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Recombinant GMA56 and
ROP17 of Eimeria magna
conferred protection
against infection by
homologous species

Jie Xiao1†, Hao Chen1†, Ruoyu Zheng1, Jiayan Pu1, Xiaobin Gu1,
Yue Xie1, Ran He1, Jing Xu1, Bo Jing1, Xuerong Peng2

and Guangyou Yang1*

1Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University,
Chengdu, China, 2Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural
University, Chengdu, China
One of the most common rabbits coccidia species, Eimeria magna is mainly

parasitic in the ileal and jejunal epithelial cells. E. magna infection can affect the

growth performance of rabbits or cause other secondary diseases. Traditional

methods of anticoccidial treatment typically result in drug resistance and drug

residue. Therefore, vaccination is a promising alternative. Gametocyte antigen

56 (GAM56) and rhoptry kinase family proteins (ROPs) are involved in oocyst

wall formation and parasite invasion, respectively. A virulence factor, ROP17

contains a serine/threonine kinase catalytic domain. In this study, recombinant

E. magna GAM56 (rEmGAM56) and ROP17 (rEmROP17) proteins were obtained

from a prokaryotic expression system and their reactogenicity was investigated

with immunoblotting. To assess the potential of rEmGAM56 and rEmROP17 as

coccidiosis vaccines, New Zealand White rabbits were subcutaneously

immunized with 100 mg rEmGAM56 (rGC group) or rEmROP17 (rRC group)

twice at 2-week intervals followed by homologous oocyst challenge. The

rabbit serum was collected weekly to detect the specific antibody levels. The

cytokine levels of pre-challenge serum were measured by enzyme-linked

immunosorbent assay and the rabbits were observed and recorded post-

challenge for the onset of clinical symptoms. The weight gain, oocyst output,

and feed conversion ratio were calculated at the end of the experiment. The

results showed that both rEmGAM56 and rEmROP17 had good reactogenicity.
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The rEmGAM56- or rEmROP17-immunized rabbits had milder clinical

symptoms and feed conversion ratios of 3.27:1 and 3.37:1, respectively. The

rEmGAM56-immunized rabbits had 81.35% body weight gain and 63.85%

oocyst output reduction; the rEmROP17-immunized rabbits had 79.03%

body weight gain and 80.10% oocyst output reduction. The ACI of rGC and

rRC groups were 162.35 and 171.03, respectively. The specific antibody levels

increased rapidly after immunization. Significantly increased interleukin (IL)-2,

interferon (IFN)-g, and IL-17 levels were evident in the rGC and rRC groups (p <

0.05). The rEmGAM56 and rEmROP17 elicited humoral and cellular responses,

which protected against E. magna infection in rabbits. Thus, rEmGAM56 and

rEmROP17 are potential vaccine candidates against E. magna, and rEmROP17

performed better than rEmGAM56.
KEYWORDS

Eimeria magna, gametocyte antigen 56, rhoptry kinase family protein 17, recombinant
proteins, protective effect
1 Introduction

Rabbit coccidiosis is a highly contagious protozoan disease,

and the prevalence in rabbitries is more than 90% even with the

use of anticoccidials (1, 2). To date, 11 Eimeria spp. have been

identified as the valid species of rabbit coccidiosis, among which,

although Eimeria magna is a mildly pathogenic species but it is

widely distributed in rabbitries (3, 4). E. magna can infect rabbits

of all ages, especially juvenile rabbits (5, 6). E. magna parasitizes

the ileum and jejunum of rabbits, causing depression, watery

stool, diarrhea, reduced growth performance, reduced feed

conversion efficiency, and even death of rabbits (7–9).

Epidemiological investigations have suggested the high

infection prevalence (17-42%) and oocyst output intensity of

E. magna (5, 10, 11). Meanwhile, due to the development of the

resistance to robenidine, some E. magna strains are predominant

in rabbit breeding (12). Moreover, coccidiosis infection may

cause other secondary diseases in subclinical conditions.

Therefore, rabbit coccidiosis is responsible for large economic

losses in the rabbit industry (5, 11).

Traditional coccidiosis control is heavily reliant on

anticoccidials, but concerns over drug resistance and drug

residue encouraged the search for new control strategies such

as vaccines (13). Current research on rabbit E. magna vaccines

has mainly focused on live attenuated vaccines (14–17).

However, live anticoccidial vaccines are expensive to produce

and carry the risk of virulence reversal (18). Compared with live

attenuated vaccines, recombinant antigen-based subunit

vaccines are high-stability and easy to mass produce, which

significantly reduces the antigen production cost (19).
02
Secreted by rhoptry, rhoptry kinase family proteins (or rhoptry

bulb proteins, ROPs) are critical in host cell invasion (20). Recently,

it was reported that ROP16 (21), ROP17 (22, 23), and ROP18 (24)

confer protection against apicomplexan infections. Gametocyte

antigen 56 (GAM56) of chicken E. maxima demonstrated good

antigenicity and immunogenicity (25) where the homologous gene

of GAM56 was identified in E. tenella and E. acervulina (26).

Chickens immunized with anti- E. tenella (Et)GAM56 antibody

were protected against coccidiosis by passive immunity (27).

In the present study, the E. magna (Em)GAM56 and

EmROP17 genes were selected and cloned based on our E.

magna t ranscr ip tome data . Recombinant GAM56

(rEmGAM56) and ROP17 (rEmROP17) proteins were

obtained from a prokaryotic expression system. Then, we

investigated the immune responses and protective effects of

rEmGAM56 and rEmROP17 against homologous challenge

with E. magna in rabbits. To our knowledge, this is the first

report of the two recombinant subunit vaccines against

E. magna.
2 Materials and methods

2.1 Parasites and animals

The E. magna Chinese isolate was kindly provided by

Xianyong Liu of China Agricultural University (Beijing,

China) (9) and was preserved and passaged at our laboratory.

Sixty coccidia-free New Zealand White rabbits (35 days old,

0.84 ± 0.108 kg, 30 females and 30 males, n = 5 females and 5
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https://doi.org/10.3389/fimmu.2022.1037949
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xiao et al. 10.3389/fimmu.2022.1037949
males per group) were randomly grouped then raised according

to Wei et al. (28). The rabbits were housed in pairs in flame-

sterilized steel cages, and a plastic partition was placed at the

bottom of each cage to prevent the experimental rabbits from

contacting feces. Anticoccidial drugs were discontinued 1 week

before the challenge infection and pathogenic examination was

performed every other day to ensure that no coccidia oocysts

were detected. The rabbits were vaccinated with a bivalent

vaccine against rabbit hemorrhagic disease virus and

Pasteurella multocida when they were 30 days old.

The experimental groups were the rEmGAM56 (rGC) and

rEmROP17 (rRC) groups (rEmGAM56- or rEmROP17-

immunized and E. magna-challenged); the positive control

groups were the unimmunized-challenged (UC, sterile

phosphate-buffered saline [PBS] mock-immunized and E.

magna-challenged), Quil-A-challenged (QC, saponin derivative

Quil-A mock-immunized and E. magna-challenged), and rTrx-

His-S-challenged (rTC) groups (recombinant pET-32a tag

protein mock-immunized and E. magna-challenged); and the

negative control unimmunized-unchallenged (UU) group

(sterile PBS mock-immunized without E. magna challenge).

The rabbits were immunized at 35 days of age, and a booster

immunization was conducted 2 weeks later (49 days old); then

the rabbits were challenged 2 weeks after the booster

immunization (63 days old) (Table 1).
2.2 EmGAM56 and EmROP17
sequence analysis

The EmGAM56 and EmROP17 open reading frames

(ORF) and amino acid sequences were obtained using ORF

Finder (https://www.ncbi.nlm.nih.gov/orffinder/). The molecular

weight (MW) of the proteins was predicted with the ExPASy

proteomics server (http://web.Expasy.org/protparam/). The

transmembrane regions and signal peptides of the proteins were

analyzed with TMHMM Server v.2.0 (http://www.cbs.dtu.dk/

services/TMHMM/#opennewwindow) and the SignalP 4.1

server (http://www.cbs.dtu.dk/services/SignalP/), respectively. B

cell epitopes were predicted using the Immune Epitope

Database Analysis Resource (http://tools.immuneepitope.org/

bcell/). Multiple sequence alignment was performed using

Jalview 2.11.2.0 (29).
2.3 Cloning, expression, and purification

Total RNAs of E. magna (unsporulated oocysts, sporulated

oocysts, merozoites, and gametocytes) were extracted using a

commercial kit (Tiangen, Beijing, China) and the complementary
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DNAs (cDNAs) were synthesized (Thermo Fisher Scientific,

Waltham, MA, USA). Then the resulting cDNAs were mixed and

used as a template for PCR amplification.

The specific forward (F) and reverse (R) primers for

EmGAM56 and EmROP17 were designed based on E. magna

transcriptome data: EmGAM56-F 5′-CGGGATCCAT

GGAACCCTCTACCATTGAG-3 ′ and EmGAM56-R

5′-GCGTCGACTTAGAAAGGCATGCCTGC-3′; EmROP17-F

5′-CGGGATCCATGTACAGCCTCTTACAAGGTCAC-3′ and

EmROP17-R 5′-GCGTCGACCTACTCTGAGCTTTTTCC

TTCACT-3′, and contained BamHI and SalI restriction enzyme

sites (underlined) (Takara, Dalian, China). The purified PCR

amplification products were cloned into pET-32a(+) plasmids,

then the recombinant plasmids pET-32a(+)-EmGAM56 and pET-

32a(+)-EmROP17 were sequenced (Sangon, Shanghai, China) and

transformed into Escherichia coli BL21 for protein expression (1

mM isopropyl-b-d-thiogalactoside [IPTG]). The rEmGAM56 and

rEmROP17 proteins were purified (HisTrap HP, Cytiva,

Marlborough, MA, USA) then separated using 12% sodium

dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE).

The purified fusion Trx-His-S tag protein (with no insert

fragment) was cryopreserved in our laboratory.
2.4 Western blotting

The anti-E. magna positive serum and negative serum were

provided by the Sichuan Agricultural University Department

of Parasitology.

After 12% SDS-PAGE separation, the rEmGAM56 and

rEmROP17 were transferred onto nitrocellulose membranes

(Boster, Wuhan, China). The membranes were blocked for 2 h

using 5% (w/v) skimmed milk solution in Tris-buffered saline

(TBS) at room temperature, then incubated overnight at 4°C

with anti-E. magna positive serum (1:200 v/v dilution in TBS)

and negative serum (1:200 v/v dilution in TBS). After four

washes with TBST (TBS+0.05% Tween-20), the membranes

were incubated with horseradish peroxidase-conjugated goat

anti-rabbit IgG (1:2000 v/v dilution, EarthOx Life Sciences,

Millbrae, CA, USA) for 2 h at room temperature. After four

washes, the immunoreactive protein bands were detected using a

Metal Enhanced DAB Substrate Kit (20×) (Solarbio,

Beijing, China).
2.5 Immunization and challenge

The trial design and immune procedures are detailed in

Table 1 and Figure 1. The rabbits were sacrificed 2 weeks after

the challenge.
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2.6 Evaluation of protective efficacy

To evaluate the safety of the rEmGAM56 and rEmROP17

proteins, we observed the health status and body weight gain

after immunization of all experimental rabbits. The body weight

of each rabbit was recorded before the first immunization,

booster immunization, and challenge. The weight gain after

immunization was calculated as the weight before challenge

minus the weight before the first immunization to verify whether

the immunization affected the weight gain of the

experimental rabbits.

For protective efficacy, there is currently no specific standard

for evaluating recombinant subunit vaccines against rabbit

coccidiosis. In this study, after rabbits were challenged with E.

magna, we observed whether the rabbits developed diarrhea and

decreased appetite, and the protective effects were evaluated

according to the following parameters among groups (n = 10 per
Frontiers in Immunology 04
group) (1): the survival rate (%) = the number of surviving

rabbits/the initial number of rabbits × 100 (2); the body weight

gain after challenge (g) = weight before sacrifice (g) − weight

before challenge (g); (3) after the rabbits had been sacrificed, 2 g

feces was collected from the rectum, and the amount of oocysts

excreted per g feces (OPG) was calculated using the McMaster

method (30), the oocyst decrease ratio (%) = (the OPG of UC

group − the OPG of experimental group)/the OPG of UC group

× 100 (4); feed conversion ratio = feed consumption (g)/rabbit’s

mass after challenge (g), to be specific, after the challenge, the

initial weight of feed for each group was recorded, and rabbits

were given the same amount of feed every day; at the end of the

experiment, the remaining feed of each group was weighed again

(final weight), and the feed consumption of each group was

obtained by subtracting the final weight from the initial weight;

the feed conversion ratio was obtained by dividing the feed

consumption by the total weight gain of all rabbits in each group

after challenge (31); (5) ACI = (relative rate of weight gain +

survival rate) − (lesion value + oocyst value), and the ACI ≥ 180

is considered good or effective, 160 ≤ ACI < 179 is considered

moderately effective, ACI < 160 is considered poor effective

(32–34).
2.7 Serum IgG level detection

The sera of all rabbits were collected pre-immunization, and

then collected weekly after immunization. All serum samples

were stored at −20°C.

The specific antibody levels of the immunized rabbits were

evaluated using indirect enzyme-linked immunosorbent assay

(ELISA) based on rEmGAM56 and rEmROP17 (35). The

optimal concentration of rEmGAM56 and rEmROP17 was
FIGURE 1

Time course of the collection of the samples.
TABLE 1 Trial design and immune procedures.

Group Rabbits
(n)

Immunogen and dosage Immunization ages
(days old)

Immunization
route

Challenge dose/age/
route

Unimmunized-
unchallenged (UU)

10 1 mL sterile PBS 35, 49 Neck subcutaneous
injection

–

Unimmunized-
challenged (UC)

10 1 mL sterile PBS 35, 49 Neck subcutaneous
injection

1 × 105 sporulated oocysts/
63 days old/oral

Quil-A-challenged
(QC)

10 1 mg Quil-A dilution in 1 mL PBS 35, 49 Neck subcutaneous
injection

1 × 105 sporulated oocysts/
63 days old/oral

rTrx-His-S-challenged
(rTC)

10 100 mg Trx-His-S tag+1 mg Quil-A
dilution in 1 mL PBS

35, 49 Neck subcutaneous
injection

1 × 105 sporulated oocysts/
63 days old/oral

rEmGAM56 (rGC) 10 100 mg rEmGAM56+1 mg Quil-A
dilution in 1 mL PBS

35, 49 Neck subcutaneous
injection

1 × 105 sporulated oocysts/
63 days old/oral

rEmROP17 (rRC) 10 100 mg rEmROP17+1 mg Quil-A
dilution in 1 mL PBS

35, 49 Neck subcutaneous
injection

1 × 105 sporulated oocysts/
63 days old/oral
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0.94 mg/well and 1.13 mg/well, respectively. The optimal serum

dilution ratio was 1:160.
2.8 Serum cytokine level detection

The rabbit serum interleukin (IL)-2, IL-4, IL-10, IL-17,

interferon gamma (IFN-g), and transforming growth factor

beta 1 (TGF-b1) levels were detected using commercial ELISA

kits (Cusabio, Wuhan, China). For each group, serum of six

rabbits were randomly selected.
2.9 Statistical analysis

Differences among the groups were assessed using one-way

analysis of variance (ANOVA) with IBM SPSS Statistics 22.0

(IBM, Armonk, NY, USA). GraphPad Prism 8.0.2 (GraphPad

Software Inc., La Jolla, CA, USA) was used to produce all the

graphs. P < 0.05 and < 0.01 were considered significant and

extremely significant, respectively.
3 Results

3.1 EmGAM56 and EmROP17
sequence features

The EmGAM56 gene (GenBank accession number:

OM451230) ORF was 1371 bp (encoding a protein with a

predicted MW of 51 kDa) while that of the EmROP17 gene

(GenBank accession number: OM451229) was 1725 bp

(encoding a protein with a predicted MW of 63 kDa). Neither

EmGAM56 nor EmROP17 contain a transmembrane region, but

the signal peptides were predicted at 1–20 and 1–22 amino acids,

respectively. The EmGAM56 and EmROP17 target fragment

sizes without signal peptides were 1314 bp and 1662

bp, respectively.

Multiple sequence alignment revealed that the EmGAM56

amino acid sequences had high variability but shared high

homology with rabbit E. stiedae (89.44%). The EmROP17

amino acid sequences shared 66.96% identity with E. stiedae

ROP17 proteins and 28.01~37.95% identity with that of other

apicomplexans (Figure 2).
3.2 Expression, purification, and
western blotting

The rEmGAM56 (~48 kDa) and rEmROP17 (~54 kDa) were

expressed in the supernatant of E. coli BL21 cells after IPTG

induction (Figure 3, lane 1). The MW of the recombinant

proteins included the ~20 kDa fusion tag protein encoded by
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pET-32a(+) plasmid. After HisTrap HP affinity column

purification, the recombinant proteins were separated using

12% SDS-PAGE (Figure 3, lane 2).

The rEmGAM56 and rEmROP17 were reacted with anti-E.

magna positive serum and specific bands were observed on the

NC membranes (Figure 3, lane 3), while the coccidia-free rabbit

serum yielded no specific bands (Figure 3, lane 4). These results

indicated that both rEmGAM56 and rEmROP17 had

strong reactogenicity.
3.3 Protective efficacy of rEmGAM56
and rEmROP17

No statistically significant differences were observed for

weight gain after immunization among the six groups (p >

0.05) (Table 2), nor were obvious adverse reactions observed in

the immunized rabbits. This result suggested that rEmGAM56

and rEmROP17 had good safety at the experimental doses.

Rabbits in the positive control groups demonstrated a slight

loss of appetite and weight loss 2 weeks after the challenge; only a

few rabbits had diarrhea, most of which manifested as soft

unformed feces. No obvious clinical symptoms developed in

the rGC and rRC groups, and a minority of rabbits had soft

unformed feces. Gross postmortem examination of the positive

control groups revealed obvious hemorrhagic spots in the ileum

and lower jejunum while the immunized groups had few or no

hemorrhagic spots (Figure 4).

Compared with the UC group, the relative body weight gain

rate of the rGC and rRC groups was 81.35% and 79.03%,

respectively (p > 0.05). In addition, the rabbits immunized

with rEmGAM56 (63.85% oocyst reduction ratio) and

rEmROP17 (80.10% oocyst reduction ratio) had significantly

lower oocyst output (p < 0.05).

The rGC (3.27:1) and rRC (3.37:1) groups had better feed

conversion ratios in comparison with the UC (4.27:1), QC

(4.15:1), and rTC (3.94:1) positive control groups. In addition,

the results of ACI indicated that rEmGAM56 and rEmROP17

could provide moderately effective protection.
3.4 IgG responses against rEmGAM56
and rEmROP17

The serum specific IgG levels of the rGC and rRC groups

increased significantly after immunization (Figure 5). The

specific IgG levels of the rGC group peaked at week 3 but

decreased at week 5 while that of the rRC group continued to

increase after the challenge. The rTC group also exhibited

increased antibody levels, indicating that the inclusion of the

Trx-His-S tag in the rEmGAM56 and rEmROP17 proteins

increased the antibody levels. Nevertheless, the rTC group had

lower antibody levels than the rGC and rRC groups.
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3.5 rEmGAM56- and rEmROP17-induced
serum cytokine levels

The serum cytokine levels were estimated 2 weeks after the

booster vaccination. In the rGC group, serum IL-17 and IFN-g
levels were significantly increased (p < 0.05) and serum IL-2 levels

were significantly higher (p < 0.05) than that of the UC and rTC

groups, but there was no significant difference with the QC group (p

> 0.05). The rRC group had significantly increased serum IL-2, IL-

17, and IFN-g levels (p < 0.05). There was no significant difference

in the serum TGF-b1 levels among the groups (Figure 6).
4 Discussion

Rabbit coccidiosis is a common and highly contagious

parasitic protozoan disease (3, 11). Anticoccidials are the main
Frontiers in Immunology 06
control method of rabbit coccidiosis but can be accompanied by

drug resistance and drug residue. Previous work on anticoccidial

vaccines predominantly focused on live vaccines, specifically the

precocious lines. Several precocious lines of rabbit Eimeria spp.

have been successfully selected and characterized so far, such as

that for E. magna, and immunogenicity studies have been

conducted (8). Mohamed et al. (17) reported 97% oocyst

output reduction in rabbits following vaccination with 3500

oocysts from an E. magna precocious line. However, live

anticoccidial vaccines are expensive to produce and carry the

risk of virulence reversal. Therefore, recombinant subunit

vaccines are a promising vaccination strategy as they are easier

to mass-produce than live vaccines and have a longer shelf life

(19). Some studies that explored the protective effects of

recombinant subunit vaccines against chicken coccidiosis

yielded good results (36, 37). For rabbit coccidiosis, early

studies have reported that the soluble antigens in the bile and
A

B

FIGURE 2

Multiple sequence alignment of GAM56 and ROP17 from different species. (A) Multiple sequence alignment of EmGAM56 with GAM56 proteins
from E stiedae (GenBank accession number: OL622034), Cyclospora cayetanensis (UniProt: A0A1D3D9G4), E tenella (UniProt: U6KUA4),
E maxima (UniProt: U6M5G7), and E acervulina (UniProt: U6GGM3). (B) Multiple sequence alignment of EmROP17 with ROP17 proteins from
E stiedae (GenBank accession number: OM451231), E mitis (UniProt: U6KAV7), E brunetti (UniProt: U6LD89), E acervulina (UniProt: U6GVC3),
and E tenella (UniProt: U6KG78). Blue shading indicates conserved residues. Dashed red outlines represent B cell epitopes. The signal peptides
are marked with a solid blue outline. The thick solid red lines indicate predicted alpha helix, and the green arrows indicate predicted beta sheet.
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coproantigen from E. stiedae-infected rabbits could induce

protection against E. stiedae infection (38–40). Meanwhile, our

previous studies found that rabbits immunized with the

recombinant protein-based subunit vaccines also displayed

good protective effects against E. stiedae or E. magna infection

(41, 42). These studies showed the feasibility of developing

vaccines using the immunodominant antigens of rabbit coccidia.

Produced by Eimeria spp. gametocytes, GAM56 is

involved in oocyst wall formation (43, 44). The E. maxima
Frontiers in Immunology 07
GAM56 antigen is one of the main components of CoxAbic®,

where chickens immunized with its antibody had 78% oocyst

output reduction (27, 45). Moreover, chickens immunized

with a DNA vaccine carrying EmaxiGAM56 had 89.7%

relative body weight gain and 53.7% oocyst output

reduct ion (46) . Here, the rabbits immunized with

rEmGAM56 had significantly reduced oocyst output

(63.85% reduction rate, p < 0.05) and up to 81.35% relative

body weight gain.
A B

FIGURE 3

SDS-PAGE and Western blotting analysis of rEmGAM56 (A) and rEmROP17 (B). Lane M: Protein molecular weight markers; lane 1: crude extracts
expressed by BL21 (DE3); lane 2: purified recombinant proteins; lane 3: purified recombinant proteins incubated with anti-E. magna positive
serum; lane 4: purified recombinant proteins incubated with negative serum from coccidia-free rabbits. Arrows indicate the bands of interest.
TABLE 2 Protective effects of rEmGAM56 and rEmROP17 against E. magna infection under different evaluation indicators.

Group Average body
weight gain

after
immunization

(g)

Average
body weight
gain after

challenge (g)

Relative
body
weight
gain rate

(%)

Oocyst
shedding
per rabbit
(×104/g)

Oocyst
decrease
ratio (%)

Feed
conversion

ratio

Survival
rate (%)

Mean
lesion
scores

ACI

Unimmunized-
unchallenged
(UU)

785.70 ± 134.06a 526.10 ± 92.57a 100 0a – 2.66:1 100 0a 200

Unimmunized-
challenged
(UC)

772.50 ± 140.56a 327.50 ± 236.01b 62.25 3.16 ± 1.01b 0 4.27:1 100 1.60 ±
0.70b

106.25

Quil-A-
challenged
(QC)

781.00 ± 118.18a 337.00 ± 109.55b 64.06 3.12 ± 1.14b 1.14 4.15:1 100 1.30 ±
0.48bcd

111.06

rTrx-His-S-
challenged
(rTC)

794.00 ± 121.28a 355.56 ± 183.79b 67.58 3.41 ± 1.17b -7.99 3.94:1 90 (9/10) 1.40 ±
0.97bc

103.58

rEmGAM56
(rGC)

788.50 ± 114.31a 428.00 ±
122.71ab

81.35 1.14 ± 0.49c 63.85 3.27:1 100 0.90 ±
0.74cd

162.35

rEmROP17
(rRC)

774.50 ± 121.41a 415.80 ± 74.30ab 79.03 0.63 ± 0.25c 80.10 3.37:1 100 0.70 ±
0.67d

171.03

The data are presented as the mean ± standard deviation. In each column, significant differences between the data are indicated with different superscript letters (a, b, c, d; ANOVA, p <
0.05) and data marked with the same superscripted letter are not significantly different (p > 0.05).
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ROPs are important in Apicomplexa host invasion (20).

Some ROPs (such as ROP16, ROP17, ROP18) are serine/

threonine kinases that act as virulence factors (47, 48). Several

ROPs have been tested for immunogenicity, including ROP17

(49). BALB/c mice immunized with recombinant Toxoplasma

gondii ROP17 protein received apparent protection against

chronic infection, and the liver and brain parasite burdens

were reduced by 59.17% and 49.08%, respectively; in

immunized mice, survival increased by 50% against lethal

infection (22). Liu et al. (23) identified the ROP17 of chicken

E. tenella, where challenge experiments revealed that

immunization with rEtROP17 protein significantly reduced

oocyst output, and the body weight gain was up to 84.14%. In

the present study, rEmROP17-immunized rabbits had 79.03%

body weight gain and 80.10% oocyst output reduction. The
Frontiers in Immunology 08
results demonstrated that both the rEmGAM56 and rEmROP17

proteins conferred protection against E. magna infection and

that rEmROP17 performed better for reducing oocyst output.

Cytokines play a role in fighting coccidiosis. A Th1 immune

response marker, IFN-g is considered a key factor for preventing

coccidiosis (50). Chicken IFN-g inhibited Eimeria sporozoite

development in vitro and its recombinant protein also exerted an

anticoccidial effect (51, 52). IL-2 exerted an anticoccidial effect

by inducing T cell proliferation and increasing CD8+ and CD4+

T cell ratios (50). IFN-g and IL-2 also acted as anticoccidial

vaccine adjuvants to enhance the immune response to vaccine

antigens (53). Combining vaccine antigens with IFN-g or IL-2

further improved the anticoccidial index of chickens (54–56). In

the present study, the IL-2 and IFN-g levels of the immunized

rabbits were significantly increased post-vaccination (p < 0.05),
FIGURE 4

Gross postmortem examination. (A) UU, (B) UC, (C) QC, (D) rTC, (E) rGC, and (F) rRC groups.
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indicating that rEmGAM56 and rEmROP17 stimulated Th1-

type immune responses. We also observed increased IL-17 levels

in the rGC and rRC groups (p < 0.05). IL-17 is important in

responses against parasite infection (57). Wild-type mice treated

with IL-17A neutralizing antibody had prolonged survival after

being challenged with T. gondii (58). Ding et al. (55) reported

that simultaneous immunization with recombinant 3-1E protein

and IL-17 gene in ovo enhanced the immune protection against

E. maxima infection in chickens. Geriletu et al. (59) also reported

that the IL-17 gene enhanced the anticoccidial effect of antigens.

In the present study, both the rEmGAM56 and rEmROP17

proteins exerted moderately protective effects against E. magna

infection, and rEmROP17 performed better for reducing oocyst

output. Immunized with rEmGAM56 and rEmROP17 could

induce humoral immunity in the rabbits, and the specific IgG

was significantly increased. Recent research has proven that

antibodies are involved in the occurrence of Eimeria infection

(60, 61), where antigen-specific antibodies inhibited adhesion to

host cells (62). Moreover, it was shown that there was an

excellent correlation between antibody titer and protection

(63). As an obligate intracellular parasite, Eimeria spp. has a

complex life cycle including the asexual and sexual replicative

stages, and the asexual replicative stages (sporozoites and
A

B

FIGURE 5

The changes in serum anti-rEmGAM56 (A) and rEmROP17
(B) IgG levels after the first immunization (week 0), booster
immunization (week 2), and challenge with E magna (week 4).
D

A B

E F

C

FIGURE 6

The serum IL-2 (A), IL-4 (B), IL-10 (C), IL-17 (D), IFN-g (E), and TGF-b1 (F) levels 2 weeks after booster vaccination. Different superscript letters
(a, b) indicate a significant difference (p < 0.05). The same superscript letters indicate no significant difference (p > 0.05).
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merozoites) lead to the most damage to the intestinal tissues (64,

65). ROPs play an important role during the early stages of host

invasion, and ROP17 is expressed in the sporozoites and

merozoites (23, 66, 67). Gametocyte antigens are involved in

oocyst wall formation in the later sexual replicative stage (43,

44). Therefore, we speculated that the anti-rEmROP17 antibody

might interact with sporozoites or merozoites, and inhibit the

invasion of intestinal epithelial cells by them to alleviate

intestinal damage; while the anti-rEmGAM56 antibody mainly

plays the role of inhibiting the oocyst wall formation, but at this

time, the parasites have completed asexual replicative stages,

causing irreversible damage to the intestinal tissues, this may

lead to a better protective effect of rEmROP17. Meanwhile, the

high IFN-g, IL-2, and IL-17 levels in the immunized rabbits

further inhibited the intracellular infection of E. magna.

Together, these effects might eventually lead to significant

differences in oocyst output and body weight gain.
5 Conclusions

The rEmGAM56 and rEmROP17 proteins conferred

protective immunity against E. magna infection in rabbits. The

relative body weight gain of the rEmGAM56- and rEmROP17-

immunized rabbits was 81.35% and 79.03%, respectively, and the

oocyst output reduction rate was 63.85% and 80.10%,

respectively. The rEmROP17 performed better in reducing

oocyst output. The rEmGAM56 and rEmROP17 proteins

elicited cellular and humoral immune responses and are

potential vaccine candidates against E. magna.
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