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Endothelial glycocalyx in
hepatopulmonary syndrome: An
indispensable player mediating
vascular changes
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Jiantao Jiang1 and Shaomin Li1*

1Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an,
Shaanxi, China, 2Division of Immunology and Pathogenesis, Department of Molecular and Cell
Biology, University of California, Berkeley, Berkeley, CA, United States, 3Department of
Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
Hepatopulmonary syndrome (HPS) is a serious pulmonary vascular

complication that causes respiratory insufficiency in patients with chronic

liver diseases. HPS is characterized by two central pathogenic features—

intrapulmonary vascular dilatation (IPVD) and angiogenesis. Endothelial

glycocalyx (eGCX) is a gel-like layer covering the luminal surface of blood

vessels which is involved in a variety of physiological and pathophysiological

processes including controlling vascular tone and angiogenesis. In terms of

lung disorders, it has been well established that eGCX contributes to

dysregulated vascular contraction and impaired blood-gas barrier and fluid

clearance, and thus might underlie the pathogenesis of HPS. Additionally,

pharmacological interventions targeting eGCX are dramatically on the rise. In

this review, we aim to elucidate the potential role of eGCX in IPVD and

angiogenesis and describe the possible degradation-reconstitution

equilibrium of eGCX during HPS through a highlight of recent literature.

These studies strongly underscore the therapeutic rationale in targeting

eGCX for the treatment of HPS.

KEYWORDS

hepatopulmonary syndrome, endothelial glycocalyx, intrapulmonary vascular
dilatations, angiogenesis, nitric oxide, endothelial cell, monocyte
Abbreviations: HPS, hepatopulmonary syndrome; eGCX, endothelial glycocalyx; CCL2, C-C motif

chemokine ligand 2; NO, nitric oxide; iNOS, inducible nitric oxide synthase; eNOS, endothelial nitric

oxide synthase; ET−1, endothelin−1; ETB, type B endothelin receptor; VEGF, vascular endothelial growth

factor; FGF, fibroblast growth factor; GAG, glycosaminoglycan; TNF-a, tumor necrosis factor a; IL-1b,

interleukin-1b; PAMPs, pathogen associated molecular patterns; DAMPs, damage associated molecular

patterns; PRRs, pattern recognition receptors; MMPs, matrix metalloproteinases; ADAMs, a disintegrin

and metalloproteinases; EXT1, exostosin 1; Ang1, angiopoietin 1; S1P, sphingosine 1.
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1 Introduction

Hepatopulmonary syndrome (HPS) is a serious vascular

complication that causes respiratory insufficiency in patients

with chronic liver diseases. The incidence of HPS ranges from 5

to 32% in the setting of liver cirrhosis and markedly increases the

mortality of affected patients (1). HPS develops with two central

pathogenic features—pulmonary microvascular dilatation and

angiogenesis, which collectively lead to gas exchange

abnormality and impaired oxygenation in the absence of

intrinsic cardiopulmonary diseases. Abnormal oxygenation can

be diagnosed clinically by an elevated alveolar-arterial oxygen

gradient while changes in intrapulmonary microvascular

dilatation are now routinely assessed through contrast-

enhanced transthoracic echocardiography. Despite

advancements in diagnosis, liver transplantation remains the

only effective therapeutic option for HPS. Investigations based

on the animal model of common bile duct ligation (CBDL) have

provided significant progresses towards effective HPS therapy (2,

3). However, a huge gulf continues to separate the bench from

the bedside, thus necessitating a comprehensive understanding

of the mechanisms underlying the pathogenesis of HPS.

The luminal surface of blood vessels is covered by a

polysaccharide-abundant gel-like layer called endothelial

glycocalyx (eGCX). First discovered in 1966 with the aid of

transmission electron microscopy, the eGCX is mainly

configured by proteoglycans and glycoproteins anchored to the

endothelial cell membrane that serve as a foundation for the rest

of the glycocalyx constituents (2). The proteoglycans of eGCX

are principally syndecans and glypicans. They often present on

the endothelium with glycosaminoglycan chains such as heparan

sulfate and chondroitin sulfate (3). The composition and

structure of eGCX are in a state of dynamic replenishment

and are delicately regulated by enzymatic degradation

“shedding”, de novo biosynthesis of new molecules, and

recruitment of circulating molecules from the blood. In

addition, eGCX is heterogeneous across different species,

vascular beds, organs and shear stress rates based on varying

arrangements of glycosaminoglycan chains and composition (4).

The existence of eGCX on the surface of endothelium precludes

the direct attachment or adhesion of plasma proteins, molecules,

and circulating leukocytes. In that, eGCX is deemed to be a

protective barrier by preventing the disordered activation of

endothelial cells and the disruption of cellular junctions and the

basement membrane. Besides protecting endothelium integrity,

the eGCX serves as a versatile regulator in microvessels in a

variety of physiological and pathophysiological processes like the

shear stress response, vascular contraction, coagulation,

inflammation, vascular regeneration, and others (2). It has

been established that eGCX is highly useful in diagnosis and

treatment of many diseases, especially sepsis, acute respiratory

distress syndrome (ARDS), and shock. As dysfunction of the
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eGCX accompanies many disorders, pharmacological

interventions targeting this covering layer are dramatically on

the rise in the past decade (5, 6).

It has been established that pulmonary eGCX is frequently

dysregulated, leading to impaired blood-gas barrier and fluid

clearance in lung diseases, and thus may underlie the

pathogenesis of HPS (7, 8). However, the detailed molecular

mechanisms are not completely understood, masking the clinical

utility of eGCX for HPS treatment. In this narrative review, we

summarize the recent findings linking eGCX to the pathogenesis

of HPS in order to elucidate the potential therapeutic value of

targeting eGCX for HPS treatment.
2. The role of eGCX in lung diseases

Traditionally, the eGCX was seen as a protective component

to keep the integrity of endothelial barrier and defend against

circulating insults and stimuli. Recent studies have revealed that

the released GCX fragments can act as danger-associated

molecular patterns (DAMPs) that activate innate-immune

receptors leading to pathogenic consequences (4). Indeed, the

roles of eGCX in microcirculation are pleiotropic and

multifaceted. The pulmonary blood vessels are one of the most

important parts of the microcirculation and are responsible for

the collection of almost all the venous blood and circulating

antigens. They are the unique constituent of the blood-gas

barrier in combination with the alveoli. Therefore, the

disturbance of pulmonary eGCX can be more influential and

participate in many lung disorders, such as sepsis-associated

lung injury and ARDS (9) (Figure 1). In fact, it has been found

that the pulmonary eGCX layer is thinner than that of other

organs which might account for the complex lung defense

against internal and external insults (10).
2.1 Sepsis associated acute lung injury

Sepsis is a common and severe clinical manifestation

characterized by a systemic inflammatory response to infection

and has a mortality rate ranging from 17% to 26% (11). To date,

it has been acknowledged that sepsis is not merely a simplistic

cytokine response but a severe endothelial dysfunction

syndrome in response to intravascular and extravascular

infection. Interestingly, over 40% of septic patients develop

ALI, a syndrome initiated by degradation of the pulmonary

eGCX via inflammatory mechanisms (12). The inflammatory

responses during sepsis are particularly apparent within the

pulmonary circulation, which may be correlated to the high-

flow and low-pressure blood flow that permits the continuous

exposure to primed leukocytes and circulating pathogen/damage

associated molecular patterns (PAMPs/DAMPs). The activated
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leukocytes, especially neutrophils, release reactive oxygen species

(ROS) and pro-inflammatory cytokines such as tumor necrosis

factor alpha (TNF-a) and interleukin-1b (IL-1b). These

cytokines also facilitate the secretion of matrix-degrading

enzymes originating from leukocytes themselves, endothelium,

or peripheral organs and tissues, and thus contribute to the

degradation of eGCX (6, 13). Among these degrading enzymes, a

disintegrin and metalloproteinases (ADAMs), heparinase, and

hyaluronidase have been demonstrated to play important roles.

ADAMs can cleave syndecans, one of the major constituents of

eGCX, cytokine receptors, and cell adhesion molecules
Frontiers in Immunology 03
expressed by endothelial cells and leukocytes (14). As to

heparanase, it is capable of degrading heparin sulfate moieties,

further aggravating the disruption of eGCX (13, 15). According

to the study by Schmidt, et al., eGCX degradation involves the

specific loss of heparin sulfate caused by endothelial stored

heparanase, a TNF-a–responsive, heparin sulfate–specific

glucuronidase (12). The degradation of eGCX increases the

exposure of adhesion molecules on endothelium to circulating

leukocytes and contributes to neutrophil adhesion. Heparinase

inhibition prevented eGCX loss and neutrophil adhesion and,

accordingly, attenuated sepsis-induced ALI and mortality in
FIGURE 1

eGCX-related pulmonary diseases. The eGCX has been reported to participate in the pathogenic processes of multiple pulmonary diseases,
which include Sepsis associated acute lung injury (ALI), pulmonary virus infection, pulmonary arterial hypertension (PAH), hepatopulmonary
syndrome (HPS), postoperative lung injury, lung transplantation, lung cancer, and acute respiratory distress syndrome (ARDS). The mechanisms
involve endothelial barrier maintenance, hemodynamic mechanotransduction, vascular tone control, and angiogenesis.
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mice. Hyaluronidase cleaves hyaluronic acid (HA) and

attenuates the thickness of eGCX. Exogenous administration

of high-molecular-weight HA improves sepsis-induced lung

injury. In septic lung, eGCX degradation leads to vascular

hyper-permeability, abnormal vasodilation, microvascular

thrombosis, and augmented leukocyte adhesion, altogether

underlying the pathogenesis of ALI (12).
2.2 Postoperative lung injury

Postoperative lung injury is the leading cause of death

following thoracic surgery. It is mainly related to the

procedure of one-lung ventilation (OLV) during the thoracic

operation regardless of lung resection (16). Fluid overload,

ischemia-reperfusion, and massive transfusion also result in

lung damage (17). The eGCX may represent a common

pathway for pulmonary injury occurrence because it is affected

by most of the aforementioned procedures. During OLV, the

eGCX layer can be disrupted by mechanical and nonmechanical

stimuli. OLV-associated regional lung overdistension and

positive end expiratory pressure (PEEP) can narrow down the

pulmonary vascular bed, resulting in the direct attachment of

circulating leukocytes and platelets to eGCX (18). As in sepsis,

leukocytes produce and/or activate enzymes through secreted

proinflammatory cytokines to degrade the eGCX barrier and

result in endothelial damage, increased vascular permeability

and inflammatory tone, subsequently leading to alveolar injury

(19). Platelets with shedded eGCX fractions and damaged

vascular endothelium give rise to thrombosis in the pulmonary

microcirculation, which progressively exacerbate the ventilation-

perfusion mismatch during OLV (20). Besides, ischemia-

reperfusion and massive transfusion during thoracic surgery

both contribute to the accumulation of leukocytes, ROS and

cytokines within the pulmonary microvasculature and signify

the degradation of eGCX and injury of endothelium. Fluid

overload increases the shear stress which may directly scratch

the eGCX layer. It also stimulates the release of atrial natriuretic

peptide (ANP) which is associated with increased degradation of

eGCX, although the underlying mechanism remains

unclear (21).
2.3 Lung transplantation

Lung transplantation is the last therapeutic option for end-

stage respiratory diseases. Although the 1- and 5-year survival

rates post lung transplantation have increased substantially over

the past decades, ischemia–reperfusion injury (IRI) and immune

rejection remain the severe postoperative complications leading

to treatment failure (22). Pulmonary IRI after lung

transplantation is the main reason for primary graft

dysfunction (PGD), which is a major cause of mortality and
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morbidity in the postoperative period (23). IRI results in

noncardiogenic pulmonary edema and diffuse alveolar damage,

and later bronchiolitis obliterans syndrome and graft failure

(24). Degradation of the eGCX may be the earliest event when

the IRI occurs within the pulmonary microvasculature, which

further impairs the local microcirculation via vasoconstriction,

leukocyte adherence, and activation of the immune response (25,

26). eGCX degradation during posttransplant IRI can be

evidenced by elevated plasma levels of its constituents such as

heparan sulfate and syndecan-1, which have been proposed as

biomarkers of endothelial integrity. By contrast, the decrease of

these compounds in the circulation may predict graft

acceptability or successful protective interventions against IRI

according to the study of Sladden et al (25). Luckily, pulmonary

eGCX degradation induced by IRI has been reported to be

restored by some anesthetics such as lidocaine and

sevoflurane, which indicates a modality ameliorating

transplantation associated IRI (27). Degradation of eGCX may

also exacerbate immune rejection. While the mechanisms

remain unclear, recent studies indicate that eGCX degradation

constituents, in particular hyaluronan, are likely involved in

rejection (28). The latest finding that protecting the eGCX in

vascular allografts attenuates the acute and chronic rejection

after transplantation underlines the protective role of an integral

eGCX layer in organ transplantation (29). Another study by

Coulson-Thomas, et al. reported that umbilical cord

mesenchymal stem cells (UMSCs) can inhibit the adhesion

and invasion of inflammatory cells and the polarization of M1

macrophages by synthesizing a rich extracellular glycocalyx

composed of the chondroitin sulfate-proteoglycan versican

bound to a heavy chain (HC)-modified hyaluronan (HA)

matrix (HC-HA) (30). Considering these components also

exist in eGCX, this finding may reveal a potential mechanism

by which eGCX prevents immune rejection.
2.4 Pulmonary virus infection

The respiratory tract is in direct contact with the outside

environment. Therefore, the lung is often attacked by a wide

variety of inhaled pathogens including viruses. It is not

uncommon for pulmonary infection to develop into a life-

threatening systemic infection or even multiple organ

dysfunction syndrome (MODS) due to excessive leukocyte

recruitment and activation, and an overzealous inflammatory

response. Histologically, the alveolar epithelium and the

adjacent pulmonary microvasculature constitute the gas-

exchange surface, or the air–blood barrier. The pulmonary

eGCX coating on the surface of endothelium is an important

composition in the air-blood barrier. Pulmonary eGCX is also

frequently damaged following endothelial dysfunction caused by

respiratory viral infections, including coronavirus-2019

(COVID-19) infection (31, 32). It has been recognized that
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pro-inflammatory cells and soluble factors play central roles in

this process. During viral infections, resident macrophages in the

lung, mainly alveolar macrophages, rapidly respond to inhaled

viruses via the highly coordinated recruitment of specific innate

and adaptive leukocytes from circulation and trigger heavy

inflammatory responses. This process can be exemplified by

the infection of COVID-19. Like in other pulmonary infections,

leukocyte recruitment to the lungs with COVID-19 infection is

orchestrated by specific trafficking inflammatory factors (33).

When uncontrolled and excessive it can result in various

pathological complications inside or outside the lungs (34, 35).

There can be collateral damage in this process such as the

disruption of pulmonary eGCX layer, which may signify

inflammation and vascular damage resulting in vascular

leakage and thrombosis. The endotheliopathy caused by eGCX

damage during COVID-19 infection does not meet the criteria of

systemic inflammatory response syndrome (SIRS), although

pathologically it is similar to that of shock. The resulting

eGCX associated endothelial disorders have been newly named

systemic inflammation-reactive microvascular endotheliosis

(SIRME) in some studies. SIRME is manifested by the

simultaneous presence of active inflammation (fever, high

levels of C-reactive protein and proinflammatory cytokines),

endothelial damage with strong thrombogenic tendencies (high

D-dimer and fibrinogen degradation products (FDP)) increased

vascular permeability, and organ damage (increased respiratory

rate, high levels of lactate dehydrogenase and transaminases, and

elevated myocardial deviation enzymes). The emergence of

SIRME can then turn back to strengthen the degradation of

eGCX and exacerbate the vascular disorders, giving rise to a

vicious cycle. Moreover, high blood levels of eGCX fragments, or

vigorous infiltrative shadows in both lungs indicate progressive

SIRME, a high-risk condition for progression to disseminated

intravascular coagulation (DIC) or acute respiratory distress

syndrome (ARDS) with poor prognosis (31, 36).
2.5 Acute respiratory distress syndrome

Acute respiratory distress syndrome (ARDS) is a syndrome of

acute onset non-cardiogenic respiratory failure which often leads to

severe oxygenation impairment. The capillary endothelium and

alveolar epithelium are damaged, with fluid leaking from the

vasculature to the alveolar space, leading to pulmonary edema

and ARDS. The endothelium becomes inflamed and activated by

the adhered leukocytes which drives eGCX degradation while

disrupting vascular integrity and increasing permeability, resulting

in the leakage of plasma and large amounts of proinflammatory

factors across the air-blood barrier into the alveolus (37, 38). The

pulmonary eGCX maintains the vascular integrity via several

pathways. First, it can serve as a passive barrier to at least

transiently preclude the direct adhesion of circulating leukocytes

to endothelial cells, preventing primary damage and blocking the
Frontiers in Immunology 05
efflux of proteins and fluid from the pulmonary vasculature (39, 40).

Second, the eGCX functions as a mechanotransducer by regulating

the contractility of the endothelial cytoskeleton in response to

pressure and shear stress within the vascular lumen (41, 42). In

addition, pulmonary eGCX may enhance the link of mechanical

stimuli with metabolic and inflammatory alterations in the

pulmonary microvasculature. The hydrostatic increases within the

pulmonary microvasculature contribute to a “proinflammatory”

endothelial cell phenotype with increased neutrophil activation and

adhesion, a critical step in endothelial injury (43). The release of

heparan sulfate following degradation of the eGCX augments

neutrophil induced pulmonary injury and may also impact the

Na+-K+ ATPase located on alveolar epithelium, which further

disturbs the liquid equilibrium across alveolus and endothelium

(13, 43).
2.6 Pulmonary arterial hypertension

Pulmonary arterial hypertension (PAH) is defined by an

elevated mean pulmonary arterial pressure (mPAP) of more than

25 mmHg. The central initial event of PAH is thought to be

vasoconstriction which involves genetic, epigenetic, and

environmental mechanisms (44). The mechanical activity of

vasoconstriction finally turns to pulmonary vascular remodeling

with pulmonary arterial endothelial cell dysfunction and arterial

smooth muscle cell proliferation (45). Although no direct evidence

supports a role of eGCX in PAH pathogenesis, a recent study

showed that the plasma levels of heparin sulfate proteoglycan

(HSPG), hyaluronan (HA), and syndecan-1 (SDC-1) were

elevated in monocrotaline-induced PAH rats in comparison with

control group (46). However, rats that were administered

exogenous heparin showed reduced levels of HSPG, HA, and

SDC-1. These results indicate that destruction of eGCX was

involved in the development of PAH, although the mechanism

remains unclear.
2.7 Lung cancer

Lung cancer is one of the most prevalent malignant diseases

worldwide and has the highest mortality over cancers originating

from other tissue types. Metastasis during the initial diagnosis of

lung cancer accounts for most cases with a low overall survival rate

(47). Long distance metastasis is intimately linked to alterations of

vascular permeability. There have been multiple modalities

proposed for illustrating the extravasation of circulating

malignant cells, including disruption, degradation, down-

regulation and phosphorylation of cell junction molecules

together with endothelial cell contraction (48). The degradation of

eGCX appears to inevitably underlie the weakening endothelial

barrier function and enhanced vascular permeability that can

mobilize malignant cells (49).
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3 Potential mechanisms linking
eGCX to the pathogenesis of HPS

The pathogenesis of HPS mostly involves pulmonary

vascular dilatation in the context of chronic hepatic diseases

(50). HPS is always accompanied by global inflammation and

hemodynamic disturbance (51). Inflammation is one of the most

important contributors to eGCX damage as well as to HPS

occurrence. As eGCX is also a sensitive responder to

hemodynamic change, in combination with the characteristic

change of pulmonary vascular tone during HPS, it seems likely

that the eGCX is intimately involved in HPS pathogenesis.
3.1 The pathogenesis of HPS

HPS develops with two central pathogenic features—

pulmonary microvascular dilatation and angiogenesis, which

collectively lead to gas exchange abnormality and impaired

oxygenation (Figure 2). Intrapulmonary vascular dilation
Frontiers in Immunology 06
(IPVD) is the most important alteration in HPS, resulting in the

impaired oxygenation of returned venous blood. Insight into the

pathogenesis of HPS derives principally from experimental studies

using animal models, especially the CBDL rat model (52). The

emergence of IPVD is attributed to multiple mechanisms which

involve a variety of inflammatory cells, cytokines, growth factors,

and hemodynamic parameters (1). Vasodilation is triggered by

excessive nitric oxide (NO) release through type B endothelin

receptor (ETB) signaling driven by endothelial nitric oxide

synthase (eNOS) activation and inducible nitric oxide synthase

(iNOS) production in marginal monocytes within the pulmonary

vasculature (52). Additionally, carbon monoxide production in

monocytes mediated by heme oxygenase 1 (HMOX1) is also

involved. Moreover, monocytes that have adhered to the

pulmonary endothelium produce angiogenic growth factors

such as vascular endothelial growth factor (VEGF) leading to

angiogenesis by activating angiogenic signals including Akt and

ERK in endothelial cells. Finally, angiogenesis fosters an

arteriovenous shunt, which when superimposed on IPVD

dramatically exacerbates hypoxemia (53, 54).
FIGURE 2

The pathophysiological alterations of HPS. HPS develops with two central pathogenic features—vasodilatation and angiogenesis. Intrapulmonary
vascular dilation is the most important pathological process in HPS, resulting in elongated distance of oxygen diffusion and incomplete
oxygenation of returned venous blood. Angiogenesis gives rise to intrapulmonary shunt and exacerbates ventilation/perfusion mismatch. These
collectively lead to gas exchange abnormality and hypoxia. Abbreviation: IPVD, intrapulmonary vascular dilation.
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3.2 The degradation-reconstitution
balance of eGCX

The eGCX covering on the pulmonary endothelium is at the

frontline against hemodynamic and immune disturbances,

particularly under conditions of chronic liver disease. The

eGCX is degraded via inflammatory mechanisms which trigger

the production and activation of metalloproteinases,

heparanases, and hyaluronidases (55). In patients with acute

diseases such as ischemia-reperfusion injury, hypoxia, and

sepsis, high concentrations of fragmented eGCX, which

include syndecan-1, syndecan-4, hyaluronic acid, and heparan

sulfate, can be detected in the circulation (56–58). The damaged

eGCX denudes the surface of vascular endothelial cells,

facilitating excessive vascular permeability and leakage, and

contributing to further pathological deterioration by causing

interstitial edema (59, 60). More importantly, the degradation of

eGCX may be balanced by a dynamic reconstitution via the

synthase exostosin (EXT), which warrants a relatively stable

endothelial barrier despite the appearance of IPVD, and prevents

extravasation of leukocytes and leakage of fluid and plasma

proteins into the interstitial space (61–65). This may explain

in part why HPS is not frequently complicated with pulmonary

edema at an early stage (66).
3.3 The pulmonary eGCX and IPVD

The pulmonary circulation carries deoxygenated blood from

the systemic veins through the pulmonary arteries to be

oxygenated in the capillaries that line the walls of the

pulmonary alveoli. Normally, the pulmonary circulation is of

low driving pressure and flow velocity, and maintains a low

vascular resistance and low fluid shear stress. In fact, the

pulmonary circulation is often considered to be a quasi-static

system in both experimental and computational studies so as to

match the ventilation for gas exchange and oxygenation (67, 68).

Accordingly, the pulmonary eGCX is thinner compared with

that in other organs because of a lower ra te of

glycosaminoglycan synthesis (2, 12, 25). The pulmonary eGCX

is also more sensitive to mechanical signals although within an

environment of low shear stress in pulmonary circulation (42,

69, 70).

3.3.1 eGCX and pulmonary vascular tone
The disorder of blood flow exerts mechanical tangential

forces to the endothelial surface such as shear stress. The

mechanical signal of blood flow changes sensed by eGCX

subsequently lead to the production of NO, a major regulator

of vascular tone (71). In the setting of HPS, the regulation of

pulmonary vascular tone appears to be more complicated. Liver

diseases are often accompanied by retention of fluid and sodium
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thanks to elevated aldosterone level, which, in combination with

the potential portal-systemic shunt, may contribute to a

hyperdynamic state of systemic circulation. It has been show

that hyperdynamic circulation leads to damage of eGCX in

peripheral vessels (72). However, the pulmonary circulation is

relatively tolerant to hemodynamic changes due to its low

resistance. This may be protective to pulmonary eGCX, the

preservation of which may prevent subsequent insults to the

endothelium integrity and reduce the frequency interstitial

edema (73, 74). Contrarily, the pulmonary eGCX under this

condition may exacerbate IPVD by sensing the increased shear

stress and elevating NO release, although this remains to be

specifically elucidated in human studies.

With regard to the hypoxia caused by IPVD, a more

complicated response for the pulmonary vasculature may exist

as well. In those without HPS the pulmonary arteries constrict

under hypoxic stimuli which is in contrast to systemic blood

vessels that typically dilate in response to hypoxia. This is termed

hypoxic pulmonary vasoconstriction (HPV). The mechanisms

of HPV involve the release of endothelial derived substances

including endothelins, superoxide anions and thromboxane A2,

and also by a decrease in NO bioavailability that leads to vascular

smooth muscle cell contraction (75). The HPV response ensures

that blood flow in locally hypoxic alveoli can be reduced in order

to divert the cardiac output to better oxygenated regions, which

precludes a further deterioration of the ventilation/perfusion

mismatch. However, during HPS, hypoxia seems to be

ineffective in driving HPV. The reason may partly be ascribed

to the exuberant mechanisms causing IPVD. It has been well

known that hypoxia is sufficient to induce degradation of eGCX

in pathophysiological conditions (76). Surprisingly, the heparan

sulfate proteoglycan deficiency during eGCX degradation is

reported to up-regulate the intracellular production of NO,

which may alleviate the vascular contraction induced by

hypoxia (77, 78). During HPS, the upregulated fibroblast

growth factor (FGF) signaling promotes reconstitution of

eGCX by enhancing the activity of the synthatase EXT1, which

may give rise to the degradation-reconstitution balance of eGCX

as mentioned above and offset the direct vasoconstrictive effect

of hypoxia. In addition, the paucity of smooth muscle cells in

pulmonary microvessels may decrease the effect of hypoxia even

though a long term hypoxic environment cultivates vascular

remodeling (79, 80).
3.3.2 eGCX and monocyte adhesion
HPS patients are usually under a state of chronic

inflammation, which may disrupt the continuity of the eGCX

layer and render the pulmonary endothelium more likely to be

adhered and affected by circulating leukocytes including

monocytes (53). With the advancement of liver disease, there

will be a significant elevation of pathogen and damage-

associated molecular patterns (PAMPs & DAMPs) and pro-
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inflammatory mediators (81). Chemokines including MCP1,

regulated on activation normal T-cell expressed and secreted

(RANTES), and macrophage inflammatory peptides 1a and b
(MIP-1a and MIP-1b, respectively) can interact with the side

chain components of eGCX to form the so called “chemokine-

cloud,” a local concentration of chemokines within the eGCX

layer which may facilitate leukocyte adhesion (82). In addition,

the pro-inflammatory mediators also include various enzymes

such as heparinase, hyaluronidase, matrix metalloproteinases

(MMPs) and a disintegrin and metalloproteinases (ADAMs).

These enzymes degrade eGCX and contribute to a discrete

bareness of the endothelium while exposing receptors on the

membrane of endothelial cells, including multiple types of

pattern recognition receptors (PRRs), growth factor receptors,

cytokine/chemokine receptors and adhesion molecules (55, 58,

83). The cytoskeletal fibers within the endothelium also

rearrange in order to orchestrate cell adhesion and focal

contact formation (84–86).

An integral layer of eGCX restrains the interaction between

the endothelium and circulating white blood cells by preventing

them from approaching, while damaged eGCX may facilitate

leukocyte attachment. The protective role of eGCX is attributed

to the constituents of heparin sulfate proteoglycans (HSPGs) and

endomucin (EMCN). Upon inflammatory stimulation, the

glycans are shed from the endothelial cell surface, which

results in slower rolling and adhesion of leukocytes to the

endothelium. Similarly, breakdown of the eGCX increases

platelet–vessel wall interactions (36, 87). Monocytes expressing

iNOS are the major effector cells driving the pathogenesis of HPS

through the modulation of NO (50). The interaction of

monocytes with endothelial cells is also on the basis of eGCX

damage. The products of eGCX degradation including heparan

sulfate and chondroitin sulfate may enhance the chemotactic

migration of monocytes, although glypican 1 mounted on the

membrane of endothelial cells is reported to inhibit monocyte

adhesion (88–90). Hence, the destruction of eGCX may be

precisely limited to the area where monocytes are recruited

most intensively (91, 92). These recruited monocytes can release

enzymes to further degrade the eGCX layer (93). The

simultaneous exposure of adhesion molecules and receptors

lays the foundation for monocyte-endothelium interactions

and IPVD (94, 95), and subsequent regulation of the

aforementioned eGCX degradation-reconstitution equilibrium

(61, 62). This mode makes it possible for IPVD to occur without

obvious dysregulation of vascular permeability since the adhered

monocytes could be restrained by glypican 1 on the

endothelium. However, it remains to be demonstrated in both

experimentally and in clinical studies.

3.3.3 eGCX and NO production
The eGCX plays a pivotal role in vascularmechanotransduction

in response to hemodynamic fluctuation. Blood flow exerts
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tangential shear stress on the endothelium, which is sensed by the

eGCX and triggers the reorganization of the actin cytoskeleton and

activation eNOS (96, 97). The induction of eNOS is related to

glypicans, a core constituent of eGCX embedded in the endothelial

membrane (98, 99). The eGCX also responds to mechanical force

by inducing a variety of sensors expressed by endothelial cells such

as G–protein–coupled receptors, integrins and adhesion molecules.

Circulating pro-inflammatory mediators may bind to these

molecules, resulting in a disturbance of cellular cytoskeleton

kinetics and increased expression of iNOS. eNOS and iNOS both

facilitate the release of NO and induce a widespread luminal

dilation of the pulmonary microvasculature (52) (Figure 3).

Additionally, the syndecan-1 and syndecan-4 contained in eGCX

interact with cytoskeleton proteins to orchestrate leukocyte contact

and adhereance to the endothelium. This serves to enhance NO

expression by releasing more cytokines and thus driving a vicious

pathogenic feed-forward circle (100–102). The release of heparan

sulfate and hyaluronan in eGCX impairs NO production and

reduces vasodilation as well (103). In the context of HPS, the

hemodynamic discrepancy and elevated pro-inflammatory

mediators may damage the pulmonary eGCX and enhance

endothelin 1/endothelin receptor B (ET-1/ETB) signal-induced

expression of eNOS and NO (104, 105).
3.4 The pulmonary eGCX
and angiogenesis

Angiogenesis is characterized by the sprouting of

neovasculature from pre-existing vessels, which comprises the

processes of endothelial cell proliferation, migration, and tube

formation (106). Angiogenesis takes place normally in

development and pathologically in response to inflammatory

and (or) ischemic/hypoxic stimuli (107). During HPS,

angiogenesis occurs vigorously within the pulmonary vascular

network, leading to arteriovenous shunt and exacerbating the

hypoxemia caused by IPVD associated ventilation/perfusion

mismatch (108–110). The eGCX components have been

reported to play important roles in angiogenesis in both

homeostatic and pathological circumstances (111). However,

whether and how the pulmonary eGCX contributes to

angiogenesis during HPS remains unclear.

3.4.1 eGCX and angiogenic signals
Under homeostatic conditions, the eGCX components

mediate angiogenesis via a variety of mechanisms. Heparin

sulfate can bind to circulating factors such as vascular

endothelial growth factor (VEGF) and fibroblast growth factor

(FGF) and initiate angiogenic signaling in endothelial cells by

regulating their bioavailability, local concentrations, and stability

(112–115). Syndecans play distinct roles in angiogenesis either

by modulating VEGFR2 internalization, or by binding to VEGF
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as a co-receptor or inhibitory receptor (116–119). EMCN

promotes angiogenesis via VEGFR2 internalization as well

(120, 121). The function of hyaluronan (HA) in angiogenesis

appears to be more complicated. HA exerts an anti-angiogenic

effect during homeostasis, whereas after degradation the

products can induce angiogenesis by activating HA receptors

CD44 and CD168 (122–124).

Angiogenesis in HPS appears to result from pulmonary

inflammation, with accumulated monocytes producing

angiogenic factors and vasoactive mediators directly affecting

pulmonary endothelium (125). Pulmonary endothelial cells can

also be influenced by autocrine signals (53). In the setting of

HPS, damage to the eGCX layer leads to the exposure of the

receptors of angiogenic factors. The factors that are reported to

act in HPS include VEGF-A, platelet growth factor (PDGF), and

placental growth factor (PlGF) (110, 126). VEGF-A/VEGFR2

has been demonstrated to be the major angiogenic signal in HPS

associated angiogenesis (127, 128). Both intravascular

monocytes and pulmonary endothelial cells produce VEGF-A.

The VEGF molecule contains heparan-binding domains and can

be activated when combined with heparin sulfate irrespective of

proteoglycan binding within the eGCX layer or free in the

plasma (112, 129). At the site of angiogenesis, the disrupted

eGCX layer may provide the location for monocyte-endothelial

cell interaction to accommodate angiogenic signal transduction
Frontiers in Immunology 09
and migration, and the subsequent proliferation of endothelial

cells (130, 131). During this process, the EMCN within the

eGCX layer facilitates VEGFR2 internalization and downstream

signaling as previously mentioned. Some systemically elevated

factors may promote VEGFR2 internalization as well during

HPS, such as oncostatin M (OSM) and Galectin-1/3 (132, 133).

However, since most of these results are based on experimental

HPS models, whether identical mechanisms exist in humans

remains to be determined.

3.4.2 eGCX synthesis during angiogenesis
Following the proliferation of endothelial cells, the

composition of the eGCX layer is important for the formation

of normal vascular morphology and functions in the process of

tube formation (114, 134, 135). Synthesis of the eGCX is initiated

by the enzyme EXTL1-3 with the side chain elongation mediated

by EXT1-2 (136). It has been proposed that there is a dynamic

equilibrium between the shedding of eGCX components under

pathologic conditions, the adsorption of the components from

circulating blood, and synthesis of eGCX, which indicates a

tendency to maintain an intact eGCX layer within afflicted

vessels (137, 138). During HPS, both inflammation and

hemodynamic disturbances can stimulate the degradation of

eGCX. Damage to the eGCX layer exposes the endothelium to

inflammatory mediators and enzymes which then disrupt
FIGURE 3

eGCX may play an important role in HPS associated IPVD. During HPS, eGCX degradation exposes adhesion molecules, cytokine/growth factor
receptors, and pattern recognition receptors that facilitate the processes of monocyte migration and infiltration, and the interaction of
monocytes and endothelial cells, resulting in increased expression of iNOS and eNOS, and the consequent release of NO, the major contributor
of IPVD. Abbreviations: eGCX, endothelial glycocalyx; IPVD, intrapulmonary vascular dilation; iNOS, inducible nitric oxide synthase; eNOS,
endothelial nitric oxide synthase; NO, nitric oxide; ET-1, endothelin-1; ETB, type B endothelin receptor; VEGF, vascular endothelial growth
factor; FGF, fibroblast growth factor; ROS, reactive oxygen species; TNF-a, tumor necrosis factor a; IL-1b, interleukin-1b; PAMPs, pathogen
associated molecular patterns; DAMPs, damage associated molecular patterns; PRRs, pattern recognition receptors; MMPs, matrix
metalloproteinases; ADAMs, a disintegrin and metalloproteinases.
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endothelial cell-cell junctions and the basement membrane, and

facilitates the budding of neovessels (139, 140). The local

degradation of eGCX increases shedding of heparan sulfate,

hyaluronan and chondroitin sulfate. These components on the

one hand are adsorbed by the bared or the newborn endothelium

(137). On the other hand, they may activate the eGCX synthetic

signals of FGF/FGFR1/EXT1, VEGF/VEGFR2, S1P/PI3K and

Ang1/Tie2 (61, 62, 141, 142). Hence, the eGCX layer is probably

formed on newborn endothelium with the help of shedded

components that originated from the location of the vessel

sprouts (137, 138) (Figure 4).
3.5 The potential involvement of eGCX in
HPS pathogenesis

The current evidence supporting eGCX alterations in

pulmonary disorders may be described in a five-step schematic

which outlines such alterations in the context of HPS pathogenesis.

First, global inflammation and hyperdynamic disturbance stimulate
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the local degradation of pulmonary eGCX during HPS. The

damaged eGCX layer exposes endothelial adhesion molecules

(integrins, selectins, etc), cytokine and growth factor and pattern

recognition receptors, and the endothelium itself to immune cells,

inflammatory mediators and angiogenic factors. Second, recruited

monocytes adhere to the endothelium, elevate the expressions of

iNOS and eNOS, and subsequently facilitate the production of NO,

which are the most important vasodilator contributing to IPVD.

The chemokines released by activated endothelial cells further

recruit more monocytes and dramatically expand the vasodilative

effect, leading to exacerbated IPVD and hypoxia in HPS. Third,

increases in circulating FGF promotes reconstitution of the eGCX

layer by enhancing the activity of the synthase EXT1, which gives

rise to the degradation-reconstitution balance of eGCX and recovers

the functions of eGCX in mechanotransduction and regulation of

vascular tone. This takes place in a hyperdynamic state during HPS,

and at least partially offsets the direct vasoconstrictive effect caused

by hypoxia. Fourth, the inflammatory mediators, especially ROS

andMMPs, disrupt endothelial cell-cell junctions and the basement

membrane in exposed endothelial sites, and facilitate the bud of
FIGURE 4

eGCX may be involved in HPS associated angiogenesis. During HPS, eGCX degradation also leads to exposure of VEGFR and FGFR, ensuing the
combination of VEGF and FGF respectively. VEGF-VEGFR and FGF-FGFR signals promote the migration and proliferation of ECs. The disruption
of eGCX continuity promotes the destruction of cell-cell junctions and the basement membrane, which together with ECs proliferation and
migration facilitates the sprout of neovessel. The FGF-FGFR signal activates the downstream enzyme EXT1 to reconstitute the eGCX layer within
the injured site and neovessels (in the dashed line frame). The shedded eGCX components are absorbed by the proteoglycans on the EC
membrane and enhance the reconstitution of eGCX. Abbreviations: eGCX, endothelial glycocalyx; HS, heparin sulfate; HA, hyaluronic acid; CS,
chondroitin sulfate; VEGFR, vascular endothelial growth factor receptor; FGFR, fibroblast growth factor receptor; ROS, reactive oxygen species;
TNF-a, tumor necrosis factor a; IL-1b, interleukin-1b; MMPs, matrix metalloproteinases; ADAMs, a disintegrin and metalloproteinases; EXT1,
exostosin 1; EC, endothelial cells.
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neovessels. Last but not the least, the eGCX layer is probably

reformed on the newborn endothelium with the help of the

shedded components that originate from where the eGCX

degrades and vessels sprout. These components are adsorbed by

the endothelium and activate the eGCX synthetic signals such as

FGF/FGFR1-EXT1, VEGF/VEGFR2 and Ang1/Tie2, leading to (re)

construction of the eGCX layer in parental and daughter

vessels (Figure 5).
4 Discussion

Therapeutic strategies targeting the eGCX has been put

forward in a variety of reports and include fluid and
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electrolyte management, blood glucose control, administration

of glucocorticoid, supplementation of the eGCX components,

inhibition of the degrading enzymes, application of glycocalyx-

mimetic biomaterials or nanomaterials, and others (143–145).

These therapeutic modalities all aim to prevent excess damage,

reconstitute the integrity, or even replace the destructed eGCX

layer. Similar strategies have been widely investigated in a variety

of studies on pulmonary disorders including acute respiratory

distress syndrome (ARDS), sepsis associated lung injury,

COVID-19 infection, and lung transplantation (Table 1).

Amongst these therapeutic interventions, anti-inflammatory

effects with decreased leukocyte adhesion and cytokine

secretion are commonly described, reflecting the primary

importance of inflammation in causing the discrepancy of
FIGURE 5

The pathways that eGCX adopts to participate in HPS pathogenesis. From the left to the right: First, eGCX degradation promotes the contact of
monocytes with the endothelium by exposing adhesion molecules such as integrins and selectins, contributing to elevated expression of iNOS
and eNOS and subsequently NO release. Second, the exposure of receptor ETB when bound by ligand ET-1 increased the release of NO as well.
Third, the VEGF-VEGFR and FGF-FGFR signals activated after eGCX degradation promote the migration and proliferation of ECs, facilitating the
sprout of neovessels. Fourth, the FGF-FGFR signal activates the downstream enzyme EXT1 to reconstitute the eGCX layer within the injured site
and neovessels. Abbreviations: eGCX, endothelial glycocalyx; IPVD, intrapulmonary vascular dilation; CCL2, C-C motif chemokine ligand 2; ET-1,
endothelin-1; ETB, type B endothelin receptor; VEGFR, vascular endothelial growth factor receptor; FGFR, fibroblast growth factor receptor;
PAMPs, pathogen associated molecular patterns; DAMPs, damage associated molecular patterns; PRRs, pattern recognition receptors; PRRs,
pattern recognition receptors; NO, nitric oxide; iNOS, inducible nitric oxide synthase; eNOS, endothelial nitric oxide synthase; EXT1, exostosin 1;
EC, endothelial cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1039618
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.1039618
TABLE 1 Therapeutic interventions to protect or restore the pulmonary eGCX.

Therapeutic
intervention Study type Effect Mechanism Reference

Albumin In vitro study of the mechanical properties
of bovine lung endothelial cells

Increasing the thickness and
reducing the stiffness of
eGCX

Likely protecting the eGCX from
hyaluronidase and interacting with
hyluronon

(42)

Plasma Rat model of hemorrhagic shock Restoring pulmonary eGCX Restoring cell surface syndecan-1 by
mobilizing an intracellular pool of
preformed syndecan-1
Stimulating endothelial cell syndecan-1
transcription

(146)

Heparin In vitro study of the effects of plasma from
COVID-19 patients on human umbilical
vein endothelial cells (HUVECs)

Preventing eGCX degradation Inhibiting heparanase (147)

Antithrombin Mice model of LPS induced ARDS Attenuating pulmonary
eGCX damage

Decreasing neutrophil infiltration and
cytokine secretion

(39)

Thrombomodulin Mice model of Streptococcus pneumoniae-
induced sepsis

Attenuating pulmonary
eGCX damage

Diminishing systemic inflammation and
hypercytokinemia

(148)

Dexamethasone COVID-19 patients Decreasing pulmonary eGCX
degradation and ameliorating
endothelial injury

Decreasing inflammation and leucocytes
adhesion

(149)

Sevoflurane Pig model of in-vivo lung autotransplant Preserving pulmonary eGCX
layer

Decreasing leukocyte recruitment and
adhesion
Protecting pulmonary eGCX from
ischemia reperfusion injury

(150)

Doxycycline Mice model of intratracheal LPS-induced
lung injury

Reducing pulmonary eGCX
degradation

Inhibiting heparanase and MMP (151)

Ulinastatin Mice model of LPS-induced ARDS. Attenuating pulmonary
eGCX damage

Reducing the active form of heparanase
expression and inhibiting heparanase
activity.

(87)

Fibroblast growth
factor (FGF)

Patients with nonpulmonary sepsis or
pneumonia
Mice model of sepsis induced by cecal
ligation and puncture (CLP)

Promoting pulmonary eGCX
reconstitution

Inducing of the heparan sulfate (HS)
biosynthetic enzyme exostosin (EXT)-1 via
FGFR1 signaling

(61)

Protectin conjugates
in tissue
regeneration 1
(PCTR1)

Mice model of LPS-induced pulmonary
eGCX loss

Inhibiting pulmonary eGCX
degradation and promoting
reconstitution

Inducing SIRT1 expression and reducing
NF-kB p65 phosphorylation

(63)

Maresin conjugates
in tissue
regeneration 1
(MCTR1)

Mice model of LPS-induced sepsis Attenuating pulmonary
eGCX injury

Decreasing inflammatory cytokines
Downregulating heparanase expression
Upregulating SIRT1 expression and
decreasing NF-kB p65 phosphorylation

(152)

Colivelin Mice model of sepsis induced by cecal
ligation and puncture (CLP)

Ameliorating pulmonary
eGCX degradation and
endothelial injury

Inhibiting the activation of STAT3
Increasing activation of AMPK

(153)

Fucoidan COVID-19 patients
In vitro study of patient sera on primary
lung microvascular endothelial cell
(HPMEC)

Restoring eGCX layer Reducing endothelial activation through
inactivation of NF-kB signaling pathway
and downstream ICAM1 expression
Decreasing ANG2 expression
Reducing endothelial cell surface tissue
factor (TF)

(154)

Berberine Mice model of LPS-induced ARDS. Alleviating pulmonary eGCX
degradation and promoting
restoration

Inhibiting ROS, heparanase, and MMP-9
Decreasing the production of pro-
inflammatory cytokines

(155)

(Continued)
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pulmonary eGCX. Besides, these studies also reveal that ROS

and a series of sheddases such as heparanase, hyluronase, and

MMPs are potential targets against pulmonary eGCX

degradation. Much impressive results are from the studies of

FGF, protectin conjugates in tissue regeneration 1 (PCTR1),

maresin conjugates in tissue regeneration 1 (MCTR1), Colivelin

and Fucoidan, which show the reconstitution effect on

pulmonary eGCX via the signals of FGFR1/EXT-1, SIRT1/NF-

kB p65/EXT-1, STAT3/AMPK, ANG2 respectively (61, 63, 152–

154). Clinically, the aim of reconstituting eGCX should be

emphasized in combination with the treatments of anti-

inflammation and inhibition of ROS and sheddases provided

that it is likely to preclude or delay the occurrence of vascular

leakage and the consequent lung edema (136, 158). However, it

should be taken into consideration given that the involving

signals such as FGFR1 activation, NF-kB p65 and STAT3

inhibition, and ANG2 downregulation may laterally contribute

to exacerbated organ fibrosis, compromised immunity against

pathogens and angiogenesis-associated intrapulmonary shunt

(125, 159–161), which may not only complicate lung injury and

hypoxia but also lead to other organ dysfunctions. Besides, the

means of inhibiting hyluronase and MMPs may also cause or

worsen organ matrix deposition, in particular when comorbid

with liver fibrosis (162). Inhibition of heparanase may interfere

the cogulation system and increase the risk of bleeding (163).

Further studies are needed to find an optimal modality which

balance the protection and restoration of pulmonary eGCX and

the adverse effects.

With respect to HPS treatment, it seems likely that

protection of the eGCX layer from degradation is necessary.

Theoretically, the eGCX can isolate the endothelium from

circulating monocytes, inflammatory mediators, and enzymes
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that disrupt vascular continuity, and will therefore protect the

pulmonary vasculature from IPVD, vascular leakage, and

interstitial and alveolar edema. Furthermore, a continuous

eGCX layer can prevent proangiogenic factors from binding to

receptors, which can initiate HPS associated angiogenesis and

shunt. These effects likely give rise to the improvement of both

ventilation/perfusion mismatch and hypoxia.

However, there has been no direct evidence demonstrating a

relationship between the eGCX and HPS. Recently, in the

preliminary study, we found that the release of heparan sulfate

and hyaluronan, two major components of eGCX side chains,

increased significantly in the lungs of HPS rats. Despite this, a

dramatic destruction of eGCX layer in pulmonary vessels

histologically during the early stage of HPS was not observed

(data unpublished). Nevertheless, in the highly proinflammatory

environment accompanying liver cirrhosis, the pulmonary

eGCX would inevitably be affected, especially considering the

pleiotropic roles of eGCX in regulating vascular behaviors and in

modulating monocyte recruitment, and the crucial

pathophysiological function of monocytes in HPS pathogenesis

(55, 82, 136, 152). Given that the eGCX layer is constantly

undergoing degradation-reconstitution regardless of

physiological or pathophysiological conditions (153), we prefer

to speculate that the pulmonary eGCXmay adopt a degradation-

reconstitution equilibrium mode in the pathogenesis of HPS

rather than maintain a persistent uninfluenced state. This type of

dynamic alteration would be difficult to detect at the histological

level and may explain the paucity of studies detailing the

participation of pulmonary eGCX in HPS progression.

Therefore, future studies are urgently needed to elucidate the

temporal and spatial alterations of pulmonary eGCX structures

during HPS.
TABLE 1 Continued

Therapeutic
intervention Study type Effect Mechanism Reference

Inhibiting NF-kB signaling pathway
activation

Crocin Mice model of LPS-induced ARDS. Alleviating pulmonary eGCX
damage and degradation

Inhibiting the expressions of cathepsin L,
heparanase, and MMP-9
Reducing neutrophil adhesion or
infiltration
Inhibiting HMGB-1, NF-kB and MAPK
signaling pathways

(156)

Fraxin Mice model of LPS-induced ARDS. Protecting pulmonary eGCX
from degradation and
reducing vascular
permeability

Inhibiting the production of inflammatory
factors and the activation of NF-kB and
MAPK signaling pathways
Inhibiting reactive oxygen species (ROS)
increase and lipid peroxidation
Increasing the superoxide dismutase
(SOD) activity to avoid oxidative damage.

(157)

eGCX, endothelial glycocalyx; LPS, lipopolysaccharide; ARDS, acute respiratory distress syndrome; COVID-19, Corona virus disease-19; MMP, matrix metalloproteinase; SIRT1, sirtuin
1; NF-kB, nuclear factor kappa-B; AMPK, AMP-activated protein kinase; MAPK, mitogen-activated protein kinase; STAT3, signal transducer and activator of transcription 3; HMGB1,
high mobility group box 1; ICAM 1, intercellular cell adhesion molecule 1; ANG2, angiopoietin 2;
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As the signal factors for eGCX synthesis and the profibrotic

factors promoting liver fibrosis, FGF and VEGF have been

reported to be elevated in a number of studies on biliary

cirrhosis (154, 159, 160). It has been described that the eGCX

is able to directly interact with circulating factors via the sulfated

side chain, mostly heparin sulfate. Binding of these factors to

heparin sulfate strengthens their stability and bioavailability by

preventing their degradation, and also leads to a local increase of

their concentration on the surface of endothelium (111).

Disruption in the continuity of eGCX layer by inflammation

can expose the receptors of these factors. Theoretically, the

combination of FGFR with FGF and VEGFR with VEGF via

downstream signaling probably enhances the activity of the

eGCX synthase EXT as previously mentioned. This pathway

may optimally drive the reconstitution of pulmonary eGCX

layer, yet will still need to be confirmed in HPS by

experimental and clinical studies. From the therapeutic point

of view, targeting FGF or VEGF to improving lung disease or

ameliorating liver cirrhosis may be an intractable problem in

HPS treatment. Simply administering extrinsic FGF or VEGF to

improve pulmonary vascular lesions and hypoxia, or

administering FGFR or VEGFR antagonists to delay the

progression of liver cirrhosis seems much more inappropriate

as each may exacerbate the situation of the other. Studies are

needed to address the paradox. In addition to FGF and VEGF,

the other two factors angiopoietin 1 (Ang1) and Sphingosine-1

(S1P), which upregulate the expression and extravasation of

eGCX components (mainly the core protein syndecan) via PI3K

and Tie2 signals respectively, are also elevated during liver

fibrosis (161, 162). Generally, the side chains of eGCX are the

first line to confront the proinflammatory disturbance and are

thus more susceptible to sheddase. If the core proteins remain

intact, the eGCX layer would be easier to reconstitute by EXT.

While if the core proteins are badly disrupted, the function of

Ang1 and S1P in eGCX reconstitution should be emphasized (2,

136). What it means to treatments of targeting pulmonary eGCX

for HPS is still unknown. Besides, there are numerous cytokines,

chemokines and complements elevated during liver cirrhosis

which are capable of interacting with eGCX (5, 163). Whether

and how these factors impact on the degradation-reconstitution

process of pulmonary eGCX and the pathogenesis of HPS

remains unclear. Further studies are urgently required to find

out the answers.
5 Conclusions

It has been demonstrated in recent decades that the eGCX

plays a crucial role as a microvascular endothelial barrier that

maintains microcirculatory homeostasis. The pulmonary eGCX
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has been shown to modulate the pulmonary circulation and thus

participate in a number of pulmonary disorders. Although it is

still unknown whether and how the eGCX influences the

pathogenesis of HPS, the established functions of eGCX in the

inflammatory response, hemodynamic and vascular tone

alterations, and angiogenesis may allow us to unmask its roles

in HPS-associated IPVD and angiogenesis. Overall, our review

primarily unveils the functions of eGCX in the pathogenesis of

HPS in vitro and in vivo, providing a potentially valuable

therapeutic target for the treatment of this disorder.
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