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Introduction: The heterogeneity of treatment response in acute myeloid

leukemia (AML) patients poses great challenges for risk scoring and

treatment stratification. Carbohydrate metabolism plays a crucial role in

response to therapy in AML. In this multicohort study, we investigated

whether carbohydrate metabolism related genes (CRGs) could improve

prognostic classification and predict response of immunity and treatment in

AML patients.

Methods: Using univariate regression and LASSO-Cox stepwise regression

analysis, we developed a CRG prognostic signature that consists of 10 genes.

Stratified by the median risk score, patients were divided into high-risk group

and low-risk group. Using TCGA and GEO public data cohorts and our cohort

(1031 non-M3 patients in total), we demonstrated the consistency and

accuracy of the CRG score on the predictive performance of AML survival.

Results: The overall survival (OS) was significantly shorter in high-risk group.

Differentially expressed genes (DEGs) were identified in the high-risk group

compared to the low-risk group. GO and GSEA analysis showed that the DEGs

were mainly involved in immune response signaling pathways. Analysis of

tumor- infi l t r a t ing immune ce l l s confi rmed tha t the immune

microenvironment was strongly suppressed in high-risk group. The results of

potential drugs for risk groups showed that inhibitors of carbohydrate

metabolism were effective.
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Discussion: The CRG signature was involved in immune response in AML. A

novel risk model based on CRGs proposed in our study is promising prognostic

classifications in AML, which may provide novel insights for developing

accurate targeted cancer therapies.
KEYWORDS

acute myeloid leukemia, carbohydrate metabolism, prognosis, immune response,
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Introduction

Acute myeloid leukemia (AML) is a highly genetically,

epigenetically, and clinically heterogeneous disease characterized

by clonal expansion of undifferentiated myeloid precursors,

resulting in impaired hematopoiesis and bone marrow failure (1,

2). AML is more common in middle-aged and older adults, with a

median age at diagnosis of 68 years (3). Standard curative

treatments for AML include chemotherapy alone and allogeneic

stem cell transplantation in combination with chemotherapy (4).

The long-term survival probability ranges from approximately 35%

to 40% for AML patients under the age of 60 and from 5% to 15%

for patients over the age of 60. Relapse is common in majority of

elderly AML patients (5, 6). Occurrence, development and

prognosis of AML is complicated and need to be continuously

explored. The long-term survival and continuous proliferation of

cancer cells are the prerequisites for the development of cancers. To

meet the growing bioenergetic and biosynthetic demands for

survival and proliferation, cancer cells autonomously regulate

fluxes of metabolites through various metabolic pathways,

including fatty acid metabolism, amino acid metabolism, and

carbohydrate metabolism (7–9).

Carbohydrate is one of the most important biomolecules in

living organisms. In addition to providing biological energy for

physiological activities, carbohydrate metabolism also produce

abundant metabolites for biosynthesis (10). Based on their

structures, carbohydrates are divided into simple sugars, complex

carbohydrates and glycoconjugates, which exert different biological

functions through different metabolic pathways (10). Simple sugars

and complex carbohydrates can enter glycolysis for energy

metabolism (10, 11), while glycoconjugates, such as glycolipids

and glycoproteins, are involved in many complicated biological

processes (12). Numerous research has reported that carbohydrate

metabolic activities and products are involved in critical process in

cancers, including tumor initiation, angiogenesis, angiogenesis,

metastasis to distant organs, invasion, and therapeutic resistance

(10, 13–16). In addition, carbohydrate metabolism also plays a key

role in influencing and predicting tumor prognosis (17). It has been

reported that carbohydrate metabolism is significantly enhanced in

AML cells, and glycolysis inhibitor R-2-hydroxyglutarate has anti-
02
tumor activity in AML (18). MCL-1 inhibitors resensitizes AML to

BCL-2 inhibition by regulating leukemia cell bioenergetics and

carbohydrate metabolism, including the TCA cycle, glycolysis and

pentose phosphate pathway and modulating cell adhesion proteins

and leukemia-stromal interactions (19). Inhibition of oxidative

phosphorylation (OXPHOS) causes energy deprivation and

impaired nucleotide biosynthesis, which ultimately leads to

inhibition of AML cell proliferation, induction of apoptosis, and

prolonged survival in mouse models (20). It has been reported that

inhibition of Nrf2-mediated glucose metabolism sensitizes AML to

Ara-C (21). Previous work of carbohydrate metabolism in AML is

mainly focused on preclinical studies. However, the relationship

between carbohydrate metabolism and immunity, gene mutation,

and prognosis in AML has not yet been clinically reported.

In the present study, we analyzed samples from 1031 AML

patients for the relationship of carbohydrate metabolism-related

genes with prognosis and drug responses. To systematically

describe our study, the flowchart was presented (Figure 1). By

utilizing the AML training cohort from the Cancer Genome

Atlas (TCGA) database, we performed the least absolute

shrinkage and selection operator (LASSO) Cox analysis (22)

and constructed a carbohydrate metabolism-related gene (CRG)

signature related with prognosis. Prognostic value of the CRG

signature was internally validated in the TCGA training set, and

was further externally validated in the GEO testing cohort and

our own cohort. Based on the CRG signature, we explored

characteristics of mutation and immune cells by CIBERSORT

(23) and Maftools package (24). Furthermore, we evaluated the

ability of the CRG signature to predict patient response to

chemotherapeutic drugs by OncoPredict (25).
Material and method

Publicly available datasets
and preprocessing

The RNA sequencing profi les, single nucleotide

polymorphism (SNP) profiles and detailed clinical data of AML

datasets were downloaded from public databases. Raw microarray
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FIGURE 1

Flowchart of the study. (A) Identification of OS-related CRGs in AML. (B) Combined approaches were used to establish a robust CRG signature
for prognosis. (C) Prognostic value of the CRG signature was validated in different cohorts. (D) Clinical features and application of the risk group.
LASSO, least absolute shrinkage and selection operator.
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datasets of GSE37642 (GPL 570, n = 140), GSE37642 (GPL 96, n =

422), GSE71014 (GPL 10558, n = 104), GSE12417 (GPL 96, n =

162) and GSE12417 (GPL 570, n = 78) were downloaded from the

GEO (https://www.ncbi.nlm.nih.gov/geo/) and normalized by

normalizeBetweenArrays function using the limma package (26)

between array. The AML RNA-seq dataset was downloaded from

The Cancer Genome Atlas (TCGA) database (https://portal.gdc.

cancer.gov/repository). 151 AML patients were included in the

TCGA database. M3-AML is a relatively well-characterized

subtype of AML. The etiology, molecular mechanisms, and

treatment of M3-AML have been comprehensively studied.

Therefore, this type of AML was excluded from the clinical

specimens of this study. Non-M3 AML patients were finally

selected to further analysis. 925 AML patients were enrolled

(Figure 1). The available clinical information of AML patients

was listed in Supplementary Table S1-6. The pbmc3k dataset was

downloaded from the 10X Genomics website (https://satijalab.

org/seurat/articles/pbmc3k_tutorial.html).
Our cohort

AML patients were diagnosed based on WHO 2008 criteria

and classified according to FAB classification. The treatment of

AML patients is mainly based on the Chinese guidelines for

diagnosis and treatment of adult AML (not APL) (2017) (27) at

the time of admission. ELN Criteria were used for prognostication

and of AML patients. Briefly, 106 newly diagnosed AML patients

(non-M3 subtype) were finally selected in Affiliated Hospital of

Southwest Medical University from January 2019 to June 2022.

The detailed clinical information was obtained. The study

approved by the Affiliated Hospital of Southwest Medical

University was conducted in accordance with the Declaration of

Helsinki. The available clinical information and critical gene

alterations of AML samples in our cohort were listed in

Supplementary Table S7.
Acquisition of CRGs

A to ta l o f 355 CRGs were der i v ed f rom the

Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway database (https://www.genome.jp/kegg/pathway.

html#global). They were available Supplementary Table S9.

The KEGG pathway database constitutes the reference

knowledge base for understanding higher-level systemic

functions of the cel l and the organism, including

metabolism, other cellular processes, organismal functions

and human diseases (28).
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Identification of OS-related CRGs

To explore the potential prognostic significance of these CRGs

in AML patients, the TCGA cohort (n = 117) was applied as a

training set to identify OS-related CRGs with P-values less than

0.01 by univariate Cox proportional hazards regression analysis.
Construction and validation of CRG
prognostic signature for AML patients

Based Cox regression, the least absolute shrinkage and

selection operator (LASSO) (29) was used to get the most

significant features within the OS-related CRGs. Next, based

on the Akaike information criterion, a multivariate Cox

proportional hazards regression was performed on these

candidates with the stepwise selection of variables (30). Risk

score for final prognostic features were calculated as follows:

Risk   score =o
n

i
Coefi� Ai

where Coef is the regression coefficient, “i” represents the

CRG that composed of the CRG signature, “A” represents the

relative expression value of the individual CRG, and “n”

represents the number of genes in the signature. Patients were

divided into high-risk and low-risk groups according to the

median risk score as a cutoff value. Kaplan-Meier analysis and

log-rank test were used to assess differences in the OS of patients.

The predictive capacity of the CRG signature was evaluated by

the time-dependent receiver operating characteristic (ROC)

curve (31).

To test the predictive accuracy of the CRG signature, three

external AML cohorts — GSE37642 (GPL 570, n=140),

GSE37642 (GPL 96, n=422), and our cohort (n = 106) — were

used as validation sets. Based on the CRG signature, the risk

score of each patient was calculated, and Kaplan–Meier curve

was used to reflect its survival performance.
Identification and enrichment analysis of
differentially expressed genes

The DEseq2 package was applied to identify the differentially

expressed genes (DEGs) between the high- and low-risk groups

(32).Heatmap for the DEGs was generated via ‘pheatmap’

package (33).

Though the clusterProfiler package, the gene o ntology (GO)

functional enrichment analysis and GSEA analysis were utilized

to better understand the functions of the DEGs in AML (34, 35).
frontiersin.org
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Development of carbohydrate
metabolism clinicopathologic nomogram

To predict the OS of each AML patient, a carbohydrate

metabolism nomogram that incorporated the CRG signature

into the clinicopathologic parameters available in the training set

was conducted through the rms package (36). The predictive

discrimination of the CRG signature for AML patients was

assessed by calibration curve (37).
AML-immune microenvironment
landscape and potential implications
defined by the CRG signature

After selecting the 117 training samples, we extracted the

transcriptome data and then calculated the immune purity and

immune infiltration (based on the ImmuneScore, StromalScore,

and ESTIMATEScore of the expression matrix using the

“estimate” R package (38).

The proportions of 22 immune cell types (i.e., TICs) in each

of the 117 AML samples (with immune infiltration scores) were

calculated using the CIBERSORT algorithm and visualized using

bar charts (23). Samples with P< 0.05 were chosen for further

analysis. The proportions were then compared between tumor

tissues with low- or high-risk group using Wilcoxon rank sum

test, and Pearson’s correlation was assessed between the

proportions. The results were presented in histograms,

boxplots and heatmap, respectively, using the “ggplot”,

“corrplot”, and “corrplot” R packages.
Prediction of clinical
chemotherapeutic response

OncoPredict is an R package for predicting the drug

response (25), by which the associations of risk groups with

the sensitivities to the commonly utilized chemotherapy and

molecular targeted drugs were investigated. The results were

presented in boxplots, using the “ggplot2” R packages.
Gene expression levels were obtained by
quantitative real-time PCR

RZ solution (Transgen, China) was used to extract total

RNA from peripheral blood mononuclear cells (PBMCs) of 106

newly diagnosed AML patients in our hospital. cDNA was

synthesized using a TranScript All-in-One First-Strand cDNA

Synthesis SuperMix for qPCR kit (Transgen, China), and

TranStart Tip Green Qpcr SuperMix (Transgen, China) was

used to assay the HOXA5 mRNA levels. The amplification

proceeded as follows: 94°C, 30 seconds, 1 cycle; 94°C, 5
Frontiers in Immunology 05
seconds, 60°C, 30 seconds, 40 cycles. The primers were listed

in Supplementary Table S8. The 2−DD CT method was used to

calculate relative mRNA expression.
Statistical analysis

Statistical analyses were performed using R software version

4.2.0 (https://www.r-project.org/). OS were estimated according

to the Kaplan-Meier method and log-rank test were performed.

The code had been submitted to github (https://github.com/

jmzeng1314/TCGA_AML_Glycolysis). Statistical differences

between risk groups were determined using c2, Mann-

Whitney, or Fisher’s exact tests when appropriate. The

comparison of indicated two groups was performed by

Student’s t-test (two tailed, unpaired): *p< 0.05; **p< 0.01;

***p< 0.001; ns, not significant.
Results

Identification of survival-related CRGs
in AML

Gene expression profiles of 117 non-M3 AML samples in

TCGA dataset were selected and defined as the training set. We

obtained 355 CRGs from the KEGG dataset and performed

univariate Cox proportional hazards regression analysis to explore

the potential prognostic value of each CRG. We found 15 CRGs

that were significantly associated with OS (Figure 2A). Among these

15 genes, four genes (CYB5R4, MLYCD, PIK3CA and PTEN) were

protective factors, and the rest 11 genes were risk factors

(Figure 2A). More importantly, survival analysis showed that high

expression of these four genes was significantly correlated with

better prognosis, while high expression of the rest genes was

significantly correlated with worse prognosis in AML (Figure S1),

which confirmed the results of the univariate cox analysis.
Development and validation of
CRG signature

To avoid potential overfitting, 10 key OS-related CRGs were

further screened from the 15 CRGs by minimum lambda using

the LASSO regression algorithm (Figures S2A, B). Followed by

multivariate Cox proportional hazards regression analysis, the

regression coefficients of these 10 CRGs were obtained and used

to develop an optimal CRG signature for the OS of patients

(Figure S2C). Based on expression levels and regression

coefficients, a patient’s risk score was defined as follows: Risk

score = [Expression level of PFKL * (0.3589)] + [Expression level

of IDH3G * (-0.6482)] + [Expression level of G6PD * (0.5188)] +

[Expression level of DCXR * (-0.4617)] + [Expression level of
frontiersin.org
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CYB5R3 * (0.2328)] + [Expression level of CYB5R4 * (-0.4168)]

+ [Expression level of ACADS * (0.1640)] + [Expression level of

MLYCD * (-0.5986)] + [Expression level of PIK3CA * (-0.2539)]

+ [Expression level of CDIPT * (-0.0740)].
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The patients were classified into low-risk and high-risk

groups according to the median risk score. The number of

deaths increased with increasing risk scores, and there were

more patients dead in the high -risk group than in the low-risk
A

B

D

C

FIGURE 2

Prognostic analysis of the CRG signature in the training set. (A) The hazard ratio of CRGs associated with OS. (B) Risk Groups based on patients’
risk scores. (C) Patients’ survival status along with their risk scores. (D) The expressions of the 10 model CRGs in the high- and low-risk groups.
CRGs with P values less than 0.01 were selected. HR indicates hazard ratio; CI indicates confidence interval.
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FIGURE 3

Evaluation of CRG signature to predict the OS of AML patients. (A) Kaplan-Meier curves of OS survival in patients with risk groups. (B) The AUC
curves of the CRG signature for 1, 3, and 5 years. (C) Univariate Cox regression analysis of the risk scores and clinical parameters. (D) Multivariate
Cox regression analysis of the risk scores and age. (E) Development of CRG signature clinicopathologic nomogram for predicting OS for AML
patients by incorporating risk score and age. *P < 0.05, **P < 0.01, ***P < 0.001.
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group (Figures 2B, C). With regard to expressions of the 10

model CRGs, IDH3G, G6PD, DCXR, CYB5R3, ACADS, PFKL,

and CDIPT were highly expressed in the high-risk groups

(Figures 2D, S3A-E, G, J), while CYB5R4, MLYCD, and

PIK3CA were highly expression in the low-risk group

(Figures 5C, S3F, H, I).

Next, we performed Kaplan-Meier analysis to verify the

validity of the CRG signature for prognosis prediction in

AML. The results showed that patients in the high-risk group

had significantly shorter OS compared with those in the low-risk

group (Figure 3A), suggesting that the CRG signature could

effectively predict the prognosis of AML. Furthermore, the area

under curve (AUC) of the CRG signature for 1-, 3-, and 5-year

OS was 0.80, 0.74, and 0.87, respectively (Figure 3B). Compared

with immune checkpoint-related gene signature, autophagy-

related signature, and other signatures (39–42), the AUC

values in CRG signature are larger at 1 year, 3 years and 5

years (Figures S4A-C), indicating that the CRG signature had an

accurate predictive capacity for prognosis prediction in AML.

We performed univariate Cox regression analysis to calculate the

predictive independence of the CRG signature for AML patients,

and found that age and risk score were significantly correlated

with OS of the patients (Figure 3C). The risk score was

confirmed to be an independent predictor for AML patients

by the multivariate Cox regression analysis after adjusting for

these clinical parameters (Figure 3D).

To evaluate the CRG signature more accurately, a

nomogram combining the risk score and age was constructed

(Figure 3E). The calibration curves suggested that the utility of 1-

and 3-year OS could be more accurately predicted in AML

patients compared with the utility of 5-year OS (Figures S5A-C),

indicating that the integration of our risk score and age may

improve OS prediction.
External verification of the
CRG signature

The scRNA-seq dataset (pbmc3k) was used to verify the

expression of CRGs in specific cell types. Most of the CRGs were

highly expressed in myeloid cells and hardly expressed in

lymphocytes (Figures S6A, B), indicating that these CRGs may

play a significant role in myeloid cells. To further validate the

predictive utility of the CRG signature for patient OS, we calculated

the risk scores for each patient in the GEO cohorts (GPL570 and

GPL96 platforms of GSE37642 and GSE12417, GPL10558

platforms of GSE71014) and our own our cohort by the CRG

signature formula. Patients were then divided into high- and low-

risk groups according to the median risk score. Similar findings

were obtained in the 6 external test sets: there were more patients

alive in the low-risk group than in the high-risk group (Figures S7-

12), and patients in the high-risk group had significantly shorter OS

consistency compared with the low-risk group (Figures 4A-C, G-I).
Frontiers in Immunology 08
These results demonstrated that the CRG signature was valid in the

prediction of AML prognosis. More importantly, the AUC values of

the 1-, 3-, and 5-year OS in GPL570 platform of GSE37642 were

0.73, 0.73, and 0.72, respectively (Figure 4D). In the GPL96 platform

of GSE37642, the AUC values of the 1-, 3-, and 5-year OS were 0.64,

0.73 and 0.73 (Figure 4E). In GSE71014, the AUC values of the 1-,

3-, and 5-year OS were 0.69, 0.73 and 0.61 (Figure 4F). the AUC

values of the 1-, 3-, and 5-year OS in GPL570 platform of GSE12417

were 0.72, 0.68, and 0.65, respectively (Figure 4J). In the GPL96

platform of GSE12417, the AUC values of the 1-, 3-, and 5-year OS

were 0.65, 0.65 and 0.63 (Figure 4K). Similar trend was observed

from patients in our own cohort. The AUC values of the 1-, and 2-

year OS were 0.79 and 0.75 (Figure 4L). The AUC values in the 6

test sets validated the accuracy of the CRG signature for predicting

AML prognosis. Furthermore, the CRG signature was shown to be

an independent predictor of AML patients by univariate and

multivariate Cox regression analysis (Figures S13-18).

Additionally, expression of the 10 key genes were verified in the 3

test sets, and similar expression trends were obtained (Figures S13-

15). Overall, these results suggested that the CRG signature could be

used to independently predict OS for AML patients.
Identification and enrichment of
differentially expressed genes

To delineate the potential molecular mechanisms through

which CRGs are involved in the regulation of OS in AML

patients, we analyzed different gene expression patterns in the

high- and low-risk groups using the DEseq2 package. We

identified 699 DEGs, with 457 up-regulated genes and 242

down-regulated genes in the high-risk group compared with

low-risk group (Figures 5A, B). The enrichment analyses of GO

and GSEA showed that these DEGs were significantly enriched

in immune responses and carbohydrate metabolism

(Figures 5C-E). Moreover, the results showed that

carbohydrate metabolism pathways were up-regulated in the

high-risk group, and the immune response pathways were up-

regulated as well (Figure 5D). These results suggest that CRG

signature may play significant roles in the activation of immune

responses in AML.
Immune cell proportion and correlation
analyses for different risk groups

To further explore the immune status of high- and low-risk

groups, we calculated stromal score, immune score and estimate

score by ESTIMAT software, and found that they were higher in

the high-risk group than those of low-risk group, suggesting that

there were more immune infiltrating cells and stromal cells in

the microenvironment of the high-risk group than the low-risk

group. (Figures 6A-C). Compared to the low-risk group, the
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tumor purity was lower in high-risk group (Figure 6D),

suggesting that AML with low tumor purity had a worse

prognosis. These results implied that the CRG signature was

closely related to the immune microenvironment.
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Subsequently, we investigated immune cell properties of

22 immune cell types in the training set (Figures 6E–F) her by

using the CIBERSORT algorithm of 1000 permutations (43).

We found that the proportion of resting memory CD4+ T
A B

D E F

G IH

J K L

C

FIGURE 4

Validation of the CRG signature. (A-C, G-I) Kaplan–Meier curve of the CRG signature in the GEO cohorts and our cohort. (D-F) The ROCcurves
of the CRG signature for 1-, 3-, and 5-years in the GEO cohorts. (J, K) The ROCcurve of the CRG signature for 1-, 2-, and 3-year in GEO
cohorts. (L) The ROC curve of the CRG signature for 1- and 2-year in our cohort.
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cells in the low-risk group was significantly higher than that

in the high-risk group, while the proportion of monocytes in

the low-risk group was significantly lower than that in the

high-risk group (Figures 6G, H). Monocytes were negatively

associated with eosinophils, resting memory CD4+ T cells,
Frontiers in Immunology 10
resting NK cells, naïve B cells, and plasma cells, and resting

memory CD4+ T cells was positively correlated with resting

NK cells, and naïve B cells in both groups (Figure 10I).

Resting memory CD4+ T cells were positively correlated

with eosinophils in the low-risk group (Figure 6I). Resting
A B

D E

C

FIGURE 5

Differentially expressed genes (DEGs) between high-risk and low-risk groups. (A) Volcano map of DEG. (B) Heatmap of the DEGs. (C)
Significantly enriched GO terms for DEG. (D, E) Significantly enriched DEG pathways.
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FIGURE 6

Immune cell proportion and correlations analyses for the risk groups. (A-D) Stromal score, immune score, estimate score and tumor purity of
the risk groups. (E) Relative proportions of immune cell in the high- and low-risk groups. (F) Boxplots illustrate the 22 immune cell proportions
in the TCGA cohort. (G) Boxplots illustrate the 22 immune cell proportions between high- and low-risk groups. Statistical significance at the
level of ∗< 0.05. (H) Heatmap of the immune cells for patients with high and low high- and low-risk groups. Only the immune cells in which the
nonzero proportions in all samples exceeded half were retained. (I) Correlations between immune cells in risk groups.
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mast cells were positively correlated with eosinophils in the

low-risk group, while plasma cells were positively correlated

with resting memory CD4+ T cells and naïve B cells in the

high-risk group (Figure 6I). These results confirmed that in

AML the CRG signature played significant roles in

immune responses.
Mutation characterization for risk groups

To investigate relationship between the CRG signature and

AML mutations, we analyzed SNP profiles using the Maftools R

package. The most common type of gene mutation in high- and

low-risk groups was missense mutation (Figures 7A-C). Gene
Frontiers in Immunology 12
mutations of patients in the high-risk and low-risk groups were

different. The incidence of NPM1, DNMT3A and FLT3mutations

was high in both groups (Figures 7A-C). However, RUNX1,

IDH2, WT1, and KRAS mutations were more frequently in the

low-risk group (Figure 7B), and TP53, KIT, and TTN mutations

were more common in the high-risk group (Figure 7C).

Compared with the high-risk group, patients in the low-risk

group had a higher tumor mutational burden (Figure 7D).
Potential drug susceptibility

Next, potential clinical responses to chemotherapy based on

the CRG signature was calculated by the oncoPredict R package.
A B

DC

FIGURE 7

Mutation characterization for different risk groups. (A) Gene mutations in AML patients. (B) Gene mutations in low-risk group. (C) Gene
mutations in high-risk group. (D) Tumor mutational burden between high- and low-risk groups.
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The predicting drug response function of oncoPredict R package

implements the pipeline for the prediction of clinical

chemotherapeutic response by using only baseline tumor gene

expression data (25), and drugs with a P value less than 0.05 were

selected (Figure S25). These drugs mainly targeted the PI3K/

AKT/mTOR signaling pathway, carbohydrate metabolism, DNA

synthesis and damage, epigenetics and apoptosis (Figure 8,

Figure S26-29). The low-risk group was more sensitive to most

of the carbohydrate metabolism inhibitors (Figures 8A-D).
Discussion

Targeted therapy and immunotherapy have played crucial

roles in the treatment of AML patients, but the 5-year survival

rate of AML remains disappointing due to high relapse rate. By

classifying patients into high- or low-risk group based on robust

RNA-seq and clinical data signatures, accurate prediction of

prognosis and drug response may improve physicians’ decision-

making ability to select personalized treatment. In this study,

OS-related CRGs were identified by using profiles from TCGA

AML patients, and a CRG signature consisted of 10 CRGs that

can accurately evaluate the OS of AML patients was developed.

The validation results of GEO database and our data confirmed

that the CRG signature was a steady and independent predictor

for the risk stratification of AML patients. In addition, we

investigated the clinical relevance and integrated risk groups

with underlying gene expression programs that can play

significant roles in AML biology, distinct tumor-immune

infiltrating landscapes, clinical outcome, and potential

drug susceptibility.

The complicated carbohydrate metabolism-related

mechanism assembled by large amounts of proteins with clear

functions plays a critical role in maintaining essential functions

and homeostasis of cells (10). Carbohydrate metabolism-related
Frontiers in Immunology 13
activities in cancer cells provide sufficient energy and metabolic

substrates for cell proliferation and division. The disordered

carbohydrate metabolism can be a primary event in

oncogenesis, and many carbohydrate metabolism-related

oncogenes and signaling pathways have been considered as key

regulators in tumor progression (44–46). One well-studied link

between tumorigenesis and carbohydrate metabolism is the

phosphoinositide 3-kinase (PI3K)/serine and threonine kinase

AKT/mammalian target of rapamycin (mTOR) signaling

pathway, which upregulates glucose intake and metabolism via

various mechanisms (47, 48). In addition, carbohydrate

metabolism is positively regulated by KRAS and MYC (49), and

negatively regulated by P53 (44). Drugs targeting carbohydrate

metabolism- related oncogenes and pathways have been applied

in cancer treatment (44). APR-246 was a safe p53 wild-type

restoration compound with a favorable pharmacokinetic profile,

and it was found glucuronidation metabolites increased in a phase

II clinical trial after injection 1-2 hours (50). Carbohydrate

metabolism has been highlighted in AML and is a valuable

potential target for therapy. Many molecular targets and

carbohydrate metabolism inhibitors have been identified (21, 44,

51). However, the relationship between carbohydrate metabolism

and prognosis was rarely reported in AML. Our analysis of CRGs

in AML contributed to the discovery of additional prognostic

biomarkers and classification of high- and low-risk patients.

Transcriptome-based gene profiling is a promising approach

to monitor prognostic risk in cancer (52). Signatures related to

the prognosis of AML have been developed (53). However, the

CRG signature in AML has rarely been developed so far. Given

our discovery of important roles for CRGs in AML OS and the

key role of carbohydrate metabolism in cancers, we developed a

CRG signature composed of 10 OS-related CRGs to evaluate

patients’ prognosis. It was found that patients in the low-risk

group had significantly longer OS than those in the high-risk

group. Additionally, the AUC values of the ROC curves for 1-
A B DC

FIGURE 8

Results of potential drugs for risk groups (A-D) Inhibitors of carbohydrate metabolism. IC50 indicates the half maximal inhibitory concentration.
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year, 3-year and 5-year OS were 0.80, 0.74 and 0.87, respectively.

As an independent predictor, the CRG signature was verified not

only in public datasets, but also in AML data collected at our

center. These results indicate that the CRG signature was a stable

and reliable model to evaluate prognosis in AML. A nomogram

integrating risk score and age further provided the possibility of

individualized utility to monitor patients’ outcomes.

AML has high genetic heterogeneity, and gene mutation

plays a pivotal role in the occurrence, development, treatment

and prognosis of AML (54). So, we analyzed gene mutation

status of high- and low-risk groups. Somatic heterozygous

RUNX1 mutations occurred in approximately 10-32% of AML

patients and were associated with unfavorable prognosis (55,

56). The overall RUNX1 mutation rate in AML patients in our

study was 14%, which is consistent with the previous reports.

RUNX1 mutation was the most common mutations in the low-

risk group (21%), while the mutation rate of TP53 (19%) was

higher than other mutations in high-risk group. It was reported

that about 13% of AML patients are accompanied by TP53

mutation, and the prognosis with TP53 mutation was poor (57).

In addition, mutations in IDH2, FLT3, and DNMT3A were

present in 10%, 30%, and 20.9% of AML patients, respectively

(58–60). And these mutations were common in both risk groups

in our study. It was found that AML patients with NPM1

mutation belong to the (European LeukmiaNet) ELN favorable

risk category (61). In this study, similar result was obtained that

the incidence of NPM1 mutations was higher in low-risk group

compared to the high-risk group. These results validated the

reliability of the CRG signature.

We identified differentially expressed genes in high- and

low-risk groups which were significantly enriched in regulation

of immune responses, including T cell activation and

proliferation, leukocyte migration, receptor ligand activity,

immune receptor activity, ligand−gated channel activity, and

cargo receptor activity. The related pathways mainly focused on

B cell receptor signaling pathway, neutrophil extracellular trap

(NET) formation pentose phosphate pathway, and carbohydrate

metabolism (fructose and mannose metabolism, galactose

metabolism, glycosaminoglycan degradation). These results

revealed that carbohydrate metabolism may play a crucial role

in the immune status of high- and low-risk groups. B cell

receptor (BCR) signaling pathway was crucial for immunity by

recognizing a variety of antigen and passing relevant signals (62).

Inhibition of the key modulation factor of the B cell receptor

signaling pathway have been proven to be an effective

therapeutic approach for AML (63). In addition, NET has

been implicated in a variety of pathologies from autoimmunity

to cancer, and its release was impaired in AML (64). It may

contribute to the increased susceptibility of this population (64).

CAR-T cell therapy has been used for the treatment of AML

(65), which induces T cell activation, proliferation, and effector

function through the binding of reprogrammed T cells to
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relevant antigens on the surface of tumor cells, ultimately

leading to tumor cell death (66). Interestingly, T cell activation

and proliferation were observed in our study, which suggested

that the CRG signature may be helpful to assess the prognosis

immunotherapy of AML. A growing body of preclinical studies

have shown that tumor-infiltrating lymphocytes (TILs) have a

large impact on disease progression, response to therapy, and

prognosis in many cancers (67–69). It was found that there were

more immune infiltrating cells and stromal cells in the

microenvironment of the high-risk group than the low-risk

group by the stromal score, immune score and estimate score.

In addition to CAR-T, the current main immunotherapy

methods for AML include naked antibodies and conjugated

monoclonal antibodies, immune checkpoint inhibitors,

and bispecific T cell-engaging antibodies (70). These

immunotherapy methods mainly target CD7, CD33, CD45,

CD56, CD133, CD123 and CLEC12A (70–73). Immune

checkpoints inhibitors mainly target CTLA4, PD1/PD-L1.

Through different targets, these immunotherapies resulting in

tumor cells being attacked and disrupted by cytotoxic agents or

the patient’s own activated immune system. However, the

proportion analysis of tumor-infiltrating immune cells

revealed a significantly lower abundance of resting CD4+ T

memory cells in the high-risk group. These results suggest that,

based on the CRG signature, the suppressed immune

microenvironment potentially contribute to poor responses to

immunotherapy in high-risk patients. However, the proportion

analysis of tumor-infiltrating immune cells revealed a

significantly lower abundance of resting CD4+ T memory cells

in the high-risk group. These results suggest that, based on the

CRG signature, the suppressed immune microenvironment

potentially contribute to poor responses to immunotherapy in

high-risk patients.

The ‘oncoPredict’ R package was used to assess clinical drug

response in AML patients. High- and low-risk groups responded

differently to chemotherapy drugs. These drugs mainly focused

on PI3K/AKT/mTOR signaling pathway and carbohydrate

metabolism. About one-fifth of these drugs were inhibitors of

PI3K/AKT/mTOR signaling pathway. These inhibitors (74–76)

were effective for AML of both high- and low-risk groups, and

most of them had lower IC50 in high-risk groups, suggesting that

inhibition of the PI3K signaling pathway may provide a new

potential approach for AML treatment. At present, pre-clinical

studies have shown that these inhibitors could reduce the

proliferation and induce apoptosis, and reverse the multidrug

resistance of AML (77–79). Therapeutic effect of these inhibitors

in AML confirmed our previous inference that the PI3K/AKT/

mTOR signaling pathway was activated in AML. In addition,

AML patients were sensitive to carbohydrate metabolism

inhibitors. Previous research found that inhibition of insulin

receptor isoform A and insulin-like growth factor-1 receptor can

inhibit proliferation and promote apoptosis in AML (80). It was
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reported GSK3 inhibition primes a pro-differentiative/apoptotic

transcription program (81). Our results and these reports

implied that inhibition of carbohydrate metabolism may

become a new breakthrough in the treatment of AML.

However, more in-depth work is needed to explore and verify

this observation.

Our study systematically analyzed carbohydrate metabolism-

related transcriptomic profiles and developed a risk-prognostic

signature based on survival-related CRGs in AML patients. We

validated the CRG signature in publicly accessible, retrospective

datasets, and used our own independent external validation to

assess its potential clinical relevance. Based on the CRG signature,

mutations, immune, and drug sensitivity were analyzed. The

results showed that the CRG signature was reliable and may

provide theoretical support for AML prognostic judgment and

treatment. Our research mainly focused on clinical bulk gene

expression data. Further work is required to fully understand the

role of CRG in AML. Combined scRNA-seq data with clinical

bulk gene expression data, a study had developed a computational

pipeline for identifying the prognostic and predictive signature

that connects cancer cells and microenvironmental cells (82, 83).

It can help us gain a more comprehensive understanding of the

role of the CRG signature.
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material. Further

inquiries can be directed to the corresponding authors.
Ethics statement

The studies involving human participants were reviewed and

approved by the Affiliated Hospital of Southwest Medical

University. Written informed consent for participation was

not required for this study in accordance with the national

legislation and the institutional requirements.
Author contributions

YoY, LG, HL, and WL contributed to the conception and

design of the experiment. YoY, YaY, JL, JG and YZ performed

the study and participated in data acquisition. YoY, YaY, QG

and YZ contributed to the clinical bulk gene expression data

analysis and interpretation. YoY, YaY, LG, HL and WL wrote

and revised the paper. LG, HL and WL were the guarantors of

this work. All authors approved the final version of the paper.

YoY, YaY and JL contributed equally to this paper.
Frontiers in Immunology 15
Funding

This work was supported by grants from Medical Science

and Technology Project of Health Commission of Sichuan

Province (No.21PJ091); the Special Project of Science and

Technology Research of Sichuan Administration of

Traditional Chinese Medicine (2020JC0135); the Applied

Basic Research Project of Southwest Medical University

(2021ZKQN083); the Major Science and Technology Projects

in Sichuan Province (2019YFS0531); Science and Technology

Strategic Cooperation Project of Luzhou Municipal People’s

Government-Southwest Medical University-Applied Basic

Research Project (2021LZXNYD-J22); Sichuan Science and

Technology Program (22ZDYF3802); Doctoral Research

Initiation Fund of Affiliated Hospital of Southwest Medical

University; Natural Science Foundation of Sichuan Province

(2022NSFSC0723); Natural Science Foundation of Shandong

Province (ZR2021YQ50); Southwest Medical University

Program 2022ZD007.
Acknowlegments

We thanked Dr.Jianming Zeng (University of Macau), and

all the members of his bioinformatics team, biotrainee, for

generously sharing their experience and assisting us with the

analysis of scRNA-seq data.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fimmu.2022.1038570/full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1038570/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1038570/full#supplementary-material
https://doi.org/10.3389/fimmu.2022.1038570
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2022.1038570
References
1. Vago L, Gojo I. Immune escape and immunotherapy of acute myeloid
leukemia. J Clin Invest (2020) 130(4):1552–64. doi: 10.1172/JCI129204

2. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts
ND, et al. Genomic classification and prognosis in acute myeloid leukemia. New
Engl J Med (2016) 374(23):2209–21. doi: 10.1056/NEJMoa1516192

3. DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al.
Azacitidine and venetoclax in previously untreated acute myeloid leukemia. New
Engl J Med (2020) 383(7):617–29. doi: 10.1056/NEJMoa2012971

4. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T,
et al. Diagnosis and management of AML in adults: 2017 ELN recommendations
from an international expert panel. Blood (2017) 129(4):424–47. doi: 10.1182/
blood-2016-08-733196

5. Jongen-Lavrencic M, Grob T, Hanekamp D, Kavelaars FG, Al Hinai A,
Zeilemaker A, et al. Molecular minimal residual disease in acute myeloid leukemia.
New Engl J Med (2018) 378(13):1189–99. doi: 10.1056/NEJMoa1716863

6. Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. New Engl J
Med (2015) 373(12):1136–52. doi: 10.1056/NEJMra1406184

7. Pavlova NN, Zhu J, Thompson CB. The hallmarks of cancer metabolism: Still
emerging. Cell Metab (2022) 34(3):355–77. doi: 10.1016/j.cmet.2022.01.007

8. Hoy AJ, Nagarajan SR, Butler LM. Tumour fatty acid metabolism in the
context of therapy resistance and obesity. Nat Rev Cancer (2021) 21(12):753–66.
doi: 10.1038/s41568-021-00388-4

9. Han C, Ge M, Ho P-C, Zhang L. Fueling T-cell antitumor immunity: Amino
acid metabolism revisited. Cancer Immunol Res (2021) 9(12):1373–82.
doi: 10.1158/2326-6066.CIR-21-0459

10. Chandel NS. Carbohydrate metabolism. Cold Spring Harbor Perspect Biol
(2021) 13(1):a040568. doi: 10.1101/cshperspect.a040568

11. Chandel NS. Glycolysis. Cold Spring Harb Perspect Biol (2020) 13(5):
a040535. doi: 10.1101/cshperspect.a040535

12. Thomas D, Rathinavel AK, Radhakrishnan P. Altered glycosylation in
cancer: A promising target for biomarkers and therapeutics. Biochim Biophys
Acta (BBA) Rev Cancer (2021) 1875(1):188464. doi: 10.1016/j.bbcan.2020.188464

13. Chang X, Liu X, Wang H, Yang X, Gu Y. Glycolysis in the progression of
pancreatic cancer. Am J Cancer Res (2022) 12(2):861–72. doi: 2156-6976/
ajcr0141796

14. Peng Y, Yang H, Li S. The role of glycometabolic plasticity in cancer. Pathol
Res Pract (2021) 226:153595. doi: 10.1016/j.prp.2021.153595

15. Magalhães A, Duarte HO, Reis CA. The role of O-glycosylation in human
disease. Mol Aspects Med (2021) 79:100964. doi: 10.1016/j.mam.2021.100964

16. Lumibao JC, Tremblay JR, Hsu J, Engle DD. Altered glycosylation in
pancreatic cancer and beyond. J Exp Med (2022) 219(6):e20211505. doi: 10.1084/
jem.20211505

17. Abd-El-Halim YM, El Kaoutari A, Silvy F, Rubis M, Bigonnet M, Roques J,
et al. A glycosyltransferase gene signature to detect pancreatic ductal
adenocarcinoma patients with poor prognosis. EBioMedicine (2021) 71:103541.
doi: 10.1016/j.ebiom.2021.103541

18. Qing Y, Dong L, Gao L, Li C, Li Y, Han L, et al. R-2-hydroxyglutarate
attenuates aerobic glycolysis in leukemia by targeting the FTO/m6A/PFKP/LDHB
axis. Mol Cell (2021) 81(5):922–939.e9. doi: 10.1016/j.molcel.2020.12.026

19. Carter BZ, Mak PY, Tao W, Warmoes M, Lorenzi PL, Mak D, et al.
Targeting MCL-1 dysregulates cell metabolism and leukemia-stroma interactions
and re-sensitizes acute myeloid leukemia to BCL-2 inhibition. Haematologica
(2022) 107(1):58–76. doi: 10.3324/haematol.2020.260331

20. Molina JR, Sun Y, Protopopova M, Gera S, Bandi M, Bristow C, et al. An
inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med
(2018) 24(7):1036–46. doi: 10.1038/s41591-018-0052-4

21. Cheng C, Yuan F, Chen X-P, ZhangW, Zhao X-L, Jiang Z-P, et al. Inhibition
of Nrf2-mediated glucose metabolism by brusatol synergistically sensitizes acute
myeloid leukemia to ara-c. Biomed Pharmacother (2021) 142:111652. doi: 10.1016/
j.biopha.2021.111652

22. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat
Society: Ser B (Methodol) (1996) 58(1):267–88. doi: 10.1111/j.2517-
6161.1996.tb02080.x

23. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods (2015) 12
(5):453–7. doi: 10.1038/nmeth.3337

24. Mayakonda A, Lin D-C, Assenov Y, Plass C, Koeffler HP. Maftools: efficient
and comprehensive analysis of somatic variants in cancer. Genome Res (2018) 28
(11):1747–56. doi: 10.1101/gr.239244.118
Frontiers in Immunology 16
25. Maeser D, Gruener RF, Huang RS. oncoPredict: An r package for predicting
in vivo or cancer patient drug response and biomarkers from cell line screening
data. Briefings Bioinf (2021) 22(6):bbab260. doi: 10.1093/bib/bbab260

26. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers
differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res (2015) 43(7):e47–7. doi: 10.1093/nar/gkv007

27. Leukemia & Lymphoma Group, Chinese Society of Hematology, Chinese
Medical Association. Chinese Guidelines for diagnosis and treatment of adult
myeloid leukemia (Not APL) (2017). Chin J Hematol (2017) 38(3):177–82.
doi: 10.3760/cma.j.issn.0253-2727.2017.03.001

28. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new
perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res (2017) 45
(D1):D353–61. doi: 10.1093/nar/gkw1092

29. Fontanarosa JB, Dai Y. Using LASSO regression to detect predictive
aggregate effects in genetic studies. BMC Proc (2011) 5 (Suppl 9):S69. BioMed
Central. doi: 10.1186/1753-6561-5-S9-S69

30. Vrieze SI. Model selection and psychological theory: A discussion of the
differences between the akaike information criterion (AIC) and the Bayesian
information criterion (BIC). psychol Methods (2012) 17(2):228–43. doi: 10.1037/
a0027127

31. Heagerty PJ, Lumley T, Pepe MS. Time-dependent ROC curves for censored
survival data and a diagnostic marker. Biometrics (2000) 56(2):337–44.
doi: 10.1111/j.0006-341x.2000.00337.x

32. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol (2014) 15(12):1–21.
doi: 10.1186/s13059-014-0550-8

33. Tian X, Liu B, Chen L, Xie Y, Liang J, Yang Y, et al. RNA-Seq identifies
marked Th17 cell activation and altered CFTR expression in different atopic
dermatitis subtypes in Chinese han populations. Front Immunol (2021)
12:628512. doi: 10.3389/fimmu.2021.628512

34. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an r package for
comparing biological themes among gene clusters. Omics: J Integr Biol (2012) 16
(5):284–7. doi: 10.1089/omi.2011.0118

35. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette
MA, et al. Gene set enrichment analysis: a knowledge-based approach for
interpreting genome-wide expression profiles. Proc Natl Acad Sci (2005) 102
(43):15545–50. doi: 10.1073/pnas.0506580102

36. Zhang Z, Kattan MW. Drawing nomograms with r: applications to
categorical outcome and survival data. Ann Trans Med (2017) 5(10):211–9.
doi: 10.21037/atm.2017.04.01

37. Alba AC, Agoritsas T, Walsh M, Hanna S, Iorio A, Devereaux P, et al.
Discrimination and calibration of clinical prediction models: Users’ guides to the
medical literature. Jama (2017) 318(14):1377–84. doi: 10.1001/jama.2017.12126

38. Yoshihara K, Shahmoradgoli M, Martıńez E, Vegesna R, Kim H, Torres-
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