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N6-methyladenosine
regulators-related immune
genes enable predict graft loss
and discriminate T-cell mediate
rejection in kidney
transplantation biopsies
for cause

Qidan Pang1†, Hong Chen2†, Hang Wu1†, Yong Wang2,
Changyong An2, Suhe Lai2, Jia Xu1, Ruiqiong Wang1,
Juan Zhou1* and Hanyu Xiao2*

1Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, China,
2Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical
University, Chongqing, China
Objective: The role of m6A modification in kidney transplant-associated

immunity, especially in alloimmunity, still remains unknown. This study aims

to explore the potential value of m6A-related immune genes in predicting graft

loss and diagnosing T cell mediated rejection (TCMR), as well as the possible

role they play in renal graft dysfunction.

Methods: Renal transplant-related cohorts and transcript expression data were

obtained from the GEO database. First, we conducted correlation analysis in

the discovery cohort to identify the m6A-related immune genes. Then, lasso

regression and random forest were used respectively to build prediction

models in the prognosis and diagnosis cohort, to predict graft loss and

discriminate TCMR in dysfunctional renal grafts. Connectivity map (CMap)

analysis was applied to identify potential therapeutic compounds for TCMR.

Results: The prognostic prediction model effectively predicts the prognosis

and survival of renal grafts with clinical indications (P< 0.001) and applies to

both rejection and non-rejection situations. The diagnostic prediction model

discriminates TCMR in dysfunctional renal grafts with high accuracy (area under

curve = 0.891). Meanwhile, the classifier score of the diagnostic model, as a

continuity index, is positively correlated with the severity of main pathological
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injuries of TCMR. Furthermore, it is found that METTL3, FTO, WATP, and RBM15

are likely to play a pivotal part in the regulation of immune response in TCMR.

By CMap analysis, several small molecular compounds are found to be able to

reverse TCMR including fenoldopam, dextromethorphan, and so on.

Conclusions: Together, our findings explore the value of m6A-related immune

genes in predicting the prognosis of renal grafts and diagnosis of TCMR.
KEYWORDS

N6-methyladenosine (m6A), kidney transplantation, alloimmunity, graft loss, T-cell
mediate rejection, biopsies for cause, prediction model
Introduction

As of now, kidney transplantation is still the most effective

remedy for end-stage renal disease (1). However, transplant

patients are still chronically challenged by graft rejection,

infection, and recurrence of primary kidney disease, which

may lead to allograft injury and dysfunction (2). Elevated

serum creatinine, hematuria, proteinuria, and decreased urine

output are the common clinical manifestations of allograft injury

and dysfunction. When a kidney transplant recipient develops

those indications, a biopsy for cause is usually needed to identify

the pathogenesis, which is known to be the gold standard (3).

Timely and targeted interventions may reverse active injuries,

alleviate chronic lesions, and avoid graft loss. Although the

reasons for graft injury and loss are multifactorial and time-

dependent, immune factors still dominate (4). Two studies on

transplant kidney histology have shown that the alloimmune

processes account for 35%-64% of graft loss (5, 6), of which T

cell-mediated rejection (TCMR) and antibody-mediated

rejection (ABMR) are the most typical subtypes. Persistent

alloimmunity can also aggravate interstitial fibrosis and

tubular atrophy (IF/TA), which is regarded as an important

prognostic factor of grafts and the final pathological outcome of

graft injuries (4).

N6-methyladenosine (m6A) modification is one of the most

prevalent and reversible modifications of RNA base in eukaryotes

(7). Through three functional protease complexes: writers, erasers,

and readers, m6A regulates RNA transport, export, splicing,

localization, translation and stability at the post-transcriptional

level, thus participating in various physiological and pathological

processes. Recent studies show that the m6A modification plays

an important role in shaping a balanced immune response (8).

M6A can affect innate, adaptive and antiviral immune responses

by modulating the mRNA of key genes in the immune pathway.

For example, m6A-mediated degradation of interferon B (IFNB)

transcripts weakens the type I interferon and antiviral innate

immune responses (9). The m6A mechanism enhances the
02
interleukin-STAT5 signaling pathway through the attenuation

of SOCS mRNA, thereby promoting the proliferation of CD4+

T cells and the immunosuppressive function of Treg cells (10, 11).

M6A methylation of the Tcf7 gene mediated by METTL3

stabilizes the transcripts of the Tcf7 gene and increases the

expression of TCF-1. TCF-1 promotes the differentiation of T-

helper and Tfh cells, thus facilitating B cell differentiation and

plasma generation (12). The regulatory role of m6A in the

immune system has been demonstrated to play a part in the

tumor immune microenvironment (13) and many autoimmune

diseases (14), including systemic lupus erythematosus,

rheumatoid arthritis, and inflammatory bowel disease. However,

there is no research to elucidate its role in the immune responses

after kidney transplantation.

The maturity and reduced cost of sequencing technology

have improved the accuracy of disease diagnosis and treatment.

Genome-wide transcript microarray data can be derived from a

morsel of graft tissue, which makes it feasible for us to explore

the internal relations of diseases at a molecular level. The

combined application of transcript data with machine

algorithms has brought about a range of molecular classifiers

and risk scoring models that facilitate diagnosis and predict

prognosis. Histologic diagnosis is flawed by subjective

interpretations among pathologists, nonspecific lesions, and

arbitrary rules, making it not as reliable as we expect (15, 16).

Given the absence of a reliable gold standard, classification

criteria based on objective molecular expression data present

an alternative approach and complement the histologic

diagnosis. Reeve et al. (17) established the Molecular

Microscope Diagnostic System (MMDx) based on microarray

gene expression data of renal grafts, whose balanced accuracies

for histology diagnoses of TCMR and ABMR reach 73% and

78%, respectively. The molecular risk score established by

Einecke et al. (18) is able to reflect active injury and superior

to either scarring or function in predicting graft failure.

This study aims to explore the relations between m6A

modification and immune factors behind renal graft injury at
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1039013
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pang et al. 10.3389/fimmu.2022.1039013
the molecular level by analyzing the microarray data of kidney

transplantation biopsies for cause. By analyzing the gene

expression data of discovery cohort, we found that m6A

regulators are closely related to a variety of immune

characteristics, which are mainly involved in alloimmune

processes and T cell subsets, suggesting the unique value of

m6A modifications in TCMR. Based on machine learning, we

managed to build a risk score and a molecular classifier to

predict graft outcomes and distinguish TCMR from other types

of graft injury, respectively. In short, our findings suggest that

m6A modification is involved in graft dysfunction after

transplantation by regulating the immune response and

provides a reference for subsequent studies.
Materials and method

Collection and processing of data

The microarray expression data used in this study were

derived from research accession published in the Gene

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)

database. The inclusion criteria included: (1) consecutive cohort;

(2) samples derived from kidney biopsies for clinical indications;

and (3) including TCMR and ABMR pathologic diagnosis based

on Banff criteria or graft survival data. We managed to screen out

4 datasets, of which GSE360591 (19) was used as the discovery

cohort, GSE213742 (18) prognosis cohort, and GSE485813 (20)

and GSE983204 (21) diagnosis cohorts. All microarray datasets

were subjected to log2 transformation and normalized using the R

“limma” package. Two expressionmatrices in the diagnosis cohort

were transformed by z-score to increase the comparability

between independent datasets.
Correlation analysis of m6A regulators
with immune characteristics

We identified 23 m6A regulators from the previous literature

(22), including 8 writers (METTL3, METTL14, METTL16,

WTAP, VIRMA, ZC3H13, RBM15, RBM15B), 13 readers

(YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3,

HNRNPC, FMR1, LRPPRC, HNRNPA2B1, IGFBP1, IGFBP2,

IGFBP3, RBMX) and 2 erasers (FTO, ALKBH5). Characteristic

gene data of 22 kinds of immune cells were collected from the

CIBERSORTS (23) database (https://cibersortx.stanford.edu/),

and the immune cell abundance of each sample in the

discovery cohort was calculated using the CIBERSORT.R

script. Immune gene ontology categories/gene sets were

downloaded from the ImmPort (24) database (https://www.

immport.org/), and the R “GSVA” package was used to

perform the single sample gene set enrichment analysis
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(ssGSEA) to obtain an enrichment score for each sample

based on immune gene sets. 35 key genes of allograft rejection

pathway (map05330) were obtained from the Kyoto

Encyclopedia of Genes and Genomes (KEGG, https://www.

kegg.jp/) database, as well as the expression matrix of key

genes in the cohort sample. We conducted the R cor.test () to

figure out the correlation coefficient between m6A regulators

gene expression and immune cell abundance, immune gene sets

enrichment score as well as rejection key genes expression of

samples in the cohort and the correlation heat map was plotted

using the R “ggplot2” package.
Establishment and analysis of the
prognostic prediction model

First, we performed the correlation analysis between 1795

(after removing 704 duplicates) immune genes of 17 immune

categories and m6A regulators in the discovery cohort. Those

immune genes were derived from ImmPort database. 278 m6A-

related immune genes (MRIGs) (|correlation coefficients|> 0.6

and P< 0.01) were obtained, on which gene enrichment analysis

was conducted via the R “clusterProfiler” package. Then, we

performed the univariate cox regression analysis between

MRIGs and graft survival data, which was assessed as the time

between biopsy and graft failure/censoring, and obtained 108

prognostic m6A-related immune genes (P-MRIGs), taking

P<0.001 as the cutoff value. Finally, the R “caret” package was

used to randomly divide the prognosis cohort into train cohort

and test cohort, with a ratio of 1:1. In the train cohort, we carried

out the least absolute shrinkage and selection operator (Lasso)

regression with 10-fold cross validation on P-MRIGs using R

“glmnet” package and selected the P-MRIGs corresponding to

the smallest lambda value for model building. The multivariate

Cox regression was conducted to figure out the regression

coefficient. The Risk Score was calculated with the following

formula: Risk Score = o
n

i=1
(coefi*expri), here exprirepresented the

expression level of gene, i and coefi, the regression coefficient of

gene i in the signature. The train cohort was divided into high-

and low-risk groups, choosing median of risk score as the

midpoint. The Kaplan-Meier survival curve was plotted using

the R “survminer” package. Log Rank test was used to compare

the differences in graft survival between the two risk groups and

the ROC curve drew by R “timeROC” package plots evaluated the

predictive performance of the signature. Similar proceedings were

carried out in the test cohort. In addition, to verify the model’s

applicability, we conducted the graft survival analysis of high- and

low-risk groups in the rejection group and non-rejection group

respectively, ran the GSEA 4.1.0 software (25) to identify the

underlying pathophysiology of the risk-group and compared the

gene enrichment differences in the KEGG pathway between the

high and low-risk groups.
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Differential analysis of m6A regulators
and immune characteristics in subgroups

The distribution differences of m6A regulators and immune

characteristics, which were obtained from the proceedings

above, including gene expression matrix, the abundance of

immune cells, and immune gene set enrichment scores, were

compared in the TCMR, ABMR, and non-rejection groups of the

discovery cohort. The results were visualized using R

“pheatmap,” “ggplot2”, and “ggpubr” packages.
Establishment and analysis of the
diagnosis prediction model

We intended to build a diagnostic model of TCMR based on

m6A-related immune genes. Firstly, we performed a gene

differential analysis between TCMR and non-TCMR groups

(including the mixed group) in the discovery cohort using R

“limma” package and obtained 120 differentially expressed genes

(DEGs, | Log Fc |> 1, P< 0.05), of which 64 DEGs are immune-

related genes. Subsequently, we carried out a correlation analysis

between 64 differentially expressed immune genes and m6A

regulators, and further obtained 58 m6A-related immune genes

(DE-MRIGs, |correlation coefficients|> 0.4 and P<0.05) in the

diagnosis cohort (train). Cycloscape 3.8.0 software (26) was used

to perform protein-protein interaction (PPI) analysis of DE-

MRIGs and corresponding m6A regulators. The GlueGO pluglet

(27) was used for enrichment analysis and visualization. Finally,

we utilized R “randomForest” package to carry out the decision

tree analysis of DE-MRIGs to select feature genes in the train

cohort. The appropriate variables were selected on the basis of

their importance to build the model and logistic regression was

conducted to determine the variable regression coefficient. The

classifier score was calculated with the following formula:

Classifier Score = o
n

i=1
(coefi*expri) .,here expri represented the

expression level of gene, i and coefi,the regression coefficient of

gene i in the classifier. The diagnostic performance of classifier

was evaluated by the Area Under Curve (AUC) of the ROC

Curve. The Optimal cut-off point was determined based on

Youden index. Classifier score was calculated and evaluated in

the test cohort. Moreover, a violin plot was drawn based on the

histological lesions in the test cohort to compare the distribution

of classifier score in TCMR-related injuries of different degrees,

in which Wilcoxon Rank Sum was used for comparison between

two groups, Kruskal-Wallis test for comparison between

multiple groups. We retrieved Connectivity Map (Cmap)

Database (https://clue.io/) (28) to identify the potential

compounds that could alleviate TCMR lesions. Potential drugs

with absolute Cmap score over 95 were selected and visualized

using the R ComplexHeatmap package.
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Results

Characteristic of cohort and biopsy

A total of 4 consecutive study cohorts, including 2193 renal

transplant biopsy samples and 1906 kidney transplant patients,

are included in this study. The detailed information is shown in

Table 1. 36%-62% of renal graft biopsies are performed due to

rapid or slow deterioration of graft function. The median time of

biopsy after transplantation ranges from 512 to 751 days, of

which 55%-100% of renal allografts biopsies one year after

transplantation. Biopsies with a definite pathological diagnosis

or lesions associated with alloimmunity, including TCMR,

ABMR, mixed ABMR and TCMR, borderline rejection, and

transplant glomerulopathy (TG) are most common (24%-48%),

among which TCMR and ABMR have similar incidence.

55%-83% of transplant patients are given maintenance

immunosuppressive regimens, which include calcineurin

inhibitors at the time of biopsy. 12%-29% of recipients

undergo graft failure, with mean follow-up time after

transplantation ranging from 469 to 1017days.
Correlation between m6A regulators and
immune characteristics

To explore whether m6A is related to immune factors,

especially alloimmunity at the molecular level in the process of

graft dysfunction, we collected and processed the data with

immune characteristics and performed the correlation analysis

with m6A regulators. Most m6A regulators are significantly

correlated with T cell subtypes, macrophages, dendritic cells,

mast cells and eosinophils, but not B cells (Figure 1A). Similar

findings are observed in the respective correlation analysis of

m6A regulators and immune categories, as well as m6A

regulators and rejection key genes, as shown in Figures 1B, C.

Erasers are mainly negatively related to the corresponding

immune characteristics (shown in blue wireframe) while

writers are mainly positively related (shown in red wireframe).

For readers, both positive and negative correlations can be

found, which may be related to its property of adjustment.
M6A-related immune gene-based
prognostic prediction model for
graft loss

Given what we have discovered above, we assumed that m6A

modification-related immune molecules may be able to affect the

outcomes of renal grafts, on which we established a prognostic

model of grafts. The flow of modeling is shown in Figure 2A. We

found that most genes are enriched in T cell activation,
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regulation of response to biotic stimulus, cytokine receptor

interaction, and PI3K-Akt signaling pathway (Supplementary

1) on gene set enrichment analysis of 278 m6A-related immune

genes (MRIGs). A list of 108 m6A-related prognostic genes

immune genes (P-MRIGs) with hazard ratios (HR) is recorded

in Supplementary 2. Based on Lasso regression, 7 P-MRIGs

(S100A6, TMSB10, NAMPT, IL15, PSMC6, NDRG1, NRG1) are

determined for building the prognostic prediction model

(Figure 2D). Each candidate gene is given a corresponding

coefficient by multivariate Cox regression, and the risk score

of each sample is calculated. Taking the median of risk score as

the threshold, we stratified the train cohort into different risk

groups, of which the graft survival probability of the high-risk

group is significantly lower than that of the low-risk group
Frontiers in Immunology 05
(P<0.001, Figure 2E). The model shows good predictive

performance (Figure 2F), as AUC for predicting graft survival

of 3-year, 5 -year, 10- year, and 20-year are 0.91, 0.90, 0.90, and

0.87, respectively. The model was verified in the test cohort.

Similarly, the high-risk group has remarkably poor graft survival

(P< 0.007, Figure 2G), as AUC for predicting graft survival of 3-

year, 5 -year, 10- year, and 20-year are 0.79, 0.83, 0.76, and 0.53,

respectively (Figure 2H).

There is a significant difference in the distribution of risk

scores between the rejection and non-rejection groups

(Figure 3A), and the risk score is higher in the rejection group

(p<0.001). Moreover, the KM survival curves show that graft

survival of the high-risk group is much worse than that of the

low-risk group regardless of with rejection or not (Figures 3B,
TABLE 1 Characteristic at cohort and biopsy.

GEO accession GSE36059 GSE21374 GSE48581 GSE98320

Cohort type in study discovery cohort prognosis cohort diagnosis cohort (train) diagnosis cohort (test)

Platform GPL570 GPL570 GPL570 GPL15207

Sample tissue kidney transplant biopsies kidney transplant biopsies kidney transplant biopsies kidney transplant biopsies

Sample size 403 105/282* 300 1208

number of patients 315 105 264 1045

Indication for biopsy

Primary nonfunction(including DGF) 10 (2%) unknown 9 (3%) 53 (5%)

Deterioration of graft function 246 (61%) 65 (62%) 170 (57%) 436 (36%)

Stable impaired graft function 71 (18%) 7 (7%) 17 (6%) 79 (7%)

Investigate proteinuria/rejection/BK/creatinine 38 (9%) 15 (14%) 71 (24%) 175 (14%)

Follow-up from previous biopsy unknown 6 (6%) unknown unknown

Others 23 (6%) 6 (6%) 17 (6%) 443 (37%)

Indication unknown 15 (4%) 6 (6%) 16 (5%) 22 (2%)

Time of biopsy after transplant (d)

mean time 1437 1734 1705 unknown

median time (range) 512 (6-12831) unknown 751 (3-9889) 591 (1-11453)

Early biopsies (< 1 year) 182 (45%) 0 (0%) 116 (39%) 507 (42%)

Late biopsies (≥ 1 year) 221 (55%) 100 (100%) 184 (61%) 701 (58%)

Diagnosis (conclusive)

TCMR 32 (11%) 14 (13%) 35 (9%) 87 (7%)

ABMR 40 (13%) 11 (10%) 65 (16%) 24 (2%)

Mixed ABMR and TCMR 6 (2%) 3 (3%) 22 (5%) 41 (3%)

Borderline rejection 46 (15%) 11 (10%) 42 (10%) 109 (9%)

Transplant glomerulopathy(TG) 20 (7%) unknown 4 (1%) 40 (3%)

Glomerulonephritis 40 (40%) 22 (21%) 41 (10%) 97 (8%)

BK virus 13 (4%) 1 (1%) 13 (4%) 37 (3%)

No major abnormalities 43 (14%) unknown 76 (19%) 274 (23%)

Maintenance immunosuppression at biopsy (calcineurin inhibitors)

Tacrolimus 176 (44%) 38 (36%) 127 (42%) 712 (59%)

Cyclosporine 101 (25%) 49 (47%) 38 (13%) 192 (16%)

Time of follow-up after biopsy (d, mean time) 1017 774 469 unknown

Failed grafts 80 (25%) 30 (29%) 33 (12%) unknown
*GSE21374 provided a total of 282 samples, but was only able to find histological information for 105 of them.
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C), which indicates that the predictive performance of the model

is not affected by rejection factors and possesses of

strong applicability.

In order to explore the latent causes behind the poor graft

survival of the high-risk group, we compared the gene

enrichment of the two risk groups. In high-risk group, more

genes are enriched in the pathways related to alloimmunity, such

as allograft rejection and graft versus host disease, suggesting

alloimmunity is the principal element accounting for graft loss.
M6A regulators and immune
characteristics in rejection versus
non-rejection

The gene expression differences of m6A regulators in the

rejection group, including TCMR and ABMR, as well as non-

rejection, are shown in Figure 4. For most of m6A regulators,

their gene expression levels are significantly different between

rejection group and non-rejection group (Figure 4A). Similarly,

the expression levels of most of the m6A regulators are

remarkably different between TCMR and non-TCMR groups.

However, only a few m6A regulators show a significant

difference in gene expression levels between ABMR and non-

ABMR, as well as ABMR and TCMR (Figures 4B, D). Thus, we

speculated that m6A regulators may play an important part in

rejection, especially in TCMR, while its role in AMBR is limited.
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The results of immune cell infiltration show that there are

more CD4 or CD8 T cells, helper T cells, M1 macrophages,

activated dendritic cells, and eosinophilia infiltrated in the TCMR

group (Supplementary 3A, B), which are precisely the immune

cell types significantly related to m6A regulators. The TCMR

group has higher enrichment scores in a number of immune

categories (Supplementary 2C, D), which are also significantly

related to m6A regulators. Thus, it is justifiable to conclude that

m6A-modified immune responses play a specific role in the

pathogenesis of TCMR.
M6A-related immune gene-based
diagnostic prediction model for TCMR

The process of establishing the prediction model is shown in

Figure 5A. Several genes are enriched in T cells immunity,

proliferation, and related pathway (Dark orange circles in

Figure 5B) on the enrichment analysis of DE-MRIGs and their

counterpart m6A regulators. Figure 5C shows the network of

DE-MRIGs and m6A regulators, of which RBM15, WTAP, FTO,

and METTL3 may be the hub genes that regulate the

immune genes.

7 DE-MRIGs with the greatest mean decrease of Gini

coefficient are selected for modeling by the Random Forest

algorithm (Figure 6B). Figure 6A demonstrates that when the

decision trees are accumulated to a certain number, the error of
B

CA

FIGURE 1

Landscape of correlationship between m6A regulators and immune characteristics. (A) Correlation heatmap of m6A regulators and immune
cells. (B) Correlation heatmap of m6A regulators and immune gene categories. (C) Correlation heatmap of m6A regulators and rejection key
genes. m6A regulators significantly correlated immune cells clustered in the black wireframe; Immune gene categories or rejection key genes
significantly positive correlated m6A regulators clustered in the red wireframe; Immune gene categories or rejection key genes significantly
negative correlated m6A regulators clustered in the blue wireframe.
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B C D

E F

G H

A

FIGURE 2

Construction and verification of prognostic prediction model. (A) Flow of constructing the prognostic prediction model. (B) Lasso coefficient
profiles. (C) The partial likelihood deviance plot. (D) Coefficient of seven screened P-MRIGs in the prognostic prediction model. (E) The K-M
curve showed that the high-risk group had a more inferior graft survival than the low-risk group in train set and (G) test set. (F) ROC curve of
the model: the AUCs of 3-, 5-,10- and 20-year graft survival in the train set and (H) test set. Lasso, least absolute shrinkage and selection
operator; P-MRIGs, prognostic m6A-related immune genes; K-M, Kaplan–Meier; ROC, receiver operating characteristic; AUC, areas under
the curve.
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the random forest model falls between 10% and 12%. The

regression coefficient of each DE-MRIG was obtained by

Logistics regression, and then the classifier score of each

sample in the train cohort was calculated. The expression
Frontiers in Immunology 08
levels of 7 DE-MRIGs in the sample and their corresponding

histological and predicted diagnosis types are shown in

Figure 6D. The classifier possesses excellent predictive

performance for TCMR with an AUC of 0.891. The specificity
B

C D

A

FIGURE 4

m6A regulators in rejection subtypes. (A) Split violin plot of m6A regulators’ gene expression levels in non-rejection versus rejection group,
(B) ABMR versus TCMR group, (C) non-TCMR versus TCMR group, and (D) non-ABMR versus ABMR group. *P< 0.05, **P< 0.01, ***P< 0.001.
B C

D E

A

FIGURE 3

Test of suitability of the prognostic prediction model. (A) Violin plot of risk score in non-rejection and rejection group. (B) The K-M curve
showed that the high-risk group had a more inferior graft survival than the low-risk group in non-rejection and (C) rejection group. (D) Gene
enrichment analysis of KEGG pathway and (E) hallmark pathway in high-group versus low-group. K-M, Kaplan–Meier.
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and sensitivity of the model are 80.2% and 87.5%, respectively,

when the optimal cut-off point is 1.070. We also verified the

model in the test cohort, and it still shows good performance

with an AUC of 0.854 when the optimal cut-off point is 1.657.

The model was verified in the test cohort which also delivers

good performance with an AUC of 0.854, and the optimal cut-off

point is 1.070, affected by sequencing platforms. The specificity

and sens i t iv i ty in the tes t cohort are 78 .8% and

80.5%, respectively.

Banff lesions i, t, v, i-IFTA represent interstitial inflammation,

tubulitis, intimal arteritis, and inflammation in areas of fibrosis/

interstitial fibrosis and tubular atrophy, respectively. Those are the

main pathological lesions of acute and chronic TCMR, and the

diagnosis is exactly based on them. The distribution of the classifier

score shows a significant gradient difference in injury indicators of

TCMR, which means the classifier scores increases with the degree

of injury (Figures 7A, C). Therefore, our model can be used to

reflect the severity of pathological injury and facilitate in

TCMR grading.

The Connectivity Map (CMap) database can explore the

potential therapeutic small molecule compounds by comparing

the uploaded gene signature with the in-house gene datasets,

from which the corresponding correlation score is obtained,
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namely the CMap score. We screened out the compounds for

TCMR in the CMap database based on the signature of the top

10 DE-MRIGs (Supplementary 4) in the diagnostic model. The

potential therapeutic drugs with absolute CMap score over 95

are selected, and the most common mechanism of action is

antagonizing adenosine receptor (Supplementary 5).
Discussion

The kidneys are a common target of systemic immune and

autoimmune disorders, which is partly related to the size-

selective and charge-dependent filtration process (29). In terms

of transplanted kidneys, persistent and intense alloimmunity is

the main culprit for graft loss. There is accumulating evidence

suggesting new functions of m6A in regulating various aspects of

immunity, including immune recognition, activation of innate

and adaptive immune responses, and cell fate decisions (8). It is

justifiable to speculate that m6A may also be involved in

regulating alloimmunity and other immune responses in renal

transplantation. Thus, we derived microarray expression data

from transplanted kidney biopsies for cause and tried to explore

the relations between m6A regulators and immune responses in
B

C

A

FIGURE 5

Construction and verification of diagnostic prediction model. (A) Flow of constructing the diagnostic prediction model. (B) Gene enrichment
analysis and (C) network of DE-MRIGs and corresponding m6A regulators. DE-MRIGs, different expression m6A-related immune genes.
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renal transplantation at a molecular level, on which the

diagnostic and prognostic models were built.

Einecke et al. (18) first reported a molecular classifier for

predicting future graft loss in late kidney transplant biopsies.

The transcripts that are associated with graft loss and used as a

classifier, can only give us hints about tissue injury and fail to

reflect the inflammatory state. Although transcripts in this

research are limited to immune genes associated with m6A
Frontiers in Immunology 10
modifications, with an AUC of 0.9, they have better

performance in predicting graft survival of 3-, 5-, and 10-

years than the classifier in the previous study, whose AUC is

0.83. Moreover, our model is applicable for patients with or

without rejections in predicting graft survival.

The m6A-related immune genes included in the prognostic

model may also play a consequential role in the risk stratification

of graft loss. S100A6 protein belongs to the S100 protein family
B C

D E

F G

A

FIGURE 6

Construction and verification of diagnostic prediction model. (A) Random forest error rate plot. (B) Mean decreased gini of genes profiles.
(C) Coefficient of seven screened DE-MRIGs in thedignostic prediction model. (D) Heatmap of identified DE-MRIGs in train cohort and (F) test
cohort. (E) ROC curve of the model: the AUC, optimal cut-off point, specificity and sensitivity of classifier for discriminating TCMR in train
cohort and (G) test cohort. DE-MRIGs, different expression m6A-related immune genes; ROC, receiver operating characteristic; AUC, areas
under the curve.
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of Ca2+- binding proteins (30). Research revealed that

interferon beta (INFb) activity could be modulated via the

binding of S100A6 protein (31). Yilmaz et al. (32) found that

NAMPT can reflect endothelial dysfunction directly following

renal transplantation. In kidney transplantation, IL-15 can

stimulate CD4 + CD28 null T cells to generate alloreactivity

(33) or acts as a biomarker for the assessment of antibody-

mediated kidney allograft rejection (34).

In the wake of new immunosuppressive regimens, TCMR is

less common but still remains the dominant early rejection

phenotype and serves as the endpoint for clinical trials (35).

The latest Banff classification outlines the diagnostic criteria of

TCMR based on four histological lesions: interstitial

inflammation (i2 or i3), tubulitis (t2 or t3), intimal arteritis

(v1, v2 or v3), and inflammation in areas of interstitial fibrosis

and tubular atrophy (i-IFTA2 or i-IFTA3) (36). This scoring

system is largely opinion-based and inconsecutive with arbitrary

cutoffs (37). Moreover, the histological lesions for TCMR are

nonspecific. For example, interstitial inflammation and tubulitis

are also found in acute kidney injury (AKI), possibly rendering

false positives, and difficult to assess in scarred tissue, causing

false negatives (20). Advantages of molecular assessment over

histological approaches include objectivity, repeatability and
Frontiers in Immunology 11
quantification, which can emerge as an amelioration to

pathological diagnosis (37).

In the pathogenesis of TCMR, effector T cells, dendritic cells

and activated macrophages are the main acting cells (37), which

are also significantly associated with m6A regulators in the

discovery cohort. At the same time, there is a remarkable

difference in the expression of most of these m6A regulators

between TCMR and non-TCMR, indicating that m6A

modification may play a part in TCMR, on which we

established a diagnostic prediction model to identify TCMR in

grafts dysfunction. The classifier score of our model outperforms

the published molecular test - TCMR score in diagnostic

performance with an AUC of 0.89 vs 0.8412. In addition,

further analysis revealed that the classifier score is positively

related to the degree of main pathological lesions of TCMR,

enabling it to evaluate pathological injury degree and further

grade TCMR.

Through network analysis, we found that METTL3, FTO,

WATP and RBM15 may play a pivotal part in the regulation of

immune responses in TCMR (Figure 8). It has been proven that

METTL3 regulates T cell homeostasis (38), M1 macrophage

polarization (39) and dendritic cell maturation (40); FTO

enhances M1 and M2 macrophage activation (41); WTAP
B

C D

A

FIGURE 7

Classifier score in TCMR-related pathological lesion. (A) Classifier score in i0, i1, i2, i3, (B) v0, v1, v2 or 3, (C) t0, t1, t2, t3, and (D) i-IFTA=0 or 1,
i-IFTA > =2. i, interstitial inflammation; t, tubulitis; v, intimal arteritis; i-IFTA, inflammation in areas of fibrosis.
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controls T cell receptor signaling and survival of T cells (42). It is

noted that the m6A-related immune genes, which were finally

screened out to build our model, namely, CD72 (43), CXCL9

(44) and CXCL13 (45), have also been reported to emerge as

biomarkers for TCMR-exclusive.

Furthermore, we managed to select some small molecule

compounds that may be able to reverse TCMR damage. Among

the compounds with highest CMap scores, fenoldopam has been

proven to be able to alleviate acute kidney injury (46) and is

promising for reversing delayed graft function (DGF) (47);

dextromethorphan can reduce renal complications of diabetes

(48). We identified the potential therapeutic drugs with absolute

CMap score over 95, and the most common mechanism of

action is antagonizing adenosine receptor. Debra et al. (49)

confirmed in mice experiment that adenosine receptor

antagonists could protect against kidney injury.

This study has some limitations: on one hand, there is no

clinically relevant population being studied, which is referred to

as “limited challenge bias” (36); on the other hand, the

hypothesis requires in vivo and vitro experiments to verify.

There are also some common problems in the buildup of

transcriptome models: firstly, there is inevitable inaccuracy in

adopting histology based on Banff classification as the gold

standard of diagnosis. Secondly, the deviation can be
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generated from the transcript data obtained from different

experimental platforms. Due to this bias, the optimal cutoff

points derived from train and test cohorts in the diagnostic

model are quite discrepant in this study. Finally, for-cause

biopsies are mainly performed for those patients with clinical

indications. The inclusion itself has already resulted in selection

bias, which may overestimate the model’s performance.

Therefore, it is better to study the relations between m6A and

transplant rejection in patients with protocol biopsy and

diagnose rejection at an earlier stage. Anyhow, our study is

pioneering and enlightening,and provides valuable clues for

future studies on the role of m6A modification in renal

graft dysfunction.
Conclusion

Collectively, our findings demonstrated that m6A-related

immune genes could be used for prediction of graft loss and

diagnosis of TCMR, which may be involved in the process of

renal graft dysfunction. The results of this study offer novel

schemes for molecular assessment of disease states in kidney

transplant and provide a ponderable direction for the

future research.
FIGURE 8

Potential role of m6A modification in TCMR. METTL3, WTAP, RBM15 and FTO may be involved in the pathogenesis of TCMR by regulating
immune response, thereby causing interstitial inflammation, tubulitis and intimal arteritis. TCMR, T cell mediated rejection; Me,
N6-methyladenosine.
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