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Quercetin (QCT) is a naturally occurring phenolic flavonoid compound with

inbuilt characteristics of antioxidant, anti-inflammatory, and immune protection.

Several recent studies have shown that QCT and QCTits nanoparticles have

therapeutic potential against severe acute respiratory syndrome coronavirus-2

(SARS-CoV-2) infection. Novel therapeutics also include the implication of

extracellular vesicles (EVs) to protect from SARS-CoV-2 viral infection. This

article highlighted the therapeutic/prophylactic potential of engineered EVs

loaded with QCT against SARS-CoV-2 infection. Several biotechnological

engineering approaches are available to deliver EVs loaded with QCT

nanoparticles. Among these biotechnological advances, a specific approach

with significantly higher efficiency and yield has to be opted to fabricate such

drug delivery of nano molecules, especially to combat SARS-CoV-2 infection.

The current treatment regime protects the human body from virus infection but

has some limitations including drugs and long-term steroid side effects.

However, the vaccine strategy is somehow effective in inhibiting the spread of

coronavirus disease-19 (COVID-19) infection. Moreover, the proposed exosomal

therapy met the current need to repair the damaged tissue along with inhibition

of COVID-19-associated complications at the tissue level. These scientific

findings expand the possibilities and predictability of developing a novel and

cost-effective therapeutic approach that combines the dual molecule, EVs and

QCT nanoparticles, to treat SARS-CoV-2 infection. Therefore, the most suitable

engineering method to fabricate such a drug delivery system should be better

understood before developing novel therapeutics for clinical purposes.
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1 Introduction
QCT is a plant flavonoid, also known as 3,3′,4′,5,7-
pentahydroxyflavone, and is present in naturally occurring

vegetables, grains, leaves, and seeds in the form of QCT

glycosides bounded with residual sugars (1). QCT exhibits

various biological properties, including antioxidant (2),

immunoprotective (3), anti-inflammatory, and anti-viral (4).

QCT, being a promising anti-viral, showed its effect by

inhibition of biological enzymes including protease (5),

polymerase (6), reverse transcriptase (7), DNA gyrase and

proteins of viral capsids (8, 9). Furthermore, QCT functions as

a protein kinase inhibitor, a phytoestrogen, a quinone, a

chelator, a free radical scavenger, and an Aurora kinase

inhibitor (10). Previously published studies showed that

neutrophi l s upon treatment with QCT flavonoids

demonstrated suppression of pro-inflammatory gene mRNA

along with mi-RNA modulation (11, 12). QCT application in

COVID-19 infection occurs significant therapeutic effect if used

in combination with standard care of treatment. Moreover,

recently two studies demonstrated effectiveness of using QCT

with remdesivir and favipiravir in hospitalized patients with

severe SARS-CoV-2 infection. The patients were given 1000 mg

QCT along with anti-viral drugs daily and found to reduced

serum levels of ALP, q-CRP, and LDH in the intervention group

compared to those who were on only standard care of treatment

(13). Similarly in another randomized, open-label, and

controlled clinical study, the add-on supplement of the QCT

particles with standard care of treatment showed viral clearance

within 1 week of the infection (14). Such studies favoured the

utility of using QCT nanoparticles either alone or in

combination with standard care of treatment for effective

management and treatment of COVID-19 infection.

QCT showed its abundance in many plants, including

apples, grapes, green tea, citrus fruits, cherries, onions, coffee,

red wine, and others (15). However, QCT exhibits low

bioavailability and hence the need to supplement with other

supplements such as catechins, resveratrol, and genistein to

increase the high absorption within the intestinal cells (16–19).

Moreover, QCT has several limitations in pharmaceuticals,

including instability, low solubility, poor permeability, and low

bioavailabil ity . Within the past decades, numerous

nanotechnology-based approaches were designed to combat

such limitations. Some of the delivery approaches of QCT to

overcome such limitations include liposomes, inclusion

complexes, micelles, and nanoparticles. These nanotechnology-

based approaches have proved beneficial in the treatment of

several human diseases, including severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) infections.

QCT possessed anti-viral characteristics and thereby

hampered the life cycle of SARS-CoV-2 by interfering with
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viral replication cycles and lowering the inflammation

responses. Recently published studies demonstrated that QCT

interferes with the viral replication cycle of SARS-CoV-2 and

thereby offers numerous opportunities to explore QCT as a

supplement in the form of nanoparticles as therapeutics in

COVID-19 infection (20–22). A recent study also claimed that

QCT supplementation offers 87% improvement in the form of

survival outcomes in patients with SARS-CoV-2 infection and

may be more beneficial during the early stages of COVID-19

infection (21–24). In another randomized controlled trial (RCT),

QCT showed prophylaxis among COVID-19- infected patients

(25) Some of the pioneer studies related to QCT therapy in

COVID-19 infection are presented in Figure 1 (26).

It is still a debatable matter that vaccines are associated with

a risk of local and systemic inflammatory immune responses

along with systemic toxicity, and hence supplementation of

QCT nanoparticles may mitigate such effects. The present

study evaluates the characteristics of QCT nanoparticles

and extracellular vesicle-based delivery along with the

immunomodulation mechanism of these nanoparticles in

COVID-19 infection.
2 QCT chemistry

The chemical name of QCT is C15H10O7 or 2-(3,4-

dihydroxyphenyl)-3,5,7-trihydroxychromen-4-one or 3,3,4,5,7-

pentahydroxyflavone, which tends to present conjugation with

glucose, xylose, and rutinose via hydroxyl (OH) functional

groups present in its structure, which imparts the antioxidant

tendency because it is composed of five hydroxyl groups as

demonstrated in Figure 2. QCT is of nutritional importance and

is majorly present in the form of QCT-3-O-glycoside rather than

aglycones (27–31). Substitution of OH functional groups at

positions C3, C5, and C7, as well as H atom substitution at

C3’ and OCH3 substitution at C4’, proved to be beneficial and

protective to cells (32). Furthermore, QCT has a chemical

composition that includes 3′, 4′-OH groups (B ring) and 2, 3-

double bond conjugation with a 4-oxo functional group present

in the C ring, which helps to reduce oxidative stress (33).

Another study found that the orthodihydroxy, 4-carbonyl, and

3′, 4-OH group substitutions on the B, C, and A-rings,

respectively, exhibit metal ion chelator activity of QCT (34).
3 Characteristics of QCT

QCT has significant solubility in lipids and alcohols but

shows poor solubility in water. A previous study observed that

QCT glycoside has a high affinity for water due to the presence of

several glycosyl functional groups (35) (Table 1). QCT is usually
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present in two forms, namely glycosides and glycones, and

follows passive diffusion and an anion-transporting pathway

for absorption into the small intestine. QCT metabolism occurs

in the liver, intestines, and kidneys with a half-life ranging from

11 to 28 h and an average terminal half-life of 3.5 h (36, 37). A

study showed that QCT glucoside showed better solubility than

rutinosides in the small intestine upon hydrolysis by

glucosidases (38, 39). The enzymes of the intestinal mucosa

and epithelial cells transform QCT and its derivatives into

diverse metabolites, including phenolic acids. These

metabolites are excreted majorly by the kidney through urine

in the form of benzoic acids (40).
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4 QCT nanoparticles as therapeutics

Fabrication of nanoparticle-based drug delivery systems has

been validated and tested in several pre-clinical and clinical trials

for the treatment and diagnosis of several diseases in the past

decades (Table 2). The therapeutic potential of QCT

nanoparticles includes antioxidant, anti-inflammatory, anti-

bacterial and anti-neoplastic activities (Figures 3, 4) (41).

These nanoparticle delivery agents such as polymeric micelles,

liposomes, quantum dots, chitosan, Polylactic/glycolic acid

(PLGA) and PLGA-based nanoparticles, polymeric micelles,

dendrimers, and inorganic nanoparticles have been explored
FIGURE 1

Summary of quercetin COVID-19 studies (Adopted under Creative Commons Attribution-Non Commercial v4.0 License from Ref. 24).
FIGURE 2

2D structure of quercetin.
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well for targeted delivery of desired drugs, proteins, peptides,

and nucleic acids (42). Entrapment of the desired drug into the

vicinity of nanoparticles enhances its bioavailability and stability

with prolonged circulation time, which helps in improving

therapeutic outcomes (43). These nanoparticles enable drug

delivery by exhibiting functional and structural modifications

like ligand linkage within a single delivery partner.

Moreover, several nanoparticles, including liposomes, offer

opportunities to deliver hydrophobic drug molecules like QCT

to explore its improved encapsulation efficiency, targeted

delivery with extended circulation time within the body with

controlled release, and high therapeutic efficiency. In the past

decades, significant advances have been made in developing

engineered nanoparticles containing QCT as therapeutics. To

achieve this, researchers have explored liposomes, PLGA

nanoparticles, polymeric micelles, metal-organic frameworks

(MOFS), inorganic molecules, and other delivery systems for

biomacromolecule-based nanoparticles. Some limitations

associated with these nanoparticles are systemic toxicity and

adverse effects, and fewer tendencies to cross the blood-brain

barrier (BBB). To combat such limitations, EVs have been a

preferred choice nowadays for delivering nanoparticles,

including QCT.
5 EVs-based QCT nanoparticles
as therapeutics

Extracellular vesicles (EVs) are nano-sized lipid bilayer

vesicles secreted by metabolically active cells that have the
Frontiers in Immunology 04
potential for functional and structural modifications for drug

delivery to targeted organs. Compared to other delivery agents,

EVs offer several advantages, including biocompatibility,

negligible systemic toxicity and adverse effects, increased bio-

distribution, and high transmission efficiency with a tendency to

deliver biomolecules including proteins, peptides, lipids, and

nucleic acids (44). Previously, EVs demonstrated promising

potential for delivering a wide range of drugs and

biomolecules as carriers with significantly improved

bioavailability and high transmission across the BBB. A study

showed plasma-derived exosome-loaded QCT nanoparticles

showed improved bioavailability with therapeutic effect in

Alzheimer’s disease by inhibiting cyclin-dependent kinase 5

(CDK5) facilitated phosphorylation of protein Tau (45). The

atomic force microscopic image of exosome loaded QCT was

shown in Figure 5. In another study, authors engineered

exosomes containing QCT nanoparticles and monoclonal

antibodies against GAP43 (mAb GAP43) and found a

therapeutic effect in cerebral ischemia by decreasing reactive

oxygen species (ROS) (46).

The authors of a recently published study (47) assessed the

nutraceutical properties of EVs containing QCT and saponin.

Fabricated EVs loaded with QCT and saponins extracted from

black bean extract (Phaseolus vulgaris L.) along with three more

phytochemicals at a single time to deliver them all at once to the

target site or recipient cells. The study concluded that EVs

loaded with nanoparticles have increased bioactivity compared

to the phytochemicals used alone with EVs (47). Above, studies

favor the development of new products containing EVs

containing nutraceuticals for the treatment of several diseases
TABLE 1 Chemical and Physical properties of quercetin (Adopted from Ref 26).

Property Name Property Value Reference

Molecular Weight 302.23 Computed by PubChem 2.1 (PubChem release 2021.05.07)

XLogP3 1.5 Computed by XLogP3 3.0 (PubChem release 2021.05.07)

Hydrogen Bond Donor Count 5 Computed by Cactvs 3.4.8.18 (PubChem release 2021.05.07)

Hydrogen Bond Acceptor Count 7 Computed by Cactvs 3.4.8.18 (PubChem release 2021.05.07)

Rotatable Bond Count 1 Computed by Cactvs 3.4.8.18 (PubChem release 2021.05.07)

Exact Mass 302.04265265 Computed by PubChem 2.1 (PubChem release 2021.05.07)

Monoisotopic Mass 302.04265265 Computed by PubChem 2.1 (PubChem release 2021.05.07)

Topological Polar Surface Area 127 Å² Computed by Cactvs 3.4.8.18 (PubChem release 2021.05.07)

Heavy Atom Count 22 Computed by PubChem

Formal Charge 0 Computed by PubChem

Complexity 488 Computed by Cactvs 3.4.8.18 (PubChem release 2021.05.07)

Isotope Atom Count 0 Computed by PubChem

Defined Atom Stereocenter Count 0 Computed by PubChem

Undefined Atom Stereocenter Count 0 Computed by PubChem

Defined Bond Stereocenter Count 0 Computed by PubChem

Undefined Bond Stereocenter Count 0 Computed by PubChem

Covalently-Bonded Unit Count 1 Computed by PubChem

Compound Is Canonicalized Yes Computed by PubChem (release 2021.05.07)
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TABLE 2 List showing clinical trials using quercetin. (Adopted from Ref 26).

# Linked Compound CID CTID Title Phase Status Date

cs for Alzheimer’s Disease Phase
1/Phase
2

Enrolling
by
invitation

2022-
05-12

Health and Inflammatory Markers N/A Completed 2022-
05-12

ell Transplant Survivors Study (HTSS Study) N/A Recruiting 2022-
04-15

y Artery By-pass Surgery Phase 2 Recruiting 2022-
04-05

ention for Squamous Cell Carcinoma in
i Anemia

Phase 2 Recruiting 2022-
02-02

Modulate the Progression of Alzheimer’s
Study

Phase 2 Recruiting 2022-
01-24

With Fanconi Anemia; a Pilot Study Phase 1 Active, not
recruiting

2022-
01-18

Skeletal Muscle Health and Estrogen Phase 4 Suspended 2021-
12-03

uercetin in COPD Phase
1/Phase
2

Recruiting 2021-
10-06

ention of Covid-19 Infection N/A Completed 2021-
09-08

atment Of SARS-COV 2 Early
Phase 1

Recruiting 2021-
07-28

hytotherapy in SARS-COV2(COVID-19) Phase 1 Completed 2021-
07-27

escence With Senolytics to Improve Skeletal
ans

Phase 2 Recruiting 2021-
07-21

Green Tea Polyphenol Uptake in Prostate
With Prostate Cancer Undergoing Surgery

Phase 1 Completed 2021-
06-23

Modulate Progression of Alzheimer’s Disease Phase
1/Phase
2

Recruiting 2021-
06-21

rotect Special Forces From the Stress of High Phase 4 Completed 2021-
03-30

ple Therapy Zinc, quercetin, Bromelain and
nical Outcomes of Patients Infected With

Phase 4 Recruiting 2020-
07-13
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TABLE 2 Continued

# Linked Compound CID CTID Title Phase Status Date

CT02874989 Targeting Pro-Inflammatory Cells in Idiopathic Pulmonary Fibrosis:
a Human Trial

Phase 1 Completed 2020-
05-12

CT03943459 Sirtuin-1 and Advanced Glycation End-products in Postmenopausal
Women With Coronary Disease

Phase 3 Recruiting 2019-
10-04

CT02989129 Trial of quercetin in the Treatment and Prevention of
Chemotherapy-induced Neuropathic Pain in Cancer Patients

Early
Phase 1

Withdrawn 2018-
04-18

CT00402623 The Effect of quercetin in Sarcoidosis N/A Completed 2017-
02-24

CT01708278 Beneficial Effects of quercetin in Chronic Obstructive Pulmonary
Disease (COPD)

Phase 1 Completed 2016-
12-26

CT02226484 Can quercetin Increase Claudin-4 and Improve Esophageal Barrier
Function in GERD?

Phase 1 Completed 2016-
12-20

CT01438320 Q-Trial in Patients With Hepatitis C Phase 1 Completed 2015-
03-20

CT01839344 Effects of quercetin on Blood Sugar and Blood Vessel Function in
Type 2 Diabetes.

Phase 2 Completed 2015-
03-18

CT00913081 Advancing Niacin by Inhibiting Flushing (ANTI-FLUSH) Phase 4 Completed 2015-
03-05

CT01691404 Study on the Effects of Epicatechin and QCT Supplementation on
Vascular Function and Blood Pressure (FLAVO)

N/A Completed 2013-
04-23

CT01732393 Effect of QCT in Prevention and Treatment of Oral Mucositis Phase
1/Phase
2

Completed 2012-
12-05

CT01375101 Therapeutic Effect of quercetin and the Current Treatment of
Erosive and Atrophic Oral Lichen Planus

Phase 1 Unknown
status

2011-
07-26

CT00003365 Sulindac and Plant Compounds in Preventing Colon Cancer N/A Terminated 2011-
01-27

CT01168739 Effect of Combined Exercise, Heat, and quercetin Supplementation
on Whole Body Stress Response

N/A Completed 2010-
07-23
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18 30623165280343 N

19 5280343 N

20 5280343 N

21 5280343 N

22 5280343 N

23 5280343 N

24 5280343 N

25 7131270418397995448913664177412901002452803434454211346946484432690122172882444254441184 N

26 5280343 N

27 722765280343 N

28 5280343 N

29 5280343 N

30 154888752803439695165280805 N

31 5280343 N

N/A: Not Applicable.
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FIGURE 3

Structure and therapeutic application of quercetin.
FIGURE 4

The anti-inflammation signal pathways of quercetin. (Adopted under Creative Commons Attribution-Non-Commercial v4.0 License from
Ref. 39).
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as EVs serve various therapeutic functions and roles

(48) (Figure 6).
6 EVs modification approaches

EV modification and bioengineering have gained increased

attention in recent years. Due to their ability to manipulate for

delivering multiple biological molecules such as proteins, drugs,

lipids, and nucleic acids (coding or non-coding), studies have

demonstrated the beneficial role of EVs as drug carriers, proving

their therapeutic role in several diseases (49). Previously

published literature supported our study as they claimed that

EVs exhibits immunomodulation characteristics and hence can

be effectively used in the treatment of lungs affected with SARS-

CoV-2 infection (48). Moreover, EVs also have therapeutics role

in the treatment of cardiovascular diseases associated with

COVID-19 by repairing ischemic myocardial injury by

inducing neovascularization (49). Moreover, study also

claimed protective role of EVs against acute kidney injury and

acute liver injury (48). The modification approach of EVs is

further classified into two types: I. direct modification and II.

indirect modifications. The direct modification approach refers
Frontiers in Immunology 08
to EV engineering that is further classified into physical and

chemical modifications (50).
6.1 Physical engineering

EVs membrane and indigenous content can be modified

using different physical approaches which are mentioned below;
6.1.1 Engineering with EVs surface
Conventional surface modifications of EVs exploit the

attachment of proteins, lipids, and polypeptides on their outer

membrane using specific methods. Such EV modification was

found to be beneficial in the treatment of leukaemia and tumor

growth suppression (51). Because EVs are composed of a lipid

bilayer, they can be easily conjugated or modified using

liposomes, as demonstrated by previous studies (52, 53). In

one of the previously published studies, authors fused exosomes

derived from bone marrow mesenchymal stromal cells (BMSCs)

with liposomes containing polypyrrole nanoparticles for the

treatment of diabetic peripheral neuropathy (53). Moreover,

liposomes were fused with the MSC-derived EVs to
A B

FIGURE 5

Morphology determination by atomic force microscopy (A) Exosome and (B) Exosome loaded with quercetin. (Adopted under Creative
Commons Attribution-Non-Commercial v4.0 License from Ref. 43).
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incorporate miR-34a and this system was tested against breast

cancer progression (54).

Several studies were conducted on EV surface modification

and demonstrated that the linkage of glycosyl phosphatidylinositol
Frontiers in Immunology 09
(GPI) on the EV surface imparts stability to deliverable EVs and

also protects such EVs from hydrolytic degradation (55, 56).

Another study on the SARS-CoV-2 virus discovered that EVs

contain the enzyme ACE-2, and their levels can be estimated using
A

B

FIGURE 6

(A) Multifunctional aspects biological functions of exosomes. (B) Therapeutic potential and versatile clinical implications of exosomes. (Adopted
under Creative Commons Attribution-Non-Commercial v3.0 License from Ref. 46).
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protein palmitoylation (57). Two enzyme systems, namely zinc

finger DHHC-Type Palmitoyl transferase 3 (ZDHHC3) and acyl

protein thioesterase 1 (LYPLA1), performed the mechanism of

palmitoylation and de-palmitoylation of such proteins. The

authors fabricated engineered EVs with S-palmitoylation

targeted sequences as a therapeutic and prophylactic approach

against SARS-CoV-2 and thereby protect the lungs from

inflammation (57).

6.1.2 Engineering with EVs content
The efficiency of the EVs for targeted drug delivery can also

be fairly improved by doing engineering with EVs content

through specific approaches including incubation, sonication,

electroporation, and others that are helpful in loading many

drugs, proteins, peptides, miRNAs and long-non-coding RNAs

into the EVs as also suggested by previously published study

(50, 58).

6.1.2.1 Incubation

This engineering method involves the simple incubation of

EVs with the desired drug or biological molecules, which is still

known as “passive loading of cargo.” The driving force behind

the loading of desired cargo in the EVs is the interplay between

the concentration of drugs inside and outside the EV medium

that allows the transfer of drugs or desired cargo within the lipid

bilayer of the EVs. Some studies implicated the incubation

approach for loading anti-cancerous drugs including paclitaxel

and doxorubicin into the EVs and achieved significant

chemotherapeutic effects (59, 60). In another study, the

authors used this method for loading curcumin nanoparticles

into the EVs and evaluated its effect as an anti-inflammatory

approach (61). This is a cost-effective and simple method that

does not require high throughput facilities but with the major

limitation of low yield and transport of hydrophobic

cargoes only.

6.1.2.2 Sonication

This engineering approach relies on sound waves for the

generation of mild shearing forces that are needed for the

disruption of lipid bilayers of EVs so that desired drug or

biological molecules mediate transport into them. Kim and

their coworkers successfully loaded paclitaxel and doxorubicin

into the EVs and exploited them for cancer treatment (62). It is

reported that the sonication approach decreases the viscosity of

the EVs membrane and thereby allows the passage of cargo

inside it (62). This method exhibits high loading efficiency

compared to the simple incubation approach, with some

limitations in shearing forces that are not suitable to deliver

labile biological molecules such as miRNAs. This approach

resulted in improved drug loading efficiency with better

biocompatibility and controlled release of desired drugs with

incubation and electroporation (63).
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6.1.2.3 Electroporation

This engineering approach is a commonly used method for

EV modification using the electric field for cargo loading. An

electric field disrupts the lipid bilayer of the EVs, thereby

facilitating the entry of the desired drug or biomolecule inside

it. This method is most suitable for loading hydrophilic cargo

like miRNA, siRNA, and other nucleic acids (64, 65). Johnsen

et al. reported that electroporation tends to aggregate the EVs

without altering their functions (66). For maintaining the

structural conformation of the EVs, the authors used trehalos-

containing buffer during the electroporation (66). Another study

used electroporation for the loading of doxorubicin drug with

hydrophobically modified miRNA 159 into the EVs for the

treatment of tumors (67). This approach, however, facilitates

the rapid entry of the desired drug into the EVs but

simultaneously damages the structural integrity of such EVs,

thereby reducing the efficiency of drug/molecule loading (68–

70). Furthermore, one study used electroporation to load

miRNA 155 into the EVs with good efficiency at a voltage of

0.13–0.2 kV (concentration of EVs 500–1000 mg/mL) (71).

6.1.2.4 Freeze thawing

This engineering approach involves the temporary

generation of pores on the EVs’ membrane upon multiple

freezing and subsequent thawing cycles that facilitate the entry

of drugs inside EVs. A freeze cycle consists of -800C while

thawing at 370C, repeated several times. Some studies have

reported the formation of aggregates following this approach

while loading drugs into EVs (72, 73). Hanley and their co-

workers successfully loaded the enzyme catalase into the EVs

using this approach (72). This approach offers the benefit of

mass production of engineered EVs compared to the

ultrasonication method with improved drug loading efficiency

(62, 74). Moreover, freeze-thaw process is associated with some

disadvantages as evident by the previously published study (A).

The repeated process of the freeze-thaw severely affected the

membrane stability of the EVs (75). Author of another study

demonstrated the decrease in EVs concentration up to 2 folds

even after the single freeze-thaw cycle and also reported changes

in the structural morphology of EVs post storage (75).

6.1.2.5 Extrusion

This engineering approach involves the use of a small-sized

polycarbonate porous membrane for reversible disruption of the

phospholipid bilayer of the EVs to facilitate the entry of desired

drugs/cargo inside the EVs (72, 73). This method results in the

production of uniform-sized EVs with efficient drug loading

compared to incubation and electroporation under controlled

conditions (74). Extrusion, however disrupt the membrane

integrity of the EVs thereby causing leakage of loaded drugs.

During the process of extrusion, the EVs membrane faces

vigorous forces and as a resultant, disruption occurs. This is
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1040027
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Raghav et al. 10.3389/fimmu.2022.1040027
also evident with the changes in the membrane zeta potential

and membrane protein disorganization. Fuhrmann and their

coworkers proved that EVs prepared using the extrusion method

exhibits cytotoxicity compared to non-extruded EVs (76). The

authors compared the loading of siRNA into EVs using the

natural mode of EV secretion from cells with EV mimics

prepared by multiple sequential extrusions of MCF10A cells

and discovered that EV mimics had the highest drug loading

(77, 78).
6.2 Chemical engineering

Chemical-based modification or engineering of EVs refers to

the transformation of EVs’ surfaces. This can be further classified

as covalent (reaction between EVs and chemical linkers) and non-

covalent (electrostatic interaction) based modifications.
6.2.1 Covalent-based modification of EVs
Covalent modification, or click chemistry, involves the

chemical conjugation of ligands with EV surfaces. Several

amino acids can be effectively conjugated on EV surfaces

through azide-alkyne cyclo-addition click chemistry (79, 80).

Another study fabricated azide-labeled c-RGD peptide on an EV

surface using alkyne-azide cyclo-addition with dibenzo

cyclooctyne to treat ischemic brain injury (81). The Click

chemistry-based modification exhibits high specificity,

selectivity, and high compatibility without affecting the

structural and functional integrity of the EVs.
6.2.2 Non-covalent based modifications of EVs.
Non-covalent-based EVs’ modification mostly involves

electrostatic and ligand-based alteration to EVs. The presence of

a lipid bilayer on EVs’ surfaces imparts a negative charge with a

zeta potential of approximately-8.82 mV, making them suitable to

add cations on their surfaces (82). Authors have fabricated EVs-

based immune blockers to promote the phagocytosis of tumor

cells by macrophages through a non-covalent-based modification

approach (83, 84). However, ligand-receptor-based modification

of EVs involves hydrophobic ligand interactions on the lipid

component present on the surface of EVs. For therapeutic and

diagnostic purposes, liposomes modified using polyethylene glycol

(PEG) is commonly used for EV modification to load a desired

molecule of interest.
6.3 Indirect engineering approach for
modification of EVs

Most of the cells secrete EVs in the medium that can be

further exploited for therapeutic and diagnostic purposes. The
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EV-producing parental cells can be genetically and metabolically

engineered to produce modified EVs with enhanced drug-

loading capacity.

6.3.1 Genetic engineering approach for
EVs modification

Genetic engineering approaches for the modification of EVs

producing parental cells to achieve specific and targeted drug/

biomolecule loaded EVs have become sophisticated within the

past decades. Membrane proteins can be efficiently linked with

EVs using this method. This involves transfection (via viral or

non-viral invasion/infection) of the EVs producing parental cells

using specific gene targets that allow the manufacturing of cargo-

loaded EVs during the biogenesis process. Jiang et al., reported

two types of viral vectors for modification of EVs using a genetic

engineering approach, i.e., retroviral and adenoviral, for delivery

of tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) (85).

A study reported use of MSCs-derived modified EVs using a

genetic engineering approach with miRNAs delivery (86). In

another study, authors fabricated engineered EVs expressing

Lamp2b conjugated integrin-specific iRGD peptide for the

treatment of breast cancer (87). Similarly, in another study,

engineered EVs were synthesized derived from HEK293T cells

expressing Lamp2b conjugated with IL-3 fragments for the

treatment of chronic myeloid leukaemia (CML) (88).

Rivoltini and their co-workers transfected the K562 cell line

with lentiviral human membrane TRAIL (TNF-Related

Apoptosis-Inducing Ligand) for fabrication of TRAIL (+) EVs

for apoptosis of cancerous cells (89). In another study, dendritic

cells (DCs) were transfected using a genetic engineering

approach with a Lamp2b-modified pEGFP-C1 vector to

produce RVG-modified EVs (90). The major limitation

associated with this approach is that it affects the efficiency of

the drug/molecule loading to EVs loading of foreign impurities

that result in a decrease in EV purity.

6.3.2 Metabolic engineering approach for
EVs modification

The metabolic engineering approach for modification of EVs

delivers metabolites or biological molecules including amino

acids, lipids, and sugar moieties to the growth medium of

parental cells for promotion of biosynthesis. These

biomolecules can be integrated into the proteome, liposomes,

and glycoproteins present in the EVs (91). This engineering

approach used click conjugation to attach glycans and

glycoproteins with chemically active azide functional groups

and bio-orthogonal moieties to produce metabolically

engineered EVs (92). In another study, authors replaced the

naturally occurring methionine amino acid with L-

azidohomoalanine (AHA), an azide-bearing amino acid (which

is an analogue of natural methionine) inside EVs (93). In

continuation with this study, the introduction of AHA into the
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exosomes offers an additional azide active site for bio-

conjugation, thereby providing an additional free site for

binding of desired cargo/molecule of interest for therapeutic

and diagnostic purposes (94).
7 Mechanism of action of EVs
loaded QCT nanoparticles in
SARS-CoV-2

The spread of severe acute respiratory syndrome coronavirus-

2 (SARS-CoV-2) is a coronavirus disease (COVID-19)

progressing as a worldwide pandemic targeting the lungs of

infected patients. The SARS-CoV-2 virus is an RNA virus that

recognizes human cells through angiotensin-converting enzyme 2

receptors (ACE-2) present on the epithelial cells for its entry (95–

97). Virus infection triggers inflammatory responses such as

cytokine storm, oxidative stress, and acute respiratory distress

syndrome (98, 99). Studies demonstrated the anti-SARS-CoV-2

activity of QCT nanoparticles by inhibiting the binding of viruses

with ACE-2 receptors, lowering the pro-inflammatory cytokines,

and down-regulating the expression of the RdRp gene (100–102).

Docking studies conducted recently showed the anti-SARS-

CoV2 effect of QCT molecules (101). The study showed that

QCT inhibits the expression of the NLRP3 inflammasome

through various regulatory proteins (101). The study also

concluded that QCT nanoparticles can be prospectively

performed as antioxidant, anti-inflammatory, and analgesic

characteristics and, thereby, can be used to treat severe

inflammation associated with SARS-COV-2 infection in

COVID-19 (101).

Studies demonstrated that QCT inhibits the expression of

the NLRP3 inflammasome mediated through TXNIP (103). In

an animal study conducted on a spinal cord injury model, QCT

nanopart ic les demonstrated anti- inflammatory and

antioxidant properties along with inhibition of pro-

inflammatory cytokine generation (103). A study quoted said

QCT showed antioxidant and anti-inflammatory roles that

further protected the cells from apoptosis (103). In-silico

finding of SARS-CoV-2 protease proteins (PDB ID: 6LU7)

showed an inhibitory effect of QCT by forming new hydrogen

bonds with some amino acid residues (His164, Glu166,

Asp187, Gln192, and Thr190) of 6LU7 (100, 102). Moreover,

another preclinical study of a mouse model conducted on

asthma showed that QCT therapy lowers the count of white

blood cells (WBCs) along with eosinophils in the blood, lung

parenchyma, and bronchoalveolar lavage fluid (104).

Previously published study showed that, QCT particles

mediate inhibition of p38 mitogen-activated protein kinase

(MAPK) and NF-k (105). Another author demonstrated that

QCT nanoparticles downregulate the expression of histamine,

prostaglandin D2, leukotriene, and granulocyte-macrophage
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colony-stimulating factors (106). In one of the recently

published study, the authors have reported the role of

quercetin as antituberculosis, antioxidant and cytotoxicity

and therefore favored this study (107).

Several studies focused on the immune-modulatory and

anti-inflammatory roles of MSC-derived EVs similar to their

parental cell source (108, 109). In a preclinical study, MSC-

derived EVs showed therapeutic effects in Acute Respiratory

Distress Syndrome (ARDS) (110). Another study showed that

EVs initiate anti-inflammatory responses that further reduce the

severity of lung injury through the maintenance of alveolar

epithelium (111, 112). It has been seen from previous

literature that the use of EVs or nano decoys slows down the

progression of viral infection through binding with viral cells

(113–115). Studies also showed that these nano-molecules

entrap the viral pathogens and also mediate their clearance

from body fluids, preventing the spread of infections (113–

115). The mechanism of viral entrapment by lung-derived EVs

involves binding of SARS-CoV-2 viral spike protein (S protein)

with the ACE-2 receptor available on these EVs, so that viral S

protein does not participate in binding with the human ACE-2

receptor, but binds with EVs-ACE-2 receptors, thereby

protecting the spread of SARS-CoV-2 infection and reducing

the associated respiratory complications (116, 117).
7.1 Targeting mechanism of quercetin
against SARS-CoV-2

SARS-CoV-2 is a highly diverse enveloped positive-sense

single-stranded RNA virus that follows the entry into the human

via angiotensin-converting enzyme 2 receptors (hACE2) present

on the epithelial cells. The initial entry step for entry involve

binding of its spike (S) protein to these receptors including

human amino peptidase N (APN; HCoV-229E), angiotensin-

converting enzyme 2 (ACE2; HCoV-NL63, SARS-CoV and

SARS-CoV-2) and dipeptidyl peptidase 4 (DPP4; MERS-CoV)

(118). The S proteins of the coronavirus are glycoproteins that

exhibit S1 and S2 domains (119, 120). Moreover, the S1 domain

comprehends the receptor-binding domain (RBD) that

specifically recognizes host epithelial cell receptors. S2 domain

exhibits heptad repeat sequences along with fusion peptides

which assist fusion of viral and host cell membranes

undergoing rearrangements mechanism (121). QCT is a widely

known flavonoid and exhibits anti-COVID-19 activity and

protective mechanism against SARS-CoV-2 through inhibition

and triggering down regulation of hACE-2 along with discharge

of pro-inflammatory chemokines.

Furthermore, QCT-3-b-D-glucoside also known to inhibit the

expression of 3CLpro (also referred to as the main protease) and

papain- like protease (PLpro) as quoted by authors of recently

published study (122). The molecular docking study revealed that

anti-SARS activity of QCT is demonstrated by the inhibition of
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SARS-CoV-2 protease through fabricating new hydrogen bonds

with amino acid residues including His164, Glu166, Asp187,

Gln192, and Thr190) of 6LU7 (123, 124). QCT known to exhibit

>80.0% inhibition in an in-vitro experiment, with IC50 value of 73

mM, on the recombinant 3CLpro protein expressed in Pichia

pastoris as reported by authors of previously published study

(125). Another molecular docking observation revealed that QCT

interacts with Asp38 of hACE-2 and inhibit the entry into the

epithelial cells by preventing attachment of viral spike S1 protein.

Some previously published studies showed the therapeutic role of

EVs as anti-viral in many diseases (126-128).
8 Conclusions

Altogether, it is evident that QCT and EV supplementation

significantly help to combat inflammatory responses, including

SARS-CoV-2 infection. Here we show that QCT can be

prospectively used in the form of nanoparticles after loading into

the EVs to address the therapeutic potential in the COVID-19

pandemic. QCT nanoparticles can be loaded into the EVs using a

suitable method of engineering after optimization of the efficiency

and yield among the several physical and chemical methods

available for engineering EVs. The quercetin nanoparticles loaded

EVs act in two ways: (a) QCT will aid in combating the associated

complications with SARS-CoV-2, such as inflammation, reactive

oxygen species, and the regulation of genes involved in the release of

cytokines and pro-inflammatory cytokines; and (b) the presence of

ACE-2 receptors on the lungs derived EVs will show strong binding

affinity with the S protein of the SARS-CoV-2 virus and thus As a

result, developing QCT-loaded EVs as a therapeutic drug delivery

approach is a better option to investigate for the treatment of viral

and inflammatory diseases, such as SARS-CoV-2 infection. Several

pre-clinical and clinical trials within this domain are needed to

make this prospective therapy into a translational aspect within

clinics. QCT is a GRAS molecule as per the USFDA guidelines and

accordingly it may be exploited along with the EVs as antivirals and

as drug constituent to control the symptoms of the COVID-19. In

future research is needed to further explore the different types of cell

sources derived EVs containing the QCT nanoparticles for effective

treatment of comorbidities associated with the COVID-19. Further
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translational therapeutics can be developing in the form of oral and

also inhaler medicine using this therapeutics.
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