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lung cancer patients receiving
immune checkpoint inhibitors

Changhee Park1‡, Dong Young Jeong2‡, Yeonu Choi2,
You Jin Oh3, Jonghoon Kim4, Jeongun Ryu5,
Kyunghyun Paeng5, Se-Hoon Lee3,6, Chan-Young Ock5*†

and Ho Yun Lee2,3*†

1Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea,
2Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine,
Seoul, Republic of Korea, 3Department of Health Sciences and Technology, Samsung Advanced
Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of
Korea, 4Department of Electronic and Computer Engineering, Sungkyunkwan University,
Suwon, Republic of Korea, 5Lunit, Seoul, Republic of Korea, 6Division of Hematology Oncology,
Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine,
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Background: Enrichment of tumor-infiltrating lymphocytes (TIL) in the tumor

microenvironment (TME) is a reliable biomarker of immune checkpoint

inhibitors (ICI) in non-small cell lung cancer (NSCLC). Phenotyping through

computed tomography (CT) radiomics has the overcome the limitations of

tissue-based assessment, including for TIL analysis. Here, we assess TIL

enrichment objectively using an artificial intelligence-powered TIL analysis in

hematoxylin and eosin (H&E) image and analyze its association with

quantitative radiomic features (RFs). Clinical significance of the selected RFs

is then validated in the independent NSCLC patients who received ICI.

Methods: In the training cohort containing both tumor tissue samples and

corresponding CT images obtained within 1 month, we extracted 86 RFs from

the CT images. The TIL enrichment score (TILes) was defined as the fraction of

tissue area with high intra-tumoral or stromal TIL density divided by the whole

TME area, as measured on an H&E slide. From the corresponding CT images,

the least absolute shrinkage and selection operator model was then developed

using features that were significantly associated with TIL enrichment. The CT

model was applied to CT images from the validation cohort, which included

NSCLC patients who received ICI monotherapy.
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Results: A total of 220 NSCLC samples were included in the training cohort.

After filtering the RFs, two features, gray level variance (coefficient 1.71 x 10-3)

and large area low gray level emphasis (coefficient -2.48 x 10-5),

were included in the model. The two features were both computed from

the size-zone matrix, which has strength in reflecting intralesional texture

heterogeneity. In the validation cohort, the patients with high predicted

TILes (≥ median) had significantly prolonged progression-free survival

compared to those with low predicted TILes (median 4.0 months [95% CI

2.2–5.7] versus 2.1 months [95% CI 1.6–3.1], p = 0.002). Patients who

experienced a response to ICI or stable disease with ICI had higher

predicted TILes compared with the patients who experienced progressive

disease as the best response (p = 0.001, p = 0.036, respectively). Predicted

TILes was significantly associated with progression-free survival

independent of PD-L1 status.

Conclusions: In this CT radiomics model, predicted TILes was significantly

associated with ICI outcomes in NSCLC patients. Analyzing TME through

radiomics may overcome the limitations of tissue-based analysis and assist

clinical decisions regarding ICI.
KEYWORDS

radiomics, immune checkpoint inhibitor (ICI), immunotherapy, tumor infiltrating
lymphocyte (TIL), artificial intelligence
Introduction

Treating non-small cell lung cancer (NSCLC) with immune

checkpoint inhibitors (ICI) has become a prevailing strategies

since the clinical benefits have been demonstrated by numerous

clinical trials (1–3). Various studies on the immune tumor

microenvironment (iTME) have been conducted to identify

patients who would benefit from ICI (4). Some of the most

prevalent biomarkers that represent iTME include programmed

cell death ligand 1 (PD-L1) expression, tumor mutation burden,

and tumor-infiltrating lymphocytes (TILs) (4). However, these

biomarkers require tissue biopsy through invasive procedures,

which is difficult to perform repeatedly and sometimes even

impossible. Radiomics may overcome such limitations as

radiologic analysis is much less invasive than a tissue biopsy
ce interval; CT,
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02
(5). Radiomics in medicine is the practice of processing high-

throughput extraction of quantitative features to convert images

such as computed tomography (CT) into mineable data and

analyze the data for decision support (6). Studies have

demonstrated the association of radiomic features with

histologic findings such as histological subtypes of lung

cancers (7, 8). Furthermore, radiomic features could represent

TME and genomic instability, which have not been

demonstrated by current functional imaging (9). Therefore, a

radiomic approach in NSCLC may provide spatial information

on TIL and thereby assist clinical decisions in the use of ICIs.

Previous studies have demonstrated the feasibilities of this

approach. Yoon et al. (10) reported that radiomic features could

be potential biomarkers in identifying type 2 helper T (Th2) cell

signatures. Sun et al. (11) published the results of a radiomic

signature model that predicts CD8 cells based on CD8B gene-

associated signatures in NSCLC tumors and correlated this with ICI

treatment outcomes. Tang et al. (12) reported the development of a

PD-L1 and CD3 immunohistochemistry informed radiomics

model dividing NSCLC into four clusters that correlated with

overall survival. There is also a study on the radiomics of

positron emission tomography which developed a deep-learning

model predicting a cytolytic activity score that was associated with

ICI outcomes and the heterogeneity of responses (13). However,

these studies were based on biomarkers that are crude
frontiersin.org
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representatives of iTME and not often used in clinical practices. In

addition, pathophysiologic insights regarding how radiomic models

are associated with iTME have not been compelling enough.

Here, we searched for the radiomic features that are

potentially reflective of iTME through the use of TIL. For an

objective TIL assessment, we used an artificial intelligence (AI)-

powered TIL analyzer, Lunit SCOPE IO, and hematoxylin and

eosin (H&E) stained slides (14). The Lunit SCOPE IO determines

the immune phenotype of tumors by TIL assessment, which

showed a significant association with ICI outcome in advanced

NSCLC (14). We identified radiomic features significantly

correlated with TIL assessed by Lunit SCOPE IO and validated

this data in the ICI treated cohort. For the selected radiomic

features, we considered whether the potential pathophysiological

mechanism of TIL could be applied to radiomics.
Methods

This is a single-center retrospective cohort study on patients

with NSCLC from Samsung Medical Center, Seoul, South Korea.

The schematic flow of this study is available in Figure 1. We

developed least absolute shrinkage and selection operator

(LASSO) models from the training cohort predicting the TIL

enrichment score (TILes) with radiomic features, which will be

described in detail later. Using the model, we calculated the

predicted TILes in the validation cohort and evaluated their

association with ICI outcomes. The demographic features of the

patient, including pathologic diagnosis, EGFR mutation, ALK

translocation, and PD-L1 status, were reviewed. PD-L1 status

was defined as high if the tissue showed an ≥50% tumor

proportional score (TPS) by PD-L1 immunohistochemistry

22C3 pharmDx and as low if otherwise. The progression-free

survival (PFS) and overall survival (OS) of the validation cohort
Frontiers in Immunology 03
in association with ICIs was also investigated. The response of

the disease was determined using revised response evaluation

criteria in solid tumors guideline (RECIST) version 1.1 (15).

The study was approved by the institutional review board

(IRB) of Samsung Medical Center (IRB number: 2021-04-196).

All the data of the current study were collected and analyzed after

approval and were in accordance with the declaration of Helsinki.
Patients of the training and validation
cohorts

For the training cohort, the patients who were diagnosed with

NSCLC from January 2005 to May 2021 and with available H&E-

stained tissue from whole tumor and CT images of the lung

acquired within 1 month of each other were included. For the

validation cohort, the patients who received ICI monotherapy for

advanced NSCLC from January 2013 to May 2021 and with CT

images available before 1 year of ICI initiation were included.

Patients with CT images not passing the quality for radiomic

feature extraction were excluded. (Supplementary Figure 1)
Determining TILes

The version of Lunit SCOPE IO used for this study contains

a cell detection AI model and tissue segmentation AI model that

were updated from the version described previously in the

published article (14). The detailed methods for the

development of the Lunit SCOPE IO TIL analyzer are

available in Supplementary Methods 1.

From the tissues of the training cohort, TILes was defined as

the fraction of tissue with high intra-tumoral TIL density

(inflamed immune phenotype) or stromal TIL density
FIGURE 1

Study scheme.
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(immune-excluded immune phenotype) divided by the whole

analyzable TME area as measured on the H&E slide. For quality

control, samples with less than 0.5 mm2 of the cancer epithelium

area in the whole H&E slide image and with fewer than ten 1

mm2-sized grids available for the evaluation were excluded.
CT acquisition and radiomic feature
extraction

All the patients of the training cohort and the validation cohort

underwent contrast-enhanced CT scans using the standardized

protocol of our institution. The definition for target lesions were

adopted from RECIST version 1.1 (15). The representative target

lesions were selected by one thoracic radiologist and one technician

(D.Y.J. with 6 years of experience and Y.J.O. with 5 years of

experience), reviewed by one senior thoracic radiologist (H.Y.L.

with 17 years of experience). Target lesions were segmented by

drawing a volume of interest (VOI) with a semiautomatic approach

using commercial software AVIEW COPD (version 1.1.38.6,

Coreline soft, Seoul, South Korea) and a slice-per-slice approach.

Then the boundary of the lesion was modified manually to avoid

adjacent air, fat, blood vessels, and surrounding organs. Detailed CT

parameters and the 3D segmentation process are also described in

Supplementary Methods 2.

A total of 88 radiomic features of raw imaging over the given

region of interest (ROI) were extracted using a combination of

open-source (Pyradiomics, version 3.0.1, Pyradiomics

Community) (16) and in-house MATLAB code (MATLAB,

R2017, Mathworks Inc., Natick, MA, USA) (17).

The extracted features can be classified into seven categories:

(I) first order (intensity) features (n=18); (II) shape features

(n=14); (III) gray level co-occurrence matrix features (GLCM;

n=24); (IV) gray level size zone matrix features (GLSZM; n=16);

(V) cumulative distribution function feature (CDF, n=5); (VI)

physical features (n=2); and (VII) Fractal features (n=9). CDF,

physical and fractal features were extracted by in-house MATLAB

code as they were not calculated in PyRadiomics. A detailed

definition of the features is explained in Supplementary Table 1.
Feature selection associated with TILes

In the process of feature selection, we first searched for

features that have significantly different TILes values. For each

feature, samples were divided into high and low groups by the

median value of the feature. Samples with the median value of the

feature were classified into the high group. Then, Student’s t test

was performed to evaluate the significance of the difference in

TILes between the high and low groups of each feature. The cutoff

of p< 0.005 was used to filter out and select significant features.

After the filtering process, logistic regressions were performed

using TILes as the dependent variable and the selected features as
Frontiers in Immunology 04
the independent variables. The aliasing features were excluded.

Then, the variance inflation factors were calculated to exclude the

features showing multicollinearity, which was determined with a

variance inflation factor value of more than 10. With the final

remaining features, LASSO modeling was performed and features

with a non-zero coefficient were finally selected. The models were

used to predict TILes in the training cohort to compare with the

original TILes. The LASSO modeling was performed using

“glmnet” package in R statistics, which solves the objective

function for the Gaussian family

min
b0,bð Þ∈Rp+1

1
2No

N

i=1
yi − b0 − xTi b
� �2

+l
1 − að Þ ∥ b ∥22

2
+ a ∥ b ∥1

� �

where we have observations xi∈Rp , the responses yi∈R ,

i=1, …, N , and l≥0 is a complexity parameter (18).

Using the model for TILes, we calculated the predicted TILes

from the CT images of the validation cohort. With the predicted

TILes, the patients were divided into high and low groups

according to the median value. Patients with the median value

of the feature were classified into the high group.
Other statistical analysis

The correlation of continuous values was reported by

Spearman’s rank correlation coefficient (r). The comparison of

continuous values between groups was analyzed using the

Wilcoxon rank-sum test. The comparison of categorical values

between groups was analyzed using Fisher’s exact test and

reported with an odds ratio (OR). The survival analysis was

performed using the log-rank test and visualized by Kaplan-

Meier methods. Hazard ratio (HR) and 95% confidence interval

(CI) was calculated using a Cox proportional hazard model. A

multivariate Cox proportional hazard model was performed on

variables with a factor of p< 0.05 in the univariate Cox proportional

hazard model. A P-value< 0.05 was considered statistically

significant. All the statistical analyses other than described, were

performed with R 4.0.0 (https://www.r-project.org/).
Results

Patient demographics

A total of 276 patients were eligible for the training cohort.

After the quality of the CT image and H&E-stained samples were

evaluated, 220 ROIs from 218 patients were included in the

training cohort. Two patients had two ROIs because they were

associated with two different time points where CT images and

matching H&E slides were acquired within 1 month. The other

216 patients had single ROIs. Among the samples of training

cohort, 62 specimens came from patients who previously

received systemic treatment and 158 specimens came from
frontiersin.org
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patients without any previous systemic treatment. For the

validation cohort, 430 patients were eligible. After a quality

check of the CT images, 294 ROIs from 294 patients were finally

included in the validation cohort. A summary of the patients’

demographics is available in Table 1.
Frontiers in Immunology 05
Significant radiomic features associated
with TILes

The 88 radiomic features from the 220 ROIs were extracted

(Supplementary Table 2). After filtering, the radiomic features
TABLE 1 Demographic characteristics of samples included in the study.

Training cohort (N = 220) Validation cohort (N = 294)

Age, years

<60 79 (35.9%) 125 (42.5%)

≥60 141 (64.1%) 169 (57.5%)

Sex

Female 49 (22.3%) 78 (26.5%)

Male 171 (77.7%) 216 (73.5%)

Smoking

Never 59 (26.8%) 81 (27.6%)

Former 77 (35.0%) 112 (38.1%)

Current 83 (37.7%) 101 (34.4%)

NA 1 (0.5%) 0 (0%)

Specimen type

Needle biopsy 119 (54.1%) Not applicable

EBUS-TBNA 29 (13.2%) Not applicable

Surgical excision 72 (32.7%) Not applicable

Pathology

ADC 127 (57.7%) 184 (62.6%)

SqCC 72 (32.7%) 92 (31.3%)

Sarcomatoid 3 (1.4%) 5 (1.7%)

Large cell 4 (1.9%) 2 (0.7%)

Other 14 (6.4%) 11 (3.7%)

AJCC 8th Staging

I, II 39 (17.7%) 0 (0%)

III 41 (18.6%) 0 (0%)

IV 140 (63.6%) 294 (100%)

EGFR status

Positive 28 (12.7%) 43 (14.6%)

Negative 178 (80.9%) 232 (78.9%)

NA 14 (6.4%) 19 (6.5%)

ALK status

Positive 3 (1.4%) 5 (1.7%)

(Continued)
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and modeling process were applied as described in Methods

(Supplementary Table 3), we found significant features

potentially associated with the TILes (Figure 2A, Table 2).

Notably, although the size parameters (maximum 2D diameter

slice, maximum 2D diameter column) showed that the larger

tumors were associated with lower TILes, these parameters

showed multicollinearity and were excluded from the model.

Eventually, the LASSO model predicting TILes consisted of two

features (Supplementary Figure 2), gray level variance (GLV,

coefficient 1.71 × 10-3) and large area low gray level emphasis

(LALGLE, coefficient -2.48 × 10-5), which were both GLSZM

features. The higher GLV and the lower LALGLE feature values

were associated with higher TILes (Figures 2B, C). The predicted

values by the application of the model in the training cohort

significantly correlated with the original values (Supplementary

Figure 3). The distribution of demographics according to

predicted TILes is available in Figure 2D.

Using the LASSO models developed by the selected features,

we analyzed the outcome of patients who received ICI in the

validation cohort to demonstrate that the model represents the

immune aspects of the TILes. We found that patients with high

predicted TILes (≥median) show significantly prolonged PFS

compared to patients with low predicted TILes (median 4.0

months [95% CI 2.2–5.7] versus 2.1 months [95% CI 1.6–3.1],

hazard ratio 0.68 [95% CI 0.53–0.87], p = 0.002; Figure 3A).

Subgroup analysis generally showed prolonged PFS in the high

TILes group compared with that in the low TILes group

(Figure 3B). In particular, subgroup analysis by pathologic

diagnosis showed that patients with high predicted TILes show

significantly prolonged PFS compared with patients with low

predicted TILes in both adenocarcinoma and squamous cell
Frontiers in Immunology 06
carcinoma (p = 0.045 and p = 0.049, respectively; Supplementary

Figure 4A). High predicted TILes also showed significantly

prolonged OS compared with patients with low predicted

TILes (median 18.9 months [95% CI 12.9–30.5] versus 9.1

months [95% CI 7.1–12.0], hazard ratio 0.52 [95% CI 0.39–

0.69], p< 0.001; Figure 3A). In addition, patients who

experienced a response to ICI or stable disease with ICI had

higher predicted TILes compared with the patients who

experienced progressive disease as the best response (p =

0.001, p = 0.036, respectively; Figure 3C).

We carried out Cox proportional hazard model analyses to

evaluate whether TILes are independent of PD-L1 status, which

is well known to be associated with PFS in patients who received

ICI as in this cohort (Supplementary Figure 4B) and previous

studies. We found that predicted TILes was significantly

associated with PFS independent of PD-L1 status (HR 0.01,

95% CI 0.00–0.28, p = 0.007 for TILes as continuous variables

and HR 0.67, 95% CI 0.51–0.89, p = 0.006 for the high TILes

group; Table 3). In addition, when the patients were divided into

4 groups according to TILes and PD-L1 status, patients with

high TILes and PD-L1 showed significantly prolonged PFS

compared with the other 3 groups (p = 0.005; Figure 4).
Discussion

In this study, we developed a radiomic model that predicts

TIL enrichment of corresponding tumor tissue using two

radiomic features: GLV and LALGLE. The predicted TILes by

CT radiomics significantly correlated with ICI outcome in the

validation cohort independent of PD-L1 status. In addition, high
TABLE 1 Continued

Training cohort (N = 220) Validation cohort (N = 294)

Negative 201 (91.4%) 270 (91.8%)

NA 16 (7.3%) 19 (6.5%)

PD-L1 status

High (≥ 50%) 105 (47.7%) 123 (41.8%)

Intermediate (1-49%) 64 (29.1%) 55 (18.7%)

Low (< 1%) 51 (23.2%) 57 (19.4%)

NA 0 (0%) 59 (20.1%)

Line of ICI treatment

1st Not applicable 50 (17.0%)

2nd Not applicable 135 (45.9%)

3rd or more Not applicable 109 (37.1%)

ADC, adenocarcinoma; AJCC, American Joint Committee on Cancer; ALK, anaplastic lymphoma kinase; EBUS-TBNA, endobronchial ultrasound guided transbronchial needle
aspiration; EGFR, epidermal growth factor receptor; ICI, immune checkpoint inhibitors; NA, not available; PD-L1, programmed death-ligand 1; SqCC, squamous cell carcinoma.
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TILes and high PD-L1 patients showed the most superior

survival outcome to ICI compared with other groups.

Previous studies have demonstrated the possibility of a

radiomics approach in the development of a biomarker for the

favorable outcome of ICI (11–13). We developed a more precise

radiomics model that focuses specifically on the spatial

information within NSCLC and predicts TIL enrichment of

corresponding tumor tissue, a potential biomarker for ICI
Frontiers in Immunology 07
treatment response, in collaboration with AI-powered spatial

analysis of TIL by Lunit SCOPE IO (14). This approach enables

us to investigate how and where exactly the TIL enrichment is

visualized on the CT images and what pathophysiologic

mechanism would be potentially associated, which was not

discussed intensively in the previous studies.

Both GLV and LALGLE are categorized as GLSZM

features, which are second-order statistical texture features.
B

C

D

A

FIGURE 2

Features associated with tumor infiltrating lymphocyte enrichment score (TILes). (A) Volcano plot showing the features associated with TILes.
Red horizontal dashed line represents a p-value of 0.005. The points representing Gray Level Variance (GLV) and Large Area Low Gray Level
Emphasis (LALGLE) are indicated by arrows. (B) CT image and H&E slide example of patient with high GLV and low LALGLE. The blue areas in
the H&E slide represent cancer epithelium; the skyblue dots in the H&E slide represent TILs. (C) CT image and H&E slide example of patient with
low GLV and high LALGLE. The blue areas in the H&E slide represent cancer epithelium; the skyblue dots in the H&E slide represent TILs. (D) Bar
plots and heatmap showing the distribution of predicted TILes and demographics in the training cohort and validation cohort. The patients are
arranged by predicted TILes values in decreasing order in each cohort.
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These are computed from the size-zone matrix by measuring

the size of neighboring voxels with the same signal intensity

(19). By grouping the adjacent same signal intensity voxels in

two- or three-dimensions, a more homogeneous texture results
Frontiers in Immunology 08
in a wider and flatter matrix (20). Therefore, GLSZM features

intensify the difference among the group of neighboring voxels

with different signal intensity and have high dimensional

information (21). These characteristics give GLSZM the
TABLE 2 The selected significant features associated with TILes.

Number of
significantly
different features

Number of features
finally selected

Name of
features

LASSO
Coefficient

TILes log2 fold change between
feature-high and -low group

TILes
difference
p-value

22 2 Gray Level Variance 1.71 × 10-3 0.732 <0.001

Large Area Low Gray
Level Emphasis

-2.48 × 10-5 -0.754 <0.001
B C

A

FIGURE 3

Outcomes of patients receiving immune checkpoint inhibitors (ICI) according to predicted TILes in the validation cohort (A) The upper table
summarizes the survival analyses of the patients. The left Kaplan-Meier curves show progression free survival (PFS) and the right Kaplan-Meier
curves show overall survival (OS) according to the predicted tumor infiltrating lymphocyte enrichment score (TILes) group. The red line
represents the high TILes and the blue line represents the low TILes groups. The censored data are marked with vertical lines. The numbers at
risk are provided below. (B) Forest plot for subgroup analysis of PFS according to predicted TILes in the validation cohort (C) The boxplot
showing predicted TILes according to the response to ICI. Each dot represents each patient.
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strength to reflect intralesional texture heterogeneity which

might result from the mixture of both TIL and most

tumor cells.

The intralesional texture heterogeneity might have come from

the several characteristics that cancer acquires during tumorigenesis,

the so-called hallmarks of cancer, such as avoiding immune

destruction and inducing angiogenesis (22). Such changes in cancer

cells, including immunoediting to escape immunosurveillance,

promotes recruitment and infiltration of various lymphocytes,

resulting in complex iTME (23, 24). Hypoxia, in consequence of

tumor outgrowth and insufficient vascularization, also induces

regulatory T cell recruitment to promote angiogenesis and inhibit

cytotoxic T cell activity (25, 26). During these processes, the tumor

and its TME become more complex and each of the processes can

make specific intralesional texture heterogeneity.
Frontiers in Immunology 09
GLV represents the variance in gray level intensities based

on GLSZM and reflects intralesional texture heterogeneity. Thus,

it is reasonable that higher GLV can reflect higher TILes. This

result is consistent with previous studies. Gao et al. (27) and Jeon

et al. (28) reported radiomics models using GLV with a positive

coefficient for predicting tumor-infiltrating regulatory T cells

and cytotoxic T cells, respectively, in gastrointestinal tumors.

LALGLE and large area high gray level emphasis (LAHGLE)

based on GLSZM describe the preponderance of large areas with

low-density and high-density pixels in the tumor, respectively.

During tumor progression, not only the necrotic low-density

area but also the cellular high-density area will grow at the same

time, then the value of both LALGLE and LAHGLE should be

increased simultaneously. Similar results were reported by

Barabino et al. (29), the tumor enlarges and the values of
TABLE 3 Cox proportional hazards model for PFS of ICI.

Univariate analysis Multivariate analysis
(TILes)

Multivariate analysis
(TILes group)

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value

Age group, years

< 60 Reference – – – – –

≥ 60 0.86 (0.68–1.11) 0.247 – – – –

Sex# – –

Female Reference – – – – –

Male 0.82 (0.62–1.08) 0.150 – – – –

Smoking

Never Reference – Reference – Reference –

Former 0.76 (0.56–1.03) 0.074 0.86 (0.60–1.22) 0.392 0.85 (0.60–1.21) 0.364

Current 0.65 (0.48–0.89) 0.007 0.65 (0.46–0.93) 0.018 0.64 (0.45–0.91) 0.012

Pathology

ADC Reference – – – – –

SqCC 0.99 (0.76–1.30) 0.955 – – – –

Others 0.91 (0.54–1.52) 0.709 – – – –

PD-L1 TPS group

Low (< 50%) Reference – Reference – Reference –

High (≥ 50%) 0.74 (0.56–0.97) 0.030 0.72 (0.55–0.96) 0.024 0.73 (0.55–0.96) 0.024

TILes value

TILes 0.006 (0.001*–0.121) <0.001 0.010 (0.001*–0.284) 0.007 –

TILes group

Low Reference – – – Reference –

High 0.68 (0.53–0.87) 0.002 – – 0.67 (0.51–0.89) 0.006

#Sex was not included in multivariate analysis because of the significant association of male sex with current smoking (p< 0.001).
*These values were less than 0.001. *Note: ADC, adenocarcinoma; ICI, immune checkpoint inhibitors; PD-L1, programmed death-ligand 1; SqCC, squamous cell carcinoma; TILes,
tumor infiltrating lymphocyte enrichment score.
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LAHGLE and LALGLE increase in the progressive disease of

NSCLC. However, our result showed that only LALGLE was

included in the model while LAHGLE was not. Considering the

result, a tumor that was associated with poor TIL enrichment

would have a large necrotic area compared to the size of the total

tumor. It is reasonable that the proposed tumor could have a

small cellular area, which is composed of both tumor and TILs.

Notably, the model used to predict TILes did not have

parameters representing size, which is currently the single

parameter for physicians to determine the response of tumors

(30). However, responding tumors often show no change or even

increase in size, so-called pseudo-progression, partly due to the

enrichment of TILs after ICI administration (30, 31). Such

phenomenon makes it difficult for the physician to make the

best decision for the patient, but repeated biopsy is not

performed routinely. Therefore, additional information using

radiomic features that are associated with TILs but not the size

would be helpful. Here, we have demonstrated the radiomic

features associated with TILes on the pretreatment images of a

single time point, it would be valuable to evaluate the temporal

heterogeneity of the predicted TILes throughout the course of

ICI treatment in a further study.

There are several limitations in this study. First, this is a

retrospective study trained with a limited number of patients

and images. This is partly because of the strict inclusion criteria

that required the date of the specimen and image acquisition to
Frontiers in Immunology 10
be within 1 month to ensure that the iTME status of CT images

and H&E slides match. The number of patients in the validation

cohort was also limited which resulted in a limited significance

in the subgroup analyses. However, since significant

correlations with clinical findings were demonstrated, this

study still showed the possibility that some of the radiomic

features represent the pathophysiologic process of iTME.

Second, the training and the validation were performed only

in primary lung cancer, not in metastatic tumors. We restricted

the tissue to the primary lesions because the surrounding

attenuations at the metastasis of other organs in the images

would affect some of the radiomic features (32). Further studies

on the validity of our predicted TILes in the other organs are

needed, especially to evaluate spatial heterogeneity. Third, the

model predicted TIL with only two radiomic features which

could have limited the performance for prediction of exact

TILes values and made dependent on the values of two radiomic

features. However, the LASSO prediction works well for any

degree of correlation (33), and indeed the prediction model with

2 features was enough to predict the association of TILes with

clinical outcomes of patients who received immune checkpoint

inhibitors in the validation cohort, suggesting that radiomic

model reflect TILs in a general way that can be applied to the

other clinical cohorts. Even though, our model should be

interpreted as a potential emerging biomarker that reflect part

of the complex iTME that requires further validation. The
FIGURE 4

Outcomes of ICI according to predicted tumor infiltrating lymphocyte enrichment score (TILes) and PD-L1 status in the validation cohort.
Kaplan-Meier curves showing progression free survival (PFS) according to predicted TILes group and PD-L1 status. Red lines represent the high
PD-L1 group and the blue line represents the low PD-L1 group. The solid lines represent the high TILes group and the dashed lines represent
the low TILes group. The censored data are marked with vertical lines. The numbers at risk are provided below.
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further validation would include the validation on the

association of the radiomic model with tissue samples and

tissue biomarkers, especially in the advanced cancer patients.

In conclusion, we found the radiomic features that predict

TILes were significantly associated with the outcomes of ICI.

Further study is warranted to develop a model based on the

radiomic feature model in this study and apply it to an

exploration of the temporal and spatial heterogeneity of the

tumors in clinical practices.
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et al. Introduction to radiomics. J Nucl Med (2020) 61:488–95. doi: 10.2967/
JNUMED.118.222893

21. Kim E, Lee G, Lee S, Cho H, Lee HY, Park H. Incremental benefits of size-
zone matrix-based radiomics features for the prognosis of lung adenocarcinoma:
Frontiers in Immunology 12
advantage of spatial partitioning on tumor evaluation. Eur Radiol (2022), 32:7691–
99. doi: 10.1007/s00330-022-08818-z

22. Hanahan D. Hallmarks of cancer: New dimensions. Cancer Discovery (2022)
12:31–46. doi: 10.1158/2159-8290.CD-21-1059

23. Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer
immunoediting and its three component phases–elimination, equilibrium and
escape. Curr Opin Immunol (2014) 27:16–25. doi: 10.1016/j.coi.2014.01.004

24. Bremnes RM, Busund LT, Kilver TL, Andersen S, Richardsen E, Paulsen EE,
et al. The role of tumor-infiltrating lymphocytes in development, progression, and
prognosis of non-small cell lung cancer. J Thorac Oncol (2016) 11:789–800.
doi: 10.1016/j.jtho.2016.01.015

25. Facciabene A, Peng X, Hagemann IS, Balint K, Barchetti A, Wang L-P, et al.
Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and treg cells.
Nature (2011) 475:226–30. doi: 10.1038/nature10169

26. Fu Z, Mowday AM, Smaill JB, Hermans IF, Patterson AV. Tumour hypoxia-
mediated immunosuppression: Mechanisms and therapeutic approaches to
improve cancer immunotherapy. Cells (2021) 10:1006. doi: 10.3390/cells10051006

27. Gao X, Ma T, Bai S, Liu Y, Zhang Y, Wu Y, et al. A CT-based radiomics
signature for evaluating tumor infiltrating treg cells and outcome prediction of
gastric cancer. Ann Transl Med (2020) 8:469–9. doi: 10.21037/atm.2020.03.114

28. Jeon SH, Lim YJ, Koh J, Chang WI, Kim S, Kim K, et al. A radiomic
signature model to predict the chemoradiation-induced alteration in tumor-
infiltrating CD8+ cells in locally advanced rectal cancer. Radiother Oncol (2021)
162:124–31. doi: 10.1016/j.radonc.2021.07.004

29. Barabino E, Rossi G, Pamparino S, Fiannacca M, Caprioli S, Fedeli A, et al.
Exploring response to immunotherapy in non-small cell lung cancer using delta-
radiomics. Cancers (Basel) (2022) 14:350. doi: 10.3390/cancers14020350

30. Seymour L, Bogaerts J, Perrone A, Ford R, Schwartz LH, Mandrekar S, et al.
iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics.
Lancet Oncol (2017) 18:e143–52. doi: 10.1016/S1470-2045(17)30074-8

31. Rocha P, Hardy-Werbin M, Naranjo D, Taus Á, Rodrigo M, Zuccarino F,
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