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Base excision repair (BER) has evolved to maintain the genomic integrity of DNA

following endogenous and exogenous agent induced DNA base damage. In

contrast, aberrant BER induces genomic instability, promotes malignant

transformation and can even trigger cancer development. Previously, we have

shown that deoxyribo-5′-phosphate (dRP) lyase deficient DNA polymerase beta

(POLB) causes replication associated genomic instability and sensitivity to both

endogenous and exogenous DNA damaging agents. Specifically, it has been

established that this loss of dRP lyase function promotes inflammation

associated gastric cancer. However, the way that aberrant POLB impacts the

immune signaling and inflammatory responses is still unknown. Herewe show that

a dRP lyase deficient variant of POLB (Leu22Pro, or L22P) increases mitotic

dysfunction associated genomic instability, which eventually leads to a cytosolic

DNA mediated inflammatory response. Furthermore, poly(ADP-ribose)

polymerase 1 inhibition exacerbates chromosomal instability and enhances the

cytosolic DNA mediated inflammatory response. Our results suggest that POLB

plays a significant role in modulating inflammatory signaling, and they provide a

mechanistic basis for future potential cancer immunotherapies.

KEYWORDS

DNA polymerase beta, base excision repair, cytosolic DNA mediated inflammatory
signaling, PARP inhibitor, interferon type I cytokines
Introduction

DNA damage is a biological process that negatively impacts host cells’ genomic

integrity and human health (1–4). Cells accrue DNA damage as a result of endogenous

metabolic activities or environmental exposures, such as ultraviolet light and chemical

mutagens that can promote cancer (5). To ensure genomic integrity, cells have evolved
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sophisticated mechanisms to repair DNA damage, including

base excision repair (BER), which is the predominant repair

pathway to process oxidative and alkylating agent derived DNA

base lesions (6–10). Further, multiple studies have shown that

BER modulates the inflammatory response (11, 12). Mammalian

cells harbor two sub-BER pathways that are dependent on the

number of oxidized DNA bases to process and the key enzyme

involved in the repair process (13). The two sub-pathways are

known as short-patch BER (SP-BER) and long-patch BER (LP-

BER) (14, 15). SP-BER engages in repairing one nucleotide gaps

(16, 17), while the LP-BER involves processing and repairing 2 to

12 nucleotide gaps. Both BER pathways begin as DNA

glycosylase recognizes and removes the DNA base lesion. In

both pathways, AP-endonuclease 1 (APE1) cleaves the DNA

backbone to generate a 3’-OH terminus at the site of damage

followed by DNA polymerase beta (POLB), which possesses

DNA polymerase and deoxyribo-5′-phosphate (dRP) lyase

activities, both of which are known to be important for

efficient BER. The dRP lyase activity resides within the 8kDa

amino terminal domain of POLB and is responsible for the

removal of the 5’-phosphate group (5’-dRP), and subsequently

the polymerase domain of POLB adds one nucleotide, leaving a

nick which is sealed by DNA ligase I or III (18). While POLB is a

major player in SP-BER, LP-BER, involved in processing 2 to 12

nucleotide bases, allows different DNA polymerases such as

DNA Pol d and DNA Pol e, and other main DNA replication

enzymes to conduct strand-displacement DNA synthesis. The

displaced single stranded DNA structure or 5’-DNA flap is

removed by flap endonuclease I (FEN1) (19) followed by the

resulting DNA nicks being sealed by Ligase I or Ligase III (20).

When BER is unable to continue the repair process, there is

an accumulation of DNA base damage, single-strand breaks

(SSBs) and apurinic/apyrimidinic (AP) sites (21–25). SSBs are

converted into double-strand breaks (DSBs) during the S- phase

of DNA repalication (26, 27). The BER intermediates such as

SSBs and 5’-dRP groups provide the opportunity for poly(ADP-

ribose) polymerase 1 (PARP1) to bind and activate poly(ADP-

ribose) (PAR) synthesis to facilitate the recruitment of

downstream proteins, such as POLB, which fill the gap and

XRCC1-Ligase III complex which seals the nick (28, 29). It is

possible then that an accumulation of DNA base damage in BER

deficient cells could lead to activation of the DNA damage

response and modulate an inflammatory response (30, 31).

Multiple studies have suggested that DNA repair factors play a

role in modulating an inflammatory response (32, 33). Once

nuclear DNA integrity is compromised through a deficient DNA

repair system or exogenous DNA damaging agents, cells will

likely release the DNA into the cytosolic compartment and

possibly activate STING signaling and engage an inflammatory

response. It is well documented that chronic stimulation of the

immune system is critical for tumor promotion and progression

(34, 35). One of the key interfaces between defective DNA repair

and immunogenicity is the cyclic GMP-AMP synthase/
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stimulator of IFN genes (cGAS/STING) pathway (33, 36). The

cGAS-STING pathway, which senses cytosolic DNA, has been

linked to an anti-tumor inflammatory response (37). In this

pathway, STING, an endoplasmic reticulum localized protein, is

a critical adaptor for the cytosolic DNA sensing pathway (38,

39). Cytosolic double-stranded DNA is sensed by cGAS, leading

to activation of the transmembrane protein STING and

activation of the transcription factors interferon regulatory

factor 3 (mainly IRF3) and nuclear factor kappa B (NF-kB)
followed by an upregulation of interferon beta (IFN-b) related
genes (40, 41).

Previously, we demonstrated that the human gastric cancer-

associated variant of POLB (Leu22Pro or L22P) lacks dRP lyase

function in vitro and induces replication associated genomic

instability and cellular transformation (42). The L22P mutation

of POLB lacks dRP lyase activity, which leads to inefficient BER

and an accumulation of BER intermediates (21). These

intermediates can further block replication fork progression

and exacerbate genomic instability (42, 43). Therefore, L22P

can serve as a good model to study the interplay between

aberrant BER and inflammation in gastric cancer (44). In the

present work, we hypothesize that loss of dRP lyase function of

POLB enhances cytosolic DNAmediated inflammatory immune

signaling through the cGAS/STING pathway. Results from this

work show that a novel role of POLB in modulating

inflammatory response. We discovered that loss of the dRP

lyase function of POLB leads to chromosomal instability and

spontaneous upregulation of cytosolic DNA mediated

inflammatory response. We also show that targeting PARP1 in

dRP lyase deficient cells (L22P variant) exacerbates the release of

cytosolic DNA, activates STING signaling, and promotes an

inflammatory response. Our study reveals a previously

unidentified role of POLB in regulating the cellular

inflammatory response thus providing a potential target in a

defective BER pathway to enhance an immune based therapy

response in the future.
Material and methods

Cell lines and materials

We constructed a POLB L22P conditional knock-in mouse

model as described previously (21). C57BL/6 Mouse Embryonic

Fibroblasts (MEFs) were isolated from embryonic tissue at

embryonic day 14.5 (21). Two MEF cell lines isolated from

WT and L22P mice were characterized. All animal studies were

conducted according to protocols approved by the Institutional

Animal Care and Usage Committee of The University of Texas

at Austin (protocol # AUP202-00070). Embryos from WT and

L22P transgenic mice were isolated at embryonic day 14.5. After

the heads, tails, limbs, and most of the internal organs were

removed, the embryos were minced and typsinized for 20 min,
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and then seeded into T-75 cell culture dishes in 10 mL DMEM

supplemented with 10% fetal bovine serum (FBS), 1% penicillin/

streptomycin, and 1% L-glutamine at 37°C with 5% CO2. The

cells were split at 1:2 ratios when freshly confluent, passaged two

or three times to obtain a morphologically homogenous culture,

and then frozen or expanded for further studies.
Chemicals

To determine whether MEFs are sensitive to exogenous

alkylating and oxidative DNA damaging agents, 1-methyl-1-

nitrosourea (MNU, Cat. N2939, Spectrum Chemical, New

Brunswick, NJ) and H2O2 (Cat. H1009, Sigma-Aldrich, St.

Louis, MO) were dissolved or diluted in water and stored at

-20°C before use. Olaparib was purchased from Selleck

Chemicals and prepared according to the manufacturer’s

protocol (Cat. S1060, Selleck Chemicals).
Cytoplasmic and whole-cell
DNA isolation

Cells were trypsinized and washed with PBS two times before

DNA isolation. Whole-cell DNA was isolated using QIAamp

DNA Mini Kit (Cat. 51304, Qiagen) according to the

manufacturer’s protocol. For cytoplasmic DNA, cells were lysed

in hypotonic lysis buffer (10mM HEPES pH 7.4,10mM KCl,

1.5mM MgCl2, 0.34M sucrose, 10% glycerol, 0.1% Triton X-

100) on ice for 5 mins before centrifuging at 1700g for 5 mins.

The supernatant containing the cytoplasmic fraction was collected

and centrifuged at 13000g for 10 mins to remove other organelles

and incompletely lysed cells. Extraction was validated by Western

blot with a-tubulin as the cytoplasmic marker and histone 3 as the

nuclear marker. DNA concentration was later quantified using

PicoGreen dsDNA assay kit (Cat. P7589, Thermo Fisher)

according to the manufacturer’s protocol.
Alkali comet assay

Alkali comet assay was performed using Comet Assay Single

Cell Gel Electrophoresis Assay Kit (Cat. 4250-050-K, Trevigen)

according to the manufacturer’s protocol. Cells were mixed with

low-melting agarose before plating on comet assay slides for

overnight lysis. The next day, chromosomal DNA was denatured

under alkali unwinding buffer (pH>13) and underwent

electrophoresis (20V) for one hour at 4°C. After drying the slides,

DNA was stained with SYBR Gold (Cat. S11494, ThermoFisher)

and images were taken with a FITC filter using a Zeiss fluorescence

microscope (Zeiss, San Diego, CA, USA) then analyzed by Open

Comet Assay using Image J application as described previously (45).
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Abasic site quantification

Genomic DNA was extracted using DNAzol® Reagent (Cat.

10503027, Thermo Fisher) to minimize base loss during sample

preparations. DNA was diluted in TE buffer to reach 100ng/µl,

and AP sites were measured using AP Sites Quantitation Kit

(Cat. STA-324, Cell Biolabs) according to manufacturers’

protocol. Briefly, AP sites were labeled with aldehyde reactive

probe (ARP). The probe contains biotin which can be further

conjugated with streptavidin-enzyme before performing

colorimetric quantification. The standard samples provided in

the kit were used to plot a standard curve.
DNA-PARP-1 crosslinks measurement

Cells were plated and allowed to grow until 70% confluent

before Olaparib treatment for 24 hours. Then cells were isolated

and lysed with DNAzol. DNA was sheared by passing through a

21-gauge needle and then through a 25-gauge needle, three times

each. NaCl was added to reach a final concentration of 4M and

incubated at 37°C in a shaking water bath for 20 mins. Urea was

then added to reach a final concentration of 4M, and the mixture

was incubated for 20 mins in a 37°C shaking water bath. To

precipitate DNA-protein crosslinks (DPCs), an equal volume of

100% ethanol was added. The solution was then mixed by

inversion followed by the addition of a QIAEX II silica slurry

(Cat # 20021, Qiagen). Samples were rocked for 40 mins at room

temperature to allow DNA to bind to silica. Silica particles were

collected by centrifugation and washed 4 times with 50%

ethanol. DPC was eluted from silica by adding 2ml of 8mM

NaOH and was incubated at 65°C for 5 mins. The elution

process was repeated and the supernatant fractions combined.

DPC samples were verified by measuring the DNA

concentration. To digest DNA, samples were mixed with

digestion buffer (10mM MgCl2, 10mM ZnCl2, 0.1M NaAc

pH=5, 5 units of DNase I, and 5 units of S1 nuclease). The

mixture was incubated at 37°C for one hour then at 65°C for 10

mins to stop the digestion. Next, ice-cold trichloroacetic acid

(TCA) was added to reach a final concentration of 15% and

samples were incubated on ice for one hour to precipitate out

DPC proteins. Proteins were pelleted by centrifugation and then

washed with 15% ice-cold TCA followed by ice-cold acetone, 2

times each. The pellet was allowed to air-dry and dissolve in

RIPA buffer before Western blot.
Real-Time q-PCR

RNA was extracted using the Trizol/chloroform method and

washed with 75% ethanol. cDNA was then immediately

synthesized from RNA using High-Capacity cDNA Reverse
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Transcription Kit (Cat. 4368814, Applied Biosystems). To

determine gene expression levels, synthesized cDNA was used

as a template for real-time q-PCR using iTaq Universal SYBR

Green Supermix (Cat. 1725121, Biorad). Primers are listed in the

Supplementary Table 1. PCR results were analyzed using

2–DDCt method.
Western blotting

Cells were lysed with radioimmunoprecipitation assay

(RIPA) buffer supplemented with a protease inhibitor (Cat.

25765800, Sigma Aldrich) and a phosphatase inhibitor (Cat.

P5726, Sigma Aldrich). After denaturing the samples at 95°C for

5 minutes, 30mg of each protein sample was separated using

SDS-PAGE and transferred onto nitrocellulose membranes (Cat.

1620112, Bio-Rad, Hercules, CA). Next, the membranes were

blocked with 5% BSA for 1 hour, and then incubated with

primary antibodies against STING (Cat. 13647S, Cell Signaling),

IRF3 (Cat. 4302S, Cell Signaling), p-IRF3 (Cat. 4947S, Cell

Signaling), TBK1 (Cat. 3013S, Cell Signaling), p-TBK1 (Cat.

5483S, Cell Signaling), b-actin (Cat. 3700S, Cell Signaling), and

Vinculin (Cat. 13901S, Cell Signaling) overnight at 4°C. The

following day, the membranes were washed with PBST and

incubated with anti-mouse (Cat. NXA931, GE Healthcare,

Chicago, IL) or anti-rabbit (Cat. NA934V, GE Healthcare)

secondary antibody for 2 hours before developing with ECL

substrates (Cat. 170506, BioRad). The gel images were captured

using Chem-DocXRS image acquisition machine (Bio-Rad).
Immunofluorescence and
micronuclei scoring

WT and L22P MEF cells were cultured in four well chamber

slides (Cat # 154453, Thermo Fisher) with complete media. When

cell confluency reached 70%, cells were fixed with 3.7%

paraformaldehyde (PFA) for 15 mins, followed by

permeabilization with 0.5% Triton X-100 for 10 mins. Slides were

then blocked with 3% BSA for one hour at room temperature

followed by primary antibody incubation overnight at 4°C. Primary

antibodies applied include gH2AX (1:1000, Cat. 07-164, Millipore),

53BP1 (1:400Cat. Sc-22760, Santa Cruz), a-tubulin (1:400, Cat.

2144S, Cell Signaling), ssDNA (Cat.MAB3299, Sigma), and dsDNA

(Cat. ab27156, Abcam). The next day, slides were washed with PBS

three times and incubated with secondary antibody for one hour at

room temperature. Secondary antibodies applied include Alexa

Fluor 488 anti-mouse antibody (Cat. 715-095-150, Jackson

immunoResearch Labs) and Texas Red anti-rabbit antibody (Cat.

711-025-152, Jackson ImmunoResearch Labs). Slides were then

washed with PBS three times and mounted with mounting media
Frontiers in Immunology 04
containing DAPI (Cat. H-1200-10, Vector Laboratories) and

covered with coverslips. Images were captured using a Zeiss

microscope under a 63X objective. The co-localization of gH2AX/
53BP1 greater than five foci per per nucleus is considered as the

average cut value to identify the difference between different

genotypes as well as treated versus untreated group. Micronuclei

were identified and quantified as DAPI positive nucleus-shaped

particles with diameter smaller than 1/3 of the primary nucleus

located nearby.
Measurement of DNA concentration
using PicoGreen

To determine the concentration of DNA isolated from

cytoplasm, we applied PicoGreen dsDNA assay kit (Cat.

P7589, Thermo Fisher) due to its high sensitivity and

accuracy. Cytoplasmic DNA was diluted to 1:10 in 1X TE

buffer. The standard curve was prepared using Lambda DNA

standard ranging from 10 pg/mL to 1 ng/mL. The standard DNA

(100 mL) or DNA samples were mixed with 1X PicoGreen

solution of the volume in the dark. The sample mixture was

shaken for 5 mins before measuring the fluorescence intensity in

a microplate reader at 480nm/520nm (Ex/Em).
Immunohistology

Gastric tissues from WT and L22P mice were collected and

fixed in 3.7% PFA overnight before paraffin embedding. Tissues

were then sectioned along the longitudinal axis for immune-

histological staining using ImmunoCruz rabbit ABC Staining

System (Santa Cruz, sc-2018). Primary antibodies applied

include STING (1:200, Cat. 13647S, Cell Signaling), IRF3

(1:200, Cat. 4302S, Cell Signaling), and p-IRF3 (1:100, Cat.

4947S, Cell Signaling). Stained slides were then scanned using

Scanscope (Leica Biosystem). For each slide, 5 fields were

randomly selected, and the number of positively stained nuclei

and total nuclei were counted.
Statistical analysis

Three independent experiments were performed for

immunofluorescence, comet assay, AP site measurement and

qRT-PCR. Data were statistically analyzed using Student t-test.

Data from more than two study groups were analyzed using two

way of ANOVA statstical analysis. Furthermore, the expression

of PARP1 and interferon gene correlation was calculated using

spearman coefficient with Graph Pad Prism software. Results

were considered significant at P< 0.05.
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Results

dRP lyase deficient POLB cells
accumulate genomic instability

To determine whether cells with dRP lyase deficient POLB are

susceptible to spontaneous and DNA damaging agent induced

genomic instability, we characterized two independent MEFs cells

(MEF #3 and MEF 2) from each genotype (WT and L22P). First,

we examined whether dRP lyase proficient and deficient mouse

embryonic fibroblasts (MEFs) cells accumulate base excision

repair intermediates including abasic sites (AP sites). AP sites

were measured using an AP site assay kit (Colorimetric; Cat. STA-

324, Cell Biolabs, USA) that utilizes an aldehyde reactive probe

(ARP) reagent that reacts specifically with an aldehyde group,

which is the open ring form of an AP site. We observed a

significant increase in the enhancement of AP sites in L22P cells

versusWT cells (Figure 1A; P<0.001). In addition, L22P fibroblast

cells significantly harbored spontaneous and exogenous induced

single strand breaks (SSBs) compared with WT cells as shown by

the formation of longer comet tail moments using an alkali comet

assay (Figure 1B, C). We then considered whether BER
Frontiers in Immunology 05
intermediates (AP sites and SSBs) contributed to double strand

break (DSB) formation with and without DNA damaging agents.

We treated WT and L22P cells with MNU or H2O2 treatment for

one hour and examined the colocalization of gH2AX and 53BP1

foci formation (Figure 1D). We found that spontaneously and

exogenously induced DSBs increased significantly in dRP lyase

deficient (L22P) cells versus WT cells (Figure 1E; P<0.001). To

determine whether or not the presence of L22P variant altered the

protein expression of other BER proteins linked to genomic

instability, we performed Western blot assay analysis on POLB,

PARP1, and XRCC1 and saw no observable difference in protein

expression levels between WT and L22P (Figure 1F).
Loss of dRP lyase function increases
mitotic dysfunction and accumulation of
cytosolic DNA

Previously we have shown that L22P induces chromosomal

instability and cytokinesis failure (21). In this study, we

examined whether L22P cells enter into mitosis with DNA

damage caused by micronuclei formation. We further
B C

D
E

F

A

FIGURE 1

Loss of dRP lyase function causes mitotic dysfunction and telomere crisis. (A) Estimated AP sites with and without MNU and/or H2O2 treatment
in WT and L22P cells; The number of AP sites was measured and calculated based upon a standard curve generated using ARP standard DNA
solutions as described previously (DNA Damage AP sites assay kit, Colorimetric, Abcam). (B) Representative image of single stranded breaks
(SSBs) from Comet assay with and without alkylating agent (MNU) and hydrogen peroxide (H2O2) induced in dRP lyase deficient (L22P) versus
proficient (WT) cells; (C) Percentage of cells with SSBs in WT versus L22P cells from Comet assay. The data were analyzed based on the paired
t-test using GraphPad Prism software. (n=3 independent experiments with at least 100 comets from each groups included for analysis); (D)
Representative image of co-localization of gH2AX (green) and 53BP1 (red), which represents DSBs; (E) Percentage of cells positive for co-
localization of H2AX/53BP1 proteins shows DSBs in WT and L22P cells. All images were taken 63x Zeiss microscope from three independent
experiments and any cells with >5 foci of gH2AX/53BP1 co-localization per cell were categorized as positive. (F) Western bot analysis of BER
proteins (PARP1, XRCC1 and POLB) from MEF#1 and MEF#2 cells. Two MEF cell lines (labeled as MEF #1 and MEF #2) were used to generate
the data. Two-way ANOVA followed test or student’s test were performed to analayze the data from three independent experiments. P*<0.05,
**P<0.01, ***P<0.001, ****P<0.0001.
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examined whether the formation of micronuclei could be

initiated by errors in chromosome segregation or damaged

DNA (Figure 2A). The percentage of L22P cells harboring

micronuclei was significantly increased versus WT cells (35%

versus 13%, P**<0.01; Figure 2B). Next, we generated stable MEF

cell lines expressing C-terminally HA-tagged POLB-WT or L22P

at equal levels to the endogenous WT protein and characterized

the micronuclei from each of these lines. We also generated

clonal MEF cell lines expressing exogenous HA-tagged human

POLB (WT and L22P) at approximately equal levels to
Frontiers in Immunology 06
endogenous POLB in a tetracycline-repressible manner as

described in Supplement Material and Methods. Supplement

Figure 2 shows that MEF cells expressing L22P had increased

amounts of micronuclei compared to cells expressing the

WT POLB.

Furthermore, Supplement Figure 2 shows that MEF cells

expressing L22P had a significantly higher percentage of cells

with DSBs (Supplement Figure 2B). Furthermore, the percentage

of cells with micronuclei significantly increased in MEF cells

expressing HA-Tag L22P-POLB compared to cells expressing
B

C D

A

FIGURE 2

Excessive DNA accumulates in the cytosol of POLB defective cells. (A) Representative image of micronuclei formation in dRP lyase proficient
and deficient cells; (B) Percentage of cells positive for micronuclei; (C) Representative image of subcellular localization of cytosolic DNA (bold
circle shows the cytosolic DNA, green represents Picogreen stained DNA, and blue represents nuclear DNA stained with DAPI); (D)
Quantification of cytosolic double-strand DNA (dsDNA) in L22P versus WT cells. Two MEF cell lines (labeled as MEF #1 and MEF #2) were used
to generate the data. Data were analyzed using a paired t-test in GraphPad Prism; P*<0.05, **P<0.01.
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the HA- tag WT POLB (Supplement Figures 2C, D). To further

determine whether BER deficient cells accumulate cytosolic

DNA, we examined the localization of cytosolic DNA using

PicoGreen immunofluorescence assay using L22P and WT cells.

We found that a majority of the L22P cells harbored cytosolic

DNA (Figure 2C; white arrow). To determine whether the

aberrant dRP lyase function of L22P leads to an elevated

amount of cytosolic DNA, we isolated cytosolic DNA from

cytosolic fraction and total DNA from total cell extracts using

the Cell Fraction Kit (Cat # ab109719, Abcam) protocol. We

performed nuclear and cytoplasmic fractionation of cell lysates

followed by DNA precipitation and quantified double-stranded

DNA (dsDNA) in the cytoplasmic fractions of L22P and WT

cells. The amount of cytosolic dsDNA was significantly higher in

L22P cells (16± 3 ng/106 cells) as compared to WT cells (6 ± 0.2

ng/106 cells) (Figure 2D; data presented from two MEFs cells;

MEF1 and MEF2). These results clearly demonstrate that

aberrant POLB leads to elevated levels of cytosolic DNA.
Aberrant dRP lyase function of POLB
cells activates the cGAS/STING pathway

Micronuclei arise following the mis‐segregation of broken

chromosomes during mitosis (46–48) and have recently been
Frontiers in Immunology 07
described as platforms for cGAS/STING‐mediated immunity

activation following DNA damage (47–49). We found that

unrepaired DSBs trigger mitotic dysfunction (micronuclei

formation) (Figures 2A, B). In addition, to determine whether

cGAS localization in micronuclei is a general phenomenon in L22P

cells, we transfected WT and L22P MEFs cells with pMSCVpuro-

GFP-cGAS or stably expressing GFP-cGAS plasmids (generous gift

from Dr. Andrew P. Jackson & Dr. Martin A. Reijns, MRC, UK)

and examined the colocalization of cGAS at the micronuclei. As

seen in Figure 3A, we found that cGAS strongly colocalized with

micronuclei in L22P cells. In addition, the percentage of DNA

sensor (cGAS) positive micronuclei was significantly increased in

cells with the dRP lyase deficient POLB (27%) (Figure 3B),

suggesting that nuclear DNA (nDNA) released from micronuclei

may be an important danger signal to elicit an inflammatory

response, functioning in an immune-stimulatory role triggering

downstream factors of the STING-TANK binding kinase 1

(TBK1)-IRF3 inflammatory signaling axis. To determine whether

L22P induced micronuclei trigger STING signaling activation, we

examined which downstream cGAS/STING pathway proteins

were activated by Western blot analysis. We found that STING-

TBK1-IRF3 signaling pathways was activated in dRP lyase deficient

cells [as seen by phosphorylation of STING at Ser366 (pSTING); p-

TBK1 (Ser172) and p-IRF3 (Ser385)] (Figure 3C; from MEF1 and

MEF2 cell lines). Moreover, to examine whether micronuclei
B C

D

A

FIGURE 3

POLB defective cells exhibit cytosolic mediated cGAS-STING activation. (A) Representative image localization of cGAS at micronuclei; (B)
Quantification of positive cGAS localization at micronuclei; (C) STING/TBK1/IRF-3 signaling pathway activation detected with Western blot of
protein extract from WT and L22P cells. Anti-STING/anti-Phospho-STING (Ser366); IRF3/p-IRF3 (ser385); TBK1/P-TBK-1 (Ser172) antibodies
were used to detect the activation of cGAS/STING dependent pathway. Two MEF cell lines (labeled as MEF #1 and MEF #2) were used to
generate the data; (D) Fold change in mRNA expression of type I interferon cytokines measured using RT-qPCR in dRP lyase deficient (L22P)
versus proficient cells (WT). Data were analyzed using a paired t-test in GraphPad Prism; P*<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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formation induced in L22P cells might stimulate a cytokine

response, we measured the levels of mRNA expression of type I

interferon cytokines in WT versus L22P cells and found that

interferon beta 1 (IFNb), C-X-C motif chemokine ligand 10

(CXCL10), C-C motif chemokine ligand 5 (CCL5) and

interleukin 6 (IL-6) were significantly increased in L22P cells

versus WT (Figure 3D; P***<0.001; P***<0.001). Overall, this

data suggested that a normally functioning POLB is required to

prevent a spontaneous immune response.
Targeting PARP1 exacerbates mitotic
dysfunction and enhances cytosolic DNA
mediated inflammatory signaling in dRP
lyase deficient cells

PARP1 is known to be activated in response to DNA damage

and is responsible for the synthesis of the majority of poly(ADP-

ribose) (PAR) following genotoxic stress (50, 51). In addition,

PARP1 modulates different DNA repair pathways, mitosis, gene

expression and cell death (51–61). Previously, we have shown that

PARP1 inhibitor exacerbates genomic instability in dRP lyase

deficient cells (42). PARP1 inhibitor-mediated trapping of

PARP1 on DNA lesions appears to be influential for the DNA-

STING immune response, as the extent of PARP1 trapping

correlates with the magnitude of immune signaling (62). To

determine whether blocking PARP1 enhances a DNA sensor
Frontiers in Immunology 08
mediated inflammatory response in dRP lyase deficient cells,

L22P MEF cells were treated with the PARP1 inhibitor Olaparib

(1mM). We then examined any resulting mitotic dysfunction and

cGAS/STING downstream signaling cytokines. We found that

80% of L22P expressing cells harbored micronuclei versus WT

cells (20%) after Olaparib treatment (Figure 4A; P****<0.001).

Moreover, Olaparib treatment significantly induced cytosolic DNA

in L22P cells (30ng/106 cells) versus WT (10ng/106 cells)

(Figure 4B; P*** <0.001) and Olaparib treatment in dRP lyase

deficient cells enhanced the cytoplasmic DNA localization

(Figure 4C). Furthermore, we examined whether Olaparib

treatment increased chromatin association of PARP1 in L22P

cells as compared with treated WT and untreated L22P. We

found that Olaparib treatment did induce chromatin associated

PARP1 in dRP lyase deficient cells (Figure 4D). We also measured

PARP1 trapping in dRP lyase deficient cells using a DNA silica

assay (see Materials & Methods section) and found that PARP1

trapping significantly increased 3.7 fold in dRP lyase deficient cells

(Figure 4E). In support of this observation, we stained dRP lyase

deficient and WT cells with a primary antibody against p-IRF3 (at

Ser385) and detected that the translocation of p-IRF3 to the

nucleus significantly increased in L22P cells treated with

Olaparib versus WT (Figures 4F, G; P**<0.01). Furthermore, the

mRNA expression of type I interferon response cytokines/

chemokines (IFNb, CXCL10 and CXCL5) significantly increased

in Olaparib treated L22P cells versus WT (Figure 4H; P<0.001).

Next, we considered the relationship among PARP1 and
B C D

E F
G H

A

FIGURE 4

Targeting PARP1 [Olaparib (PARPi)] increases a defect in chromosomal segregation and promotes an inflammatory response. (A) Percent of
positive cells with micronuclei after Olaparib treatment for 24 hours in L22P versus WT; (B) Quantification of cytoplasmic DNA from dRP lyase
proficient and deficient cells; (C) Representative image of cells stained with Picogreen and DAPI to show cytoplasmic DNA with Olaparib and
without in dRP lyase proficient and deficient cells (white arrow); (D) Chromatin association of PARP1 in Olaparib treated and untreated dRP lyase
proficient and deficient cells; (E) PARP1-DNA complex analysis using dRP lyase proficient and deficient cells with and without Olaparib
treatment; (F) Subcellular localization of p-IRF3 in dRP lyase proficient versus deficient cells with and without Olaparib treatment; (G)
Quantification of P-IR3 positive nuclei with Olaparib treated and untreated dRP lyase proficient and deficient cells; (H) mRNA expression of type
I interferon genes using RT-qPCR (IFNB, CCL5 and CXCL10) from WT and L22P cells with and without Olaparib treatment. Data were analyzed
using a paired t-test in GraphPad Prism; P*<0.05, P**<0.01, P***<0.001, P****<0.0001.
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interferon-stimulated genes (ISGs) at the transcriptional level in

cancer patients by analyzing the transcriptome profiles in The

Cancer Genome Atlas (TCGA) database. Our analysis indicated

that PARP1 expression was negatively correlated with the

expression of ISGs (IRF7 and ISG15) in human stomach cancer

(n = 407 samples, P < 0.01), which is consistent with our in vitro

study observations (Supplement Figure 2).
dRP lyase deficient POLB triggers
cytosolic DNA mediated chronic
inflammation in L22P mice

STING has recently been identified as one of the critical

adaptors for sensing cytosolic DNA, followed by the

phosphorylation of IRF3 and subsequent production of type-I

IFN and IL-6 (63). Previously, we have found that L22P induces an

accumulation of DSBs and inflammation in mice (21). To gain

further insight into how spontaneous DNA damage in L22P mice

drives cytosolic mediated inflammatory response, we studied the

stomach of L22P and age-matched WT littermate control mice.

We observed that the stomach tissue from L22P mice stained with

an antibody against H2AX showed a significant percentage of

positively stained cells as compared with stomach tissue derived

from WT mice, which indicates an increased level of genomic

instability in the L22P mice (Figures 5A, B). We then explored the

expression levels of cGAS-STING pathway proteins using

immunochemistry and found that the L22P mice stomach tissue
Frontiers in Immunology 09
had significant changes in both STING (Figures 5C, D) and p-IRF3

protein levels as well as subcellular localization (Figures 5E, F).

Furthermore, the mRNA expression of interferon type-I cytokines

including IFNb, CXCL10, and CCL5 significantly increased in the

stomach tissues of dRP lyase deficient mice versus WT mice

(Figure 5G; P***<0.001).
Discussion

We report in this paper that POLB with a defective dRP lyase

function plays a major role in cellular mitotic dysfunction and

increased genomic instability. In particular, our data show that

dRP lyase deficient cells harbor unrepaired BER intermediates

such as apurinic/apyrimidinic (AP) sites and single-stranded

DNA breaks (SSBs) that are potentially converted into DSBs. AP

sites are among the most frequent spontaneous lesions in DNA.

AP sites are replication-blocking lesions that could result in the

accumulation of DSBs, leading to chromosomal fragmentation

and genomic instability if not repaired in an accurate and timely

manner (64, 65). In addition, cleavage of AP sites by AP

endonucleases or AP lyases generates DNA single-strand

breaks (SSBs) with 5’- or 3’-blocked ends (65). It has been

previously reported that an accumulation of oxidative stress

related DNA damage eventually causes replication stress in BER

deficient cells (66). Our study supports that finding and shows that

exposure to oxidative and alkylating DNA damaging agents

exacerbates DNA damage and aberrant mitotic features in dRP
B

C D

E F

G

A

FIGURE 5

cGAS/STING activation in dRP lyase deficient mice. (A) Immunohistochemistry staining of stomach tissue section with DSB marker (gH2AX) in
dRP lyase deficient (L22P) and WT mice; (B) Percentage of cells positive for gH2AX; (C) Immunohistochemistry staining of STING on stomach
tissue of dRP lyase deficient versus proficient WT mice; (D) Percent of cells positive for STING (E) Immunohistochemistry stain of Ph-IRF3
localization in stomach tissue section of L22P versus WT mice (F) Percent of cells positive for ph-IRF3 (G) Quantification of mRNA cytosolic
DNA-STING signaling mediated cytokines expression using qRT-PCR from stomach tissues derived from dRP lyase deficient and proficient WT
mice. Data were analyzed using student t-test in GraphPad Prism; P*<0.05, P**<0.01, P***<0.001.
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lyase deficient cells. This observation aligns with our previous

results demonstrating that POLB dRP lyase deficiency increases

replication associated DSBs (42). Furthermore, an elevation of

micronuclei formation is commonly observed in dRP lyase

deficient cells, a sign of spontaneous genomic instability. Our

previously published data have shown that POLB dRP lyase

deficient cells harbor mis-chromosomal segregation phenotypes

and cytokinesis failure that derives from unrepaired DSBs

progressing through mitosis (21). In line with this result,

deficiency in several DNA repair pathways is associated with an

increased frequency of micronuclei (67, 68). Importantly, other

studies have demonstrated the molecular mechanism of

micronuclei formation in cells following unrepaired DNA

damage progressing through mitosis (48, 69).

Micronuclei formation is a consequence of irreversible nuclear

envelope collapse, which arises frequently in cells due to defective

nuclear lamina organization (70). It is well documented that

micronuclear DNA is particularly susceptible to DNA damage,

leading to chromothripsis (46, 71). We wanted to better understand

how dRP lyase deficient cells with micronuclei may contribute to a

release of cytosolic DNA that may play a predominant role in

triggering cGAS/STING signaling. As shown in Figure 2, we

analyzed the cytosolic subcellular localization of dsDNA and

cytosolic DNA concentration measurements from cell extracts

and found that POLB dRP lyase deficient cells accumulate

cytosolic DNA which potentially serves as a danger associated

molecular pattern. Our results show that a loss of nuclear genomic

integrity inPOLBdRP lyasedeficient cells enables the cells toaccrue

cytosolic DNA. Similarly, other studies have shown that

homologous recombination repair genes such as RPA and

RAD51, which support genome stability during replication, were

shown to prevent the accumulation of cytosolic DNA (72). In

addition, severalDNAdamage response genes (e.g.ATMandDNA

sensorMRE11)were found toprevent an accumulation of cytosolic

DNA (32, 73). It is possible that micronuclei rupture results in

immunostimulatory cytosolic DNA being recognized by cGAS,

thus activating immune surveillance (48), and possibly leading to

an inflammatory immune response that is known tobe triggered by

cytosolic DNA (74). The localization experiment as shown in

Figure 3 demonstrated that a cGAS significantly localized to

micronuclei in POLB dRP lyase deficient cells. In support of this

observation,Mackenzie KJ, et al. have reported that cytosolic DNA

accumulation is a result of genomic instability and triggers a cGAS/

STING-dependent interferon response (48),whichour observation

support. Another study has shown that inactivation of the DNA

repair genes BRCA2 results in cGAS-positive micronuclei which

also triggered a cGAS-STING dependent interferon response (75).

Moreover, defects in cellular DNA damage response can induce

cytosolic DNA which also has been linked to a cGAS-STING

mediated immune response (39, 76). Additionally, DNA

structure-specific endonuclease MUS81, which cleaves DNA

structures at stalled replication forks, also mediates a STING-

dependent activation of immune signaling (77). Similarly, our
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findings highlight the involvement of DNA polymerase beta in

cytosolic DNA mediated inflammatory response.

Targeting BER factors may increase cytosolic DNA and

enhance cGAS-STING signaling which could increase the

immunogenicity of a tumor’s microenvironment. A recent

publication has shown that POLB deficiency triggers cytosolic

DNA mediated cGAS-STING signaling pathway activation in

immune cells with autoimmune disease (78). Previously, we have

shown that treatment with PARP inhibitor increases replication

associated DSBs in dRP lyase deficient cells during S-phase of the

cell cycle (79), which suggests that dRP lyase deficient cells

accumulate 5’-dRP groups, which are critical for interaction with

PARP1.Mechanistically, PARP inhibitor engages PARP1 to form a

covalent bond with 5’-dRP groups and blocks BER (79) or hinders

the BER process (80). Results from our study demonstrate that

treatment of dRP lyase-defective cells with PARP1 inhibitor

(Olaparib) increased mitotic defects and resulted in an elevated

number of micronuclei. Those dRP lyase deficient cells with

unrepaired DSBs will likely progress into mitosis, leading to mis-

segregation of a chromosome resulting in micronuclei formation.

Our data are in agreement with similar findings on the impact of

PARP inhibitor causing mitotic defects such as chromosome

misalignment, anaphase DNA bridges, lagging chromosomes,

and micronuclei formation (81). Further, in this work we report

that PARP1 inhibitor treated dRP lyase deficient cells accumulate

cytosolic DNA and exhibit a significant increase in the amount of

PARP-DNA complexes as well as chromatin associated PARP1

(Figure 4). As a consequence, targeting PARP leads to elevated

levels of cytosolic DNA mediated cGAS-STING signaling. Our

results support another previously published finding that PARP-

trapping is critical for the induction of immune signaling (62). In

addition, our in vivo data show that there is an increase in the

protein expression of STING and p-IRF3 in the stomach tissue of

POLB dRP lyase deficient mice. From our histological analysis, it

seems that the parietal cells, which are found in the gastric glands of

the stomach fundus and body, are themajor target ofDNAdamage

and IRF3 phosphorylation. Further, we show that cytokinemRNA

expression significantly increased in dRP lyase deficient mice

stomach tissues versus WT mice stomach tissue. These results

suggest that the normal function of POLB is required for

maintenance of immune homoeostasis.

Overall, our results suggest that normal function of POLB is

critical to suppress cytosolic DNA mediated cGAS-STING

activation. Further, PARP inhibitor treatment exacerbates cGAS-

STING signaling in POLB defective cells. Our data demonstrate that

PARP inhibition could be used to further increase micronuclei

formation and thereby force activation of the subsequent cGAS-

STING-mediated inflammatory response. It is possible that other

potential cytosolic nucleic acid receptor pathways are likely

activated and trigger multiple signaling cascades in dRP lyase

deficient cells to trigger type I interferons and activation of TBK1,

IRF3. Many studies have shown that Type I IFNs,TBK1 and IRF3

are activated by toll-like receptors (TLRs) and cytosolic nucleic acids
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(RNA and DNA) sensors such as RIG-I-like receptors (RLRs) (82–

85).We hope that our observations may open up new opportunities

to build on this existing work and lead to an understanding of how

the various cytosolic nucleic acid receptors enable dRP lyase

deficient cells to induce type I interferons and pro-inflammatory

cytokines. Furthermore, our study lays a foundation for future

exploration into whether PARP1 inhibitor treatmentmight provoke

inflammatory signaling and enhance immune checkpoint inhibitor

treatment in BER deficient cancer patients.
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