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Background: Combination therapy with immune checkpoint inhibitors (ICIs)

may benefit approximately 10-20% of microsatellite-stable colorectal cancer

(MSS-CRC) patients. However, there is a lack of optimal biomarkers. This study

aims to understand the predictive value of epigenetic-related gene mutations

in ICIs therapy in MSS-CRC patients.

Methods:We analyzed DNA sequences and gene expression profiles from The

Cancer Genome Atlas (TCGA) to examine their immunological features. The

Harbin Medical University Cancer Hospital (HMUCH) clinical cohort of MSS-

CRC patients was used to validate the efficacy of ICIs in patients with

epigenetic-related gene mutations (Epigenetic_Mut).

Results: In TCGA, 18.35% of MSS-CRC patients (78/425) had epigenetic-related

gene mutations. The Epigenetic_Mut group had a higher tumor mutation burden

(TMB) and frameshift mutation (FS_mut) rates. In all MSS-CRC samples,

Epigenetic_Mut was elevated in the immune subtype (CMS1) and had a strong

correlation with immunological features. Epigenetic_Mut was also associated with

favorable clinical outcomes in MSS-CRC patients receiving anti-PD-1-based

therapy from the HMUCH cohort. Using immunohistochemistry and flow

cytometry, we demonstrated that Epigenetic_Mut samples were associated with

increased anti-tumor immune cells both in tumor tissues and peripheral blood.
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Conclusion: MSS-CRC patients with epigenetic regulation impairment exhibit

an immunologically active environment and may be more susceptible to

treatment strategies based on ICIs.
KEYWORDS

immune checkpoint inhibitor therapy, biomarker, microsatellite-stable, colorectal
cancer, epigenetic-related gene mutations
Introduction

Immune checkpoint inhibitor (ICI) therapy has achieved

impressive success in deficient mismatch repair (dMMR)/

microsatellite instability-high (MSI-H) colorectal cancer

(CRC). ICI has been considered a standard therapy by the

FDA, including the use of programmed death receptor 1 (PD-

1) monoclonal antibodies and CTL-associated protein 4 (CTLA-

4) monoclonal antibodies (1–3). However, the vast majority of

CRC cases (approximately 85%) are characterized by proficient

mismatch repair (pMMR)/microsatellite stability (MSS) tumors

that do not respond to ICIs (4). Recent studies suggest that a

subgroup (approximately 10-20%) of MSS-CRC patients might

benefit from combination regimens of ICIs (5–7). Therefore,

predictive biomarkers for screening these patients are

urgently needed.

Current clinical and investigational studies of screening

MSS-CRC patients who would benefit from ICIs treatment are

limited. PD-L1 expression is a classic biomarker, but the

Keynote-028 study demonstrated that PD-L1+ MSS-CRC

patients could not benefit from ICI therapy (8). POLD1/POLE

mutations are predictive but occur in only 1% of MSS-CRC

patients (9). Biomarkers such as tumor mutation burden (TMB),

tumor-infiltrating lymphocytes (TIL), neo-antigen load (NAL),

and immune-regulatory gene expression profiling (iGEP) may

allow the selection of clinical patients for ICIs. However, the lack

of uniform detection methods and validated cutoffs limit the use

of these methods (5, 10–12). Several emerging biomarkers, such

as gut microbiota and T-cell-receptor (TCR) sequencing, have

also shown predictive value, although they are not yet clinically

applicable (7, 13). DNA damage response (DDR) gene

mutations may induce a hypermutational phenotype (14), and

recent studies have shown that patients with MSS-CRC and

mutations in the DDR system have better immune responses

and outcomes following ICI therapy (15, 16). However, the

pathogenicity of different DDR gene mutations in MSS-CRC

remains unclear, and their incidence is significantly lower than

in endometrial, ovarian, or biliary tract cancers (17).

Epigenomic alterations can affect tumor immunogenicity

and anti-tumor responses by regulating genome stability and

chromatin accessibility (18). Additionally, several epigenetic-
02
related gene mutations have been shown to exhibit predictive

functions in ICI therapy for multiple types of tumors. ARID1A,

an AT-rich interactive domain-containing protein 1A, is a

component of the switching defective/sucrose non-fermenting

(SWI/SNF) complex that plays a role in chromatin remodeling

(19), and increasing evidence suggests that ARID1A alterations

are correlated with better outcomes after ICI therapy for bladder

cancer, nonsmall-cell lung cancer (NSCLC), and gastric cancer

(20, 21). ARID1A mutation is defined as an immunologically

active subgroup in MSS-CRC patients with abundant intra-

tumoral T-cell infiltration (22). Lysine methyltransferase 2

(KMT2) family members facilitate transcription and gene

accessibility by methylating lysine 4 on histone H3 (H3k4)

(23), and KMT2 family mutations have also been linked to a

favorable response to ICIs in multiple cancers (24).

Furthermore, as identified using clustered regularly interspaced

short palindromic repeats (CRISPR), KMT2D mutant tumors

exhibit an increased mutation burden, IFN-g-stimulated antigen

presentation, and a higher sensitivity to ICIs. Moreover,

disruption of DNA methylation signatures has been identified

as a marker of anti-PD-1 therapy efficacy in NSCLC (25), and

TET1, a DNA demethylase, enhances the immunotherapeutic

effect (26). Although this evidence points to the role of epigenetic

regulation in anti-tumor immune responses, there is no clinical

data on the association between comprehensive epigenetic-

related gene mutations (mutations in genes that are involved

in epigenetic modifications) and the clinical benefit of ICIs in

MSS-CRC.

Given the proposed role of epigenetic regulation impairment

in predicting the response to ICIs, we hypothesize that

epigenetic-related gene mutations in MSS-CRC cause

hypermutation and improve the expression of immune

response gene sets. As a result, we conducted this study to

clarify the value of epigenetic-related gene mutations as an

indicator of immunotherapy efficacy in patients with MSS-

CRC. For this purpose, we analyzed whole-exome sequencing

(WES) data from TCGA to study TMB, frameshift mutation

(FS-mutation), and immune characteristics of Epigenetic_Mut

and Epigenetic_Wt groups of MSS-CRC samples. Additionally,

in a Chinese clinical MSS-CRC cohort of 89 patients who

received PD-1-based treatment, we found that Epigenetic_Mut
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was associated with favorable clinical outcomes. Here, we report

the relationships between epigenetic-related gene mutations and

TMB, FS-mutation, immunomodulatory mRNA expression

signature, and ICI therapy efficacy in patients with MSS-CRC.
Materials and methods

Patient information and sample collection

To determines the incidence of epigenetic-related gene

mutations in MSS-CRC, we analyzed DNA sequencing and

gene expression profiles of 514 MSS-CRC patients from two

cohorts: (1) a TCGA cohort consisting of 425 MSS-CRC patients

and (2) a HMUCH cohort comprising 89 Chinese patients with

annotated response and mutational data from Harbin Medical

University Cancer Hospital (the inclusion and exclusion criteria

are shown in Supplementary Figure 1). This study was approved

by the Ethics Committee of the Harbin Medical University

Cancer Hospital (No. KY2022-20).
Epigenetic-related gene status definition

Epigenetic-related gene status (Epigenetic_Wt or

Epigenetic_Mut) was defined based on the presence of a loss-

of-function (LOF) variant in 68 genes that have been proposed

as core genes of epigenetic regulation (18). Supplementary

Table 1 presents a detailed description. Nonsense, frameshift,

and splice site changes within consensus regions and start lost/

gained variants were considered to be LOF variants. Missense

and in-frame variants were excluded from the analysis.
DNA extraction and sequencing

For the TCGA cohort, gene mutation data were acquired

using the GDC Data Portal. We assessed the mutational status of

epigenetic-related genes in CRC using exome-sequencing data

fromHMUCH. For analysis, DNA was extracted using a DNA Kit

(Applied Biosystems, Foster City, CA, USA), from whole blood

samples or formalin-fixed paraffin-embedded (FFPE) tissues of

each patient. The lymphocytes from the whole blood samples were

isolated by centrifugation at 1,600 × g for 10 min in red cell lysis

buffer (Tiangen, RT122, Beijing, China) at 25°C, and DNA was

extracted using a genomic DNA kit (Tiangen, DP304, Beijing,

China). We sheared the DNA into fragments of 150-200 bp using

an ultrasonicator and used a KAPA Kit (KAPA Biosystems,

Wilmington, MA, USA) to prepare DNA fragment libraries for

the Illumina platform (Illumina HiSeq X-Ten, Illumina, USA).

Probe hybridization capture technology and Illumina high-

throughput sequencing were used to detect the exonic regions
Frontiers in Immunology 03
and some intronic regions of 825 tumor-related genes (Genetron

Health Co., Ltd. Beijing, China) (Supplementary Table 2).
Analysis of MSI status, TMB, and FS-
mutation in the TCGA and
HMUCH cohorts

MSI status for the TCGA cohort was determined using the

MSI sensor (version 0.5). In brief, for MSI sensor scores < 3.5,

samples were considered to be MSS; otherwise, they were

considered MSI (27). Published studies using the TCGA

cohort provided FS-mutation and TMB data (28–30), and MSI

status for the HMUCH cohort was determined using a 3730

sequencer (Life Technologies, Carlsbad, CA, USA). For this

purpose, whole blood samples or prepared FFPE tissue were

diluted to 2 ng/mL or 20 ng/mL, respectively, followed by the

addition of 2.8 mL of ddH2O, 4 mL of 2.5× Buffer A, 2 mL of 5×

MSI Primer Mix, and 0.2 mL of Taq DNA Polymerase I. PCR

amplification was carried out as follows: pre-denaturation at 95°

C for 5 min; followed by 30 cycles at 94°C for 30 s, 60°C for

1 min, and 70°C for 1 min; and then a final extension at 60°C for

30 min. Finally, the temperature was reduced to 15°C, and the

samples were centrifuged at 3,000 × g for 1 min. NR-21 and

BAT-26 were labeled with blue fluorescent dye, BAT-25 with

green dye, and NR-24 and MONO-27 with yellow dye. Finally,

tumors were classified as MSI-H if two or more markers showed

instability; otherwise they were classified as MSS.
Analysis of the consensus molecular
subtypes (CMSs) in the TCGA cohort

Consensus molecular subtypes (CMSs) are classification

systems for CRC and include immune (CMS1), canonical

(CMS2), metabolic (CMS3), and mesenchymal (CMS4)

subtypes. These subtypes were identified through a large-scale

analytical study and have unique molecular and metabolic

characteristics (31).
Immune-related signature analysis

Our study compared the RNA expression of patients with

Epigenetic_Mut and Epigenetic_Wt using gene signatures for

the IFN-g pathway and other immunological responses

(Supplementary Table 3) (12, 32). We obtained TCGA

transcriptome profiles from the GDC data portal, and used

transcripts per kilobase million (TPM) normalization to

normalize gene expression. The geometric mean of gene

expression levels in the log2 (TPM + 1) format was used to

evaluate immune signatures.
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Clinical outcomes

The objective response rate (ORR), disease control rate (DCR),

progression-free survival (PFS), and overall survival (OS) were the

main clinical outcomes of interest. The Response Evaluation

Criteria in Solid Tumors (RECIST) version 1.1 was used for the

assessment of ORR and divided into complete response (CR) and

partial response (PR). DCRwas defined asCR, PR, or stable disease

(SD) lasting more than six months. PFS was evaluated from when

immunological therapy was initiated until progression or death,

and patients who did not progress were examined at the last scan.

OSwas evaluated from the start of ICI therapyuntil patientdeath or

the endof the trial, and the patientswithwhomwe lost contactwere

classified based on the date of last contact.
Immunohistochemistry (IHC)

Primary tumor paraffin sections of 4 mm were processed for

immunochemistry to evaluate CD8+ and FOXP3+ lymphocytes

according to the following protocol: roast, deparaffination, and

rehydration before performing heat-mediated antigen retrieval

with EDTA buffer (pH 9.0), inactivation of endogenous

peroxidase activity with 3% H2O2, incubation with antibody

against CD8 (ab101500, 1:500; Abcam, Cambridge, UK) or

against FOXP3 (ab200334, 1:500; Abcam) at 4°C overnight,

exposure to a DAB IHC Detection Kit after incubation with

biotinylated secondary antibodies, and counterstaining with

Mayer’s hematoxylin solution. An open-source platform for

biological-image analysis (Fiji/ImageJ) was used to estimate

the densities of CD8+ and FOXP3+ lymphocytes.
Flow cytometry analysis

The peripheral blood mononuclear cells (PBMC) of CRC

patients were isolated by centrifugation with erythrocytes lysate and

were used to analyze PD1+CD8+T cells and CD3-CD56+CD16+NK

cells by flow cytometry. The PBMC were stained for 30min on ice

using the following antibodies: FITC anti-human CD8 (344704,

Biolegend), PE anti-human PD1(367404, Biolegend), APC anti-

human CD3 (300312, Biolegend), PE anti-human CD56 (985902,

Biolegend), and PerCP anti-human CD16 (302030, Biolegend).

Stained cell suspensions were analyzed using the BD flow

cytometer (BD Accuri C6 Plus), and data analysis was performed

using FlowJo_v10.8.1.
Statistical analysis

Fisher’s exact test was used to analyze the relationship

between epigenetic-related gene mutations and the ORR or
Frontiers in Immunology 04
DCR, and the Kaplan–Meier method and log-rank test were

employed to examine the PFS and OS probabilities of the

Epigenetic_Mut and Epigenetic_Wt CRC groups. Based on the

Mann–Whitney U-test, TMB, FS-mutation, tumor-infiltrating

lymphocytes, expression of immune-related genes, and immune

signatures were compared between the Epigenetic_Mut and

Epigenetic_Wt CRC groups. Statistical analysis was conducted

using two-sided tests with a nominal significance level of 0.05

using R version 3.5.2.
Results

The mutational landscape of epigenetic-
related genes of MSS-CRC in the
TCGA cohort

A total of 68 epigenetic-related genes involved in 13 different

pathways were included in the current research, including genes

involved in modifying DNA, histones, and protein complexes

that reshape chromatin structure (Supplementary Table 1). In

the TCGA cohort, MSI-H andMSS-CRCs had epigenetic-related

gene mutation frequencies of 66.67% (50/75) and 18.35% (78/

425), respectively. The three most frequently mutated pathways

in the MSS-CRC cases from TCGA were SWI_SNF,

Histone_methylase, and CHD (Figure 1A), and the epigenetic-

related genes ARID1A, KMT2C, and RSF1 had the highest

mutation rates in the TCGA cohort (Figure 1B).
Epigenetic-related gene mutations are
linked with the TMB, FS-mutation, and
molecular subtype of CRC

High levels of TMB and FS-mutations (FS_mut) reflect a

high degree of genomic instability and potential immunogenicity

of a tumor, and both of these are therefore potential biomarkers

of immune checkpoint inhibitor responsiveness. Hence, we

examined the relationships between TMB, FS_mut, and

epigenetic-related gene mutation status. In TCGA cohort,

epigenetic-related gene mutations were associated with an

increased incidence of TMB in MSS-CRC (median mutation

rate of 4.76/mb vs. 4.99/mb in Wt and Mut cases, respectively; p

= 7.4e-05; Figure 2A). A higher rate of FS_mut was also linked

with epigenetic-related gene mutations in MSS-CRC (median

frameshift mutation rate of 1.39/mb vs. 1.79/mb in Wt and Mut

cases, respectively, p = 3.5e-06; Figure 2B). Molecular subtypes of

CRC (CMS) are currently a highly recognized classification

method for CRC that can accurately guide patient treatment

and prognosis. CMS1, also known as the immune subtype, has

better immune activity and high reactivity to ICIs. Here, we

analyzed the distribution of Epigenetic_Mut samples based on
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1039631
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2022.1039631
molecular subtype in all CRC and MSS-CRC cases (Figures 2C,

D). Among the CMS1-CRC cases, 74.12% were Epigenetic_Mut

samples (74.12%, 63/85), but in MSS CMS1-CRC cases, this rate

was 40% (12/30). Both for all samples and MSS CRC specifically,

Epigenetic_Mut samples were enriched in the CMS1 (immune

subtype) group.
Epigenetic_Mut is related to increased
immune activity in MSS CRC

To identify the tumor immune microenvironment, we

compared Epigenetic_Mut and Epigenetic_Wt for immune

signatures, tumor-infiltrating lymphocytes, and expression of

immune checkpoints and key genes. We demonstrated that

epigenetic-related gene mutations increased the expression of

immune response genes, including those involved in the IFN-g
pathway, antigen presentation, and cytotoxic T-cell function

(Figure 3A). In addition, the expression of NK cell-related genes
Frontiers in Immunology 05
was increased in the Epigenetic_Mut group. Other immune cells

also showed an upward trend, but no statistical difference was

observed due to the limited cohort size (Figure 3B). Finally, we

compared the expression of immune checkpoints and key genes

between the two groups. In line with the immune response

pathway, several immune checkpoints and key genes were

upregulated in the Epigenetic_Mut group. In particular, the

expression of LAG3 and HAVCR2 was significantly elevated,

and elevated levels of TNFRSF4, PDCD1, and IL4l1 were very

nearly statistically significant (Figure 3C).
Epigenetic_Mut predicts favorable
clinical outcomes following ICI therapy

Next, to validate the function of epigenetic-related gene

mutations further in predicting responsiveness to ICI therapy

in MSS-CRC, we collected a clinical cohort of 89 MSS-CRC

patients who had received PD-1 mAb-based treatment. Table 1
A

B

FIGURE 1

Mutational landscape of Epigenetic-related genes associated with MSS-CRC cases from the TCGA and HMUCH cohorts. (A) The frequency of
epigenetic regulatory pathway alteration in MSS-CRC cases and MSI_H samples from the TCGA cohort. (B) The top 20 mutated epigenetic-
related genes in MSS-CRC samples from the TCGA cohort.
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shows the baseline patient characteristics based on epigenetic-

related gene status. Of the 89 patients, 24 had Epigenetic_Mut,

and 65 had Epigenetic_Wt. Using RECIST version 1.1, we

evaluated the patients’ best overall responses. Compared to

Epigenetic_Wt, Epigenetic_Mut had a significantly higher

ORR (Figure 4A, 37.50% (9/24) vs. 15.38% (10/65), Fisher’s

exact test P = 0.039). As for DCR, the rate was 66.67% (16/24) in

patients with epigenetic-related gene mutations from ICI

treatment but only 36.92% (24/65) in patients without

epigenetic-related gene mutations (Figure 4B, Fisher’s exact

test P = 0.017). As expected, PFS was greatly improved in

patients with epigenetic-related gene mutations compared to

those without epigenetic-related gene mutations in this cohort

(Figure 4C, mPFS:6.00 vs. 3.17 months, Log_rank P = 0.002, HR

= 0.4778), and ICI treatment also had a greater benefit on OS in

the Epigenetic-Mut group than that in the Epigenetic-Wt group.

(Figure 4D, mOS: 10.80 vs. 6.07 months, Log_rank P = 0.003,

HR = 0.4279). In addition, we screened 9 genes with high

mutation frequency from all epigenetic-related genes, whose

predictive value has been demonstrated in other solid tumors,
Frontiers in Immunology 06
including ARID1A, ATRX, KMT2A/B/C/D, and TET1/2/3. The

results showed that MSS-CRC with these gene mutations had

more considerable ORR (Supplementary Table 4, 8/16, 50%) and

DCR (Supplementary Table 4, 13/16, 81.25%).
The abundance of immune cells in tumor
tissue and peripheral blood of patients
with or without epigenetic-related
gene mutation

We explored the densities of CD8+ and FOXP3+ cells in MSS-

CRC samples with different epigenetic-related gene statuses using

IHC. Of the 34 MSS-CRC samples, 10 had epigenetic gene

mutations. Further, we captured representative images of CD8+

cells and FOXP3+ cells from three samples. The first patient had an

ARID1A mutation (ARID1A Frame_Shift_Del), and the second

patient had a KMT2D mutation (KMT2D Nonsense_mutation).

Both samples showed increased CD8+ cell density and decreased

FOXP3+ cell density in tumor tissues (Figures 5A, B). However, in
A B

DC

FIGURE 2

Epigenetic-related gene mutations are linked with the TMB, FS-mutation, and molecular subtypes of CRC. (A) TMB violin plot of Epigenetic_Mut
and Epigenetic_Wt from MSSCRC samples. (B) FS-mutation rate violin plot of Epigenetic_Mut and Epigenetic_Wt from MSS-CRC samples. (C)
Molecular subtype-specific fold enrichment of epigenetic-related genes mutation in all CRC cases (MSI-H/MSS). (D) Molecular subtype-specific
fold enrichment of ARID1A mutation in MSS-CRC.
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the third patient, who did not present any epigenetic-related gene

mutations, the density of CD8+ lymphocytes was lower, and the

density of FOXP3+ lymphocytes was higher than that of the other

two (Figure 5C). CD8+ and FOXP3+ cell densities were counted in

38 patients (Epigenetic_Mut, N = 10; Epigenetic_Wt, N = 28), and

from this we discovered that CD8+ cell density increased in the

Epigenetic_Mut group (Figure 5D) and that the FOXP3+ cell

density decreased in the Epigenetic_Mut group (Figure 5E).

Furthermore, the ratio of CD8/FOXP3 cel ls in the

Epigenetic_Mut group was significantly higher than that in the

Epigenetic_Wt group (Figure 5F). Next, we collected peripheral

blood from 12 patients with MSS-CRC (3 with epigenetic-related

genemutations) andmeasured the proportion ofCD8+PD1+T cells

and CD3-CD56+CD16+NK cells by flow cytometry.We found that

both the proportion of CD8+PD1+T cells and CD3-

CD56+CD16+NK cells was higher in the Epigenetic_Mut group

(Figures 6A, B).
Frontiers in Immunology 07
Discussion

Although ICI-based combination therapies have shown

certain effectiveness in pMMR/MSS CRC, especially in

combination with antiangiogenic agents (Lenvatinib or

Regorafenib) that resulted in an ORR of 20-30% (6, 33), most

patients still cannot benefit from the combination therapy

because of the high heterogeneity of pMMR/MSS CRC.

Recently, the MAYA phase II trial (NCT03832621) showed

that MSS-CRC patients with silenced MGMT could benefit

from ICIs combined with temozolomide treatment (34). This

trial showed 36% for 8-month PFS, 42% for ORR, and 18.4

months for the median OS. Therefore, screening the MSS CRC

patients with active anti-tumor immune response may be the key

to improving the efficacy of immunotherapy. However, the

predictive biomarkers for ICI therapy in MSS-CRC patients

are limited.
A

B

C

FIGURE 3

Epigenetic_Mut is associated with increased immune activity in MSS-CRC. (A) The RNA expression of immune response gene sets in MSS-CRC
based on the epigenetic-related genes’ mutational status. (B) The RNA expression of immune cells gene sets in MSS-CRC based on the
epigenetic-related genes’ mutational status. (C) The RNA expression of a single immune response gene in MSS-CRC based on the epigenetic-
related genes’ mutational status.
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pMMR/MSS CRC is a cold tumor that contains few

neoantigens and either no or inactive TILs (35). Meanwhile,

CRC is a multilayered heterogeneous disease with specific

treatment challenges and opportunities (36). Additionally,

Previous studies have reported that epigenetic-related gene

mutations affect both the tumor microenvironment and efficacy

of ICIs (24–26). Mechanistically, epigenetic modification can

reshape the tumor microenvironment by affecting genomic

instability and enhancing the immunogenicity of tumor cells.

First, epigenetic modification can affect the DNA damage repair

response by regulating the accessibility of chromatin. Studies have

shown that epigenetic-related gene mutations can lead to

increased TMB in tumor cells, such as ARID1A and KMT2D.
Frontiers in Immunology 08
ARID1A specifically has a 6.7% mutation rate in MSS-CRC (22)

and may increase the instability of the genome by adjusting the

MMR pathway (21, 37). Mutations in the KMT2D gene are

common in cancer patients, and their deficiency can increase

the levels of genomic DNA damage and TMB, as well as increase

transcription instability. Clinical studies have shown that

individuals with mutations in genes from the KMT family are

more likely to benefit from ICI therapy (24, 25). Furthermore,

epigenetic-related gene mutation enhances the immunogenicity of

tumor cells. Accounting for 5%-10% of genomic DNA sequences,

human endogenous retroviruses (ERVs) are remnants of the

evolution of germline integrations of exogenous infectious

retroviruses (38, 39). These exogenous genes are not expressed

in healthy tissues other than germ cells but are often abnormally

expressed in tumors with epigenetic regulation defects. Here,

neoantigen expression increases immunogenicity and triggers an

innate immune response against tumors (40, 41). Recently,

genome-wide technologies have revealed frequent mutations in

epigenetic modifier genes, particularly in cancers (42). It is

therefore necessary to analyze systematically the immune

activity and the effect of immunotherapy in MSS-CRC patients

with epigenetic regulation impairment.

In our study, we systematically analyzed 68 epigenetic-

related genes from 13 pathways involved in chromatin

regulatory processes in MSS-CRC samples. The mutation rate

of epigenetic-related genes in the TCGA cohort was 18.35%.

This mutation frequency was higher than that of any previous

marker in the population, such as POLE or DDR mutations, and

was closer to the potential benefit ratio in MSS-CRC clinical

trials. ARID1A, KMT2C, RSF1, CHD9, PBRM1, and ATRX were

the most mutated genes in the TCGA cohort, accounting for

approximately 75% of the epigenetic-related gene-mutated MSS-

CRC patients. This is consistent with previous reports, and

ARID1A is thus a marker gene that should be investigated in

clinical practice.

Using bioinformatics algorithms, we also assessed whether

the MSS-CRC samples with epigenetic-related gene mutations

from TCGA had better immune activity, including immune

signatures, tumor-infiltrating lymphocytes, and expression of

immune checkpoints and key genes. Furthermore, we validated

our bioinformatic findings using immunohistochemical analyses

of CD8+ and FOXP3+ cells from a cohort of MSS-CRC patients,

and similar results were obtained at the histopathological level.

In the Epigenetic _Mut group, CD8+ cells were higher and

FOXP3+ cells were lower. The Epigenetic _Mut group also had

a higher proportion of CD8/FOXP3 cells than the

Epigenetic_Wt group. The VOLTAGE trial demonstrated that

among MSS-CRC patients receiving ICIs as neoadjuvant

treatment, patients with an elevated CD8/FOXP3 cell ratio

were more likely to achieve pathologic complete response

(pCR), suggesting that the CD8/FOXP3 cell ratio may be a

predictor for ICI therapy efficacy (43).
TABLE 1 Patient and disease characteristics of the validation set of
MSS-CRC patients receiving ICI therapy.

Characteristics Epigenetic_Mut
(n = 24)

Epigenetic_Wt
(n = 65)

P-
value*

Age 0.651

<60 12 36

≥60 12 29

Sex 0.423

Male 13 36

Female 11 29

ECOG PS 0.857

0 16 42

≥1 6 23

ICI line 0.967

1 0 2

2 6 16

≥3 18 47

Primary tumor
sidedness

0.334

Right 10 20

Left 14 45

Liver metastases 0.683

With Liver 10 24

Without Liver 14 41

Regimen 0.951

ICIs + TKIs 10 26

ICIs + Chemotherapy 11 32

ICIs +
Chemoradiotherapy

3 7

Best overall
response**

0.026

CR/PR 9 10

SD 7 14

PD 8 41
* Fisher’s exact test or Wilcoxon-Mann-Whitney test, as appropriate.
** CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease.
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Finally, we validated the predictive power of epigenetic-

related gene mutations in the HMUCH cohort of 89 MSS

CRC patients who received immunotherapy and discovered

that patients with epigenetic mutations were more likely to

benefit from ICI-based combination therapy and had better

clinical outcomes. These preliminary results demonstrate that

epigenetic-related gene mutations can predict the response to

ICIs in MSS-CRC patients.

This study has several limitations, including the validation

cohort coming from a single-center, the small size of the cohort,

and the lack of validation in other populations. This is because

ICI-based regimens have not been recommended by any clinical

guidelines for MSS-CRC. Numerous patients included in this

study experienced the failure of standard treatment, and the

treatment compliance and completeness of the clinical

information in many of these patients, were not ideal.

Additionally, since the genetic information in the HMUCH

cohort was obtained from clinical testing, transcriptomic data

were lacking. Thus, our TCGA cohort findings could not be

validated. Instead, we performed immunohistochemical staining

analysis of pathological sections to validate the immune
Frontiers in Immunology 09
activation status of the Epigenetic _Mut group, but a larger-

scale validation remains necessary. Furthermore, the application

of ICIs in MSS-CRC has not been standardized, and most

patients enrolled in our study were patients who had

experienced multiple failed lines of treatment, bringing

considerable heterogeneity to the population of this study.

Therefore, future prospective studies with larger cohort studies

are needed.
Conclusion

In conclusion, our data suggest that identifying epigenetic-

related genemutations might help select the right immunotherapy

forMSS-CRCpatients andcanbeusedasabiomarker topredict ICI

therapy effectiveness. Importantly, the status of epigenetic-related

gene mutations is highly accessible from clinical genetic testing,

although it is often overlooked by clinicians. Further exploration of

the molecular mechanisms underlying the increased effectiveness

in specific MSS-CRC patients and prospective clinical trials are

therefore warranted.
A B

DC

FIGURE 4

Epigenetic_Mut predicts favorable clinical outcomes following ICI therapy. (A) Histogram presenting the proportion of patients that acquired
ORR in the Epigenetic_Mut and Epigenetic_Wt groups. (B) Histogram presenting the proportion of patients that acquired DCR in the
Epigenetic_Mut and Epigenetic_Wt groups. (C) Kaplan–Meier estimates of PFS between Epigenetic_Mut or Epigenetic_Wt group patients in the
discovery cohort. (D) Kaplan–Meier estimates of OS between Epigenetic_Mut or Epigenetic_Wt group patients in the discovery cohort.
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FIGURE 5

Infiltration of CD8+ and FOXP3+ lymphocytes in the tumors of patients with or without epigenetic-related gene mutations. (A) A Representative
image of CD8+ and FOXP3+ lymphocytes infiltrating the MSS-CRC with ARID1A Frame_Shift_Del. (B) A Representative image of CD8+ and
FOXP3+ lymphocytes infiltrating the MSS-CRC with KMT2D Nonsense_Mutation. (C) A Representative image of CD8+ and FOXP3+ lymphocytes
infiltrating the MSS-CRC without epigenetic-related gene mutations. (D) Tumors with epigenetic-related genes mutation had significantly higher
levels of intra-tumoral CD8+ lymphocytes than tumors with wild-type epigenetic-related genes. (E) Tumors with epigenetic-related genes
mutation had significantly lower levels of intra-tumoral FOXP3+ lymphocytes than tumors with wild-type epigenetic-related genes. (F) The
Epigenetic_Mut group had a higher CD8/FOXP3 cell ratio than the Epigenetic_Wt group.
BA

FIGURE 6

Proportion of CD8+PD1+T cells and NK cells in the peripheral blood of patients with or without epigenetic-related gene mutations. (A) The
Epigenetic_Mut group had a higher proportion of CD8+PD1+T cells compared to the Epigenetic_Wt group in peripheral blood. (B) The
Epigenetic_Mut group had a higher proportion of NK cells compared to Epigenetic_Wt group in peripheral blood.
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