

that it is also expressed on hematopoietic stem and progenitor

cells (HSPCs), and its deficiency leads to the loss of HSPCs

through an enhanced apoptosis in sepsis and bone marrow

transplantation mouse models (20). In the study, we reported

that CD11c (aX) knockout (KO) mice showed lower CD3 T cell

counts in peripheral blood. Motivated by this clue, we further

explored the biological function of CD11c, and discovered that it

played a pivotal role in maintaining T cell survival at the late-

stage development in the thymus.
Results

We compared the peripheral blood leukocytes in naïve wild

type (WT thereafter) and CD11c KO mice, and found that, even

at steady status, CD11c deficiency led to a significant loss of CD4

and CD8 T cells (Figure 1A), which was also the case in the

spleen (data not shown). Since CD11c is a marker of DCs, on

which MHC-II molecules are expressed to critically maintain the

number of peripheral T cells (21), we examined the number of

DCs. Surprisingly, although CD11c KO mice had a relatively

smaller size of spleen, the number of splenic DCs including

conventional DC1 (cDC1, MHC-II+XCR1+CD8a+), cDC2

(MHC-II+XCR1-CD8a-SIRPa+CD11b+), and plasmacytoid DC

(pDC, PDCA+CD11b-Ly6C+) subsets was not different from that

of WT mice (Supplemental Figure 1, Figure 1A), suggesting that

CD11c deficiency didn’t abrogate DC development in vivo. We

then compared the thymus, the central lymph organ for T cell

development. Surprisingly, for the first time, we showed the T

cell development was defective in CD11c KO mice, manifested

by the smaller-sized thymus with the loss of cellularity

(Figure 1B). We performed detailed phenotyping of thymic T

cells at different developmental stages, which revealed that

CD11c deficiency was associated with the loss of DP, CD4 SP

and CD8 SP cells, but exerted no influence on the number of DN

cells (Figure 1C). Further analysis showed that, although less SP

CD4 and CD8 cells existed in the thymus of CD11c KO mice,

they were skewed toward more mature population,

demonstrated by a higher ratio of CD24lowQa2high cells

(Figure 1D). This result indicated that immature CD4 SP and

CD8 SP cells were particularly affected in the thymus of CD11c

KO mice. Despite that the ratio of mature population in total

CD4 SP was relatively higher, the absolute number of mature

CD4 cells in thymus of CD11c KO mice was still significantly

less than their WT counterpart (Figure 1D). CCR7 drives T cells
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from the cortex to the medulla (22, 23). CCR7 expression on

CD4 and CD8 SP cells was not different between the genotypes,

suggesting that the egress of T cells from the cortex to the

medulla was comparable between WT and CD11c KO mice

(Figure 1E). Strong TCR signal leads to negative selection, and

weak signal helps to generate conventional CD4 cells (24, 25).

Intermediate signal generates nTreg cells (26, 27). There was a

relatively higher percentage of nTreg (CD25+FoxP3+CD4) cells

in CD4 SP cells in the thymus of CD11c KO mice. This may

indicate that nTreg pathway was less affected in CD11c KO mice

compared to conventional CD4 pathway. Due to the lower

number of total CD4 SP cells, however, the absolute number

of nTreg in the thymus of CD11c KO mice was still less than the

counterpart in WT mice (Figure 1F).

To explore the underlying mechanism that led to less

thymocyte number in CD11c KO mice, we examined the

apoptosis of T cells in the thymus by staining cleaved caspase-

3 ex vivo. We found that CD11c deficiency significantly

increased the apoptosis of CD3-positive subsets (DP, CD4 SP

and CD8 SP cells), which are relatively more matured T cells in

the thymus (Figure 2A). The more occurrence of apoptosis in

CD3 positive cells was further confirmed by staining freshly

isolated thymocytes with Annexin V (Figure 2B). In sharp

contrast, the proliferation status was not different between the

genotypes, probed by Ki-67 expression (Figure 2C).

Successful TCRb chain rearrangement delivers proliferation

signals and instructs the transition of DN cells into DP cells. This

event is followed by positive selection by thymic epithelial cells

(TECs) in the cortex and negative selection by DCs in the

medullary region, responding to strong TCR-MHC

interactions (28). Those DP cells with non-functional TCR-

MHC interactions undergo death by neglect, which occurs for

over 95% of DPs (29). To dissect out the cell type primarily

responsible for the observed phenotype, we compared thymic

DC subsets between WT and CD11c KO mice and found the

number of three DC subset was comparable (Figure 3A).

Although TECs are important antigen presenting cells in the

thymus, no CD11c expression was detected on the surface of

TECs (Figure 3B). In addition, the number of TECs betweenWT

and CD11c KOmice was not different (Figure 3B). TECs contain

two subpopulations; Cortical thymic epithelial cells (cTECs,

Ly51+), which are the primary cell type involved in thymocyte

positive selection, and medullary thymic epithelial cells

(mTECs), which are involved in negative selection. We

compared these two subpopulations by probing Ly51

expression and didn’t observe the difference between the

genotypes (Figure 3B). Thus, TECs were excluded from the

potential contributor to the phenotype observed in CD11c KO

mice. CD11c was highly expressed on DCs, as expected

(Figure 3B). CD11c was not detected on DN, DP, and SP T

cells (data not shown). To further verify whether DCs in the

thymus were responsible for the T cell maturation defect in
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FIGURE 1

Thymic atrophy in CD11c KO mice. (A) Left: T and B cell counting in the peripheral blood in naïve WT and CD11c KO mice; Right: dendritic cell
subset counting in the spleen. cDC1 was gated as MHC-II+XCR1+CD8a+, cDC2 as MHC-II+XCR1-CD8a-SIRPa+CD11b+, and pDC as
PDCA+CD11b-Ly6C+. (B) Left: thymus image; Middle: representative FACS data, gated on total thymocytes of WT and CD11c KO mice; Right:
dot plots of thymocyte number. (C) Thymic T cell subset numbers. DN was gated as CD4-CD8-, DP as CD4+CD8+, CD4 SP as CD4+CD8-, and
CD8 SP as CD4-CD8+. (D) Left: representative FACS data showing maturation status of thymic CD4 SP and CD8 SP cells of WT and CD11c KO
mice; Middle: dot plot showing percentage of immature and mature subsets in total CD4 and CD8 SP cells; Right: dot plot showing absolute
number of mature CD4 SP cells; (E) Representative FACS data showing CCR7 expression on thymic CD4 SP and CD8 SP cells of WT and CD11c
KO mice; (F) Left: representative FACS data showing natural regulatory T cells (nTreg) in thymic CD4 SP cells of WT and CD11c KO mice; Right:
dot plots of both percentage and absolute number. nTreg cells were gated as CD25+FoxP3+CD4+ cells. Experiments were repeated at least 2-3
times with the same pattern. Student t test was performed for statistical analysis. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 2

Apoptosis and proliferation analysis in CD11cKO mice. (A) Up panel: representative FACS data gated on different thymic T cell subsets with active
cleaved caspase 3 expression; Bottom panel: Dot plots of percentage of CD3+Active-caspase3+ cells in indicated subsets. (B) Up panel:
representative Annexin-V staining overlay analysis, gated on different thymic T cell subsets; Bottom panel: MFI. (C) Representative Ki-67 staining
overlay analysis, gated on different thymic T cell subsets. Each symbol represents an individual mouse. Experiments were repeated at least 3 times
with the same pattern. (A) and (B), Student t test was used for statistical analysis. **p < 0.01, ***p < 0.001.
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CD11c KO mice, we created bone marrow (BM) chimera.

Recipient mice, either lethally irradiated WT or CD11c KO

mice were transplanted with either WT-derived or CD11c KO-

derived bone marrow cells. Six weeks after the transplantation,

peripheral blood leukocytes were monitored to ensure the

success reconstitution of hematopoietic system. Mice were

sacrificed at 8 weeks post BM transplantation. As shown in

Figure 3C, as long as the donor BM cells were derived from

CD11c KO mice, T cell development defect was observed
Frontiers in Immunology 05
regardless of the background of recipient mice, consistent with

what we observed in CD11c KO mice. CD11c expression was

done in the thymus of chimeric mice (Figure 3D). To further

solidify our finding that CD11c-expressing cells in the thymus is

irradiation sensitive and also to exclude the error due to mouse

background, we also made the chimera mice in an opposite way.

We used CD45.1 WT as donor and CD45.2 WT as recipient

mice. We confirmed that all CD11c positive cells are donor

(CD45.1) derived ones (Figure 3E). Thus, combined with the
B

C

D

E

A

FIGURE 3

The role of CD11c in irradiation-sensitive hematopoietic cells in thymus. (A) thymic DC subset cell counting. cDC1 was gated as MHC-
II+XCR1+CD8a+, cDC2 as MHC-II+XCR1-CD8a-SIRPa+CD11b+, and pDC as PDCA+CD11b-Ly6C+. Gating strategy could be found in
Supplement Figure 1. (B) Left panel: representative FACS data showing CD11c expression pattern; Right-up panel: thymic TECs counting;
Right- bottom panel: Ly-51 staining overlay analysis of TECs. (C) Blood (up panel) and thymic (bottom panel) analysis of bone marrow
chimeric mice. (D) Representative FACS data showing CD11c expression pattern in thymocytes of chimeric mice described in (C). (E)
Representative FACS data showing CD11c expression pattern in thymocytes of chimeric mice by transferring CD45.1 WT bone marrow cells
into lethally irradiated CD45.2 WT recipient mice. Each symbol represents an individual mouse. Experiments were repeated at least 3 times
with the same pattern. (A, B), Student t test was used for statistical analysis; (C) One-way ANOVA with Bonferroni post hoc analysis was
performed. *p < 0.05, **p < 0.01, ***p < 0.001. n.s., no significant difference.
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result of CD11c expression analysis in the thymus of chimeric

mice (Figures 3D, E), we concluded that CD11c in irradiation-

sensitive hematopoietic cells unexpectedly played an essential

role in maintaining T cell survival in the thymus.
Discussion

The current study discovered that CD11c was essential in

regulating thymic T cell development by maintaining the

survival of T cells at later stages of the development, which

adds additional nodes to both T cell biology and DC function in

the thymus. While positive and negative selections are well

studied, late-stage T cell maturation in the thymus and its

emigration into the periphery are less examined. Herein, we

discovered that CD11c was critical in maintaining the survival of

T cells, preferably CD3-positive ones, thus adding one more

layer of knowledge on the regulatory mechanism of T cell

maturation in the thymus.

Regarding the role of DCs in thymic T cell development,

controversial reports have been made. On one side, thymic DCs

have been deemed as a major player that mediates negative

selection to induce the apoptosis of DP cells (28, 30, 31); on the

other side, thymic DCs were also reported to be involved in

positive selection, thus to maintain the survival of DP cells (32,

33). The discovery that CD11c plays an essential role in

maintaining the survival of T cells suggests that, in addition to

MHC-II molecule, DCs could use CD11c to maintain T cell

survival. Interestingly, we found that CD24hi immature CD4 T

cells were selectively depleted in CD11c KO mice. CD24hi

immature CD4 SP cells are defined as “semi-mature” and

susceptible to apoptosis when triggered through TCR (1, 34).

Thus, our data is in line with the previous reports describing that

CD24hi immature CD4 SP cells are more sensitive to apoptosis

over CD24lo mature CD4 SP cells.

Overall, this study highlights the role of CD11c as a

functional molecule to maintain the survival of T cells in the

thymic late-stage T cell development.
Methods

Mice

Animal studies were approved by the Institutional Animal

Care and Use Committee of Boston Children’s Hospital. Wild

type mice on the C57BL/6J background were purchased from

Jackson laboratory and acclimated in our animal facility before

use. CD11c germline knockout mice (CD11cKO mice) on the

C57BL/6J background were kindly given by Dr. Ballantyne

(Baylor University), as described in our previous publication

(20). For experiments, 7~10 week-old mice were used. Flow
Frontiers in Immunology 06
cytometry, and cell counting were performed as previously

described (35). Regarding TEC and DC detection, the thymus

was digested by type IV collagenase (0.5 mg/ml) and DNase I (50

unit/ml) in RPMI-1640 containing 5% FCS for 30 minutes at 37°

C, followed by washing and resuspension.
Chimera experiment

To generate single bone marrow chimeras, recipient mice on

the C57BL/6 background were irradiated with two doses of

550 rad with 4-hour intervals. WT or CD11c KO derived bone

marrow cells (total of 5 × 106 cells) were injected into the tail

vein of lethally irradiated recipients (WT or CD11c KO mice).

Mice were evaluated for the reconstitution of the immune

compartment after bone marrow transplantation. To prevent

bacterial infection, the mice were provided with autoclaved

drinking water containing sulfatrim for 1 week prior to and

for 4 weeks after irradiation.
Apoptosis analysis

Annexin-V staining method: Thymocytes were stained with

fluorochrome conjugated antibodies to surface marker including

CD3, CD4, CD8, and Annexin-V in the presence of Annexin-V

binding buffer. After washing, cells were resuspended in

Annexin-V binding buffer and collected freshly.

Active-caspase-3 method: Thymocytes were stained with

fluorochrome conjugated antibodies to surface marker

including CD3, CD4 and CD8. After washing, cells were fixed,

permeabilized and stained intracellularly with fluorochrome-

conjugated anti-active caspase 3-by using fixation/

permeabilization reagents and protocols from BD Bioscience.

In certain situation, intracellular Ki-67 staining was done

together with active caspase-3 staining.
Antibodies

Fluorochrome-conjugated antibodies or cell death related

dyes are: from Biolegend: FITC- or PE-Cy7-anti-mCD3 (145-

2C11), Pacific blue- or PE-Cy7- anti-mCD45.1 (A20), Pacific

blue- or FITC- anti-mCD45.2 (104), Pacific blue- or PE-anti-

mCD45 (30-F11), Pacific blue- or PE-Cy7- or APC- anti-

mCD4 (GK1.5), APC-Cy7-anti-mCD8 (53-6.7), PE-Cy7-

anti-mCCR7 (4B12), PE-Cy7-anti-mCD11b (M1/70), FITC-

anti-mLy6C (HK1.4), Pacific blue- anti-mI-A/I-E (M5/

114.15.2), APC-anti-mQa2 (695H1-9-9), APC-anti-mLy51

(6C3), PE-anti-mCD326 (Ep-CAM, clone G8.8), PE-anti-

mCD25 (3C7), Alexa Fluor488-antiFoxP3 (FJK-16s). From

eBioscience: PE-Cy7-anti-Ki67 (S01A15). From BD
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Biosciences: FITC-rabbit-anti-active caspase3 (C92-605),

FITC-Annexin V, Annexin V staining buffer, and BD

Cytofix/Cytoperm buffer. Cell counting was done by

app ly ing Sphero AccuCount beads (ACBP-50-10 ;

Spherotech Inc, Lake Forest, IL). Data were acquired on a

Canto II cytometer (BD Biosciences) and analyzed using

FlowJo software (Tree Star).
Statistical analysis

Statistical analyses were performed using Prism 4 (Graphpad

Software). Student’s t-test, unpaired and paired, and one-way

ANOVA were used according to the type of experiment. P value

< 0.05 was considered significant.
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