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Background: Alzheimer’s disease is the most common neurodegenerative

disease worldwide. Metabolic syndrome is the most common metabolic and

endocrine disease in the elderly. Some studies have suggested a possible

association between MetS and AD, but few studied genes that have a co-

diagnostic role in both diseases.

Methods: The microarray data of AD (GSE63060 and GSE63061 were merged

after the batch effect was removed) and MetS (GSE98895) in the GEO database

were downloaded. The WGCNA was used to identify the co-expression

modules related to AD and MetS. RF and LASSO were used to identify the

candidate genes. Machine learning XGBoost improves the diagnostic effect of

hub gene in AD and MetS. The CIBERSORT algorithm was performed to assess

immune cell infiltration MetS and AD samples and to investigate the

relationship between biomarkers and infiltrating immune cells. The peripheral

blood mononuclear cells (PBMCs) single-cell RNA (scRNA) sequencing data

from patients with AD and normal individuals were visualized with the Seurat

standard flow dimension reduction clustering the metabolic pathway activity

changes each cell with ssGSEA.

Results: The brown module was identified as the significant module with AD

and MetS. GO analysis of shared genes showed that intracellular transport and

establishment of localization in cell and organelle organization were enriched

in the pathophysiology of AD and MetS. By using RF and Lasso learning

methods, we finally obtained eight diagnostic genes, namely ARHGAP4,

SNRPG, UQCRB, PSMA3, DPM1, MED6, RPL36AL and RPS27A. Their AUC

were all greater than 0.7. Higher immune cell infiltrations expressions were

found in the two diseases and were positively linked to the characteristic genes.

The scRNA-seq datasets finally obtained seven cell clusters. Seven major cell
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types including CD8 T cell, monocytes, T cells, NK cell, B cells, dendritic cells

and macrophages were clustered according to immune cell markers. The

ssGSEA revealed that immune-related gene (SNRPG) was significantly

regulated in the glycolysis-metabolic pathway.

Conclusion: We identified genes with common diagnostic effects on both

MetS and AD, and found genes involved in multiple metabolic pathways

associated with various immune cells.
KEYWORDS

Alzheimer’s disease, metabolic syndrome, XGBost, machine learning algorithm,
immune infiltration, single cell sequencing
Introduction

Alzheimer’s disease (AD) is the most common age-related

neurodegenerative disease. Its process is slow, chronic and fatal,

which challenges the world’s medical care. The slowdown in the

progression of AD may be the greatest unmet medical need of

our time (1). Similar to Parkinson’s disease, clinical symptoms of

AD appear, its pathophysiological changes have been existing

and developing for decades. Therefore, a better understanding of

the mechanisms behind AD to identify new biomarkers for early

diagnosis, treatment and prognosis is urgently needed.

Metabolic syndrome (MetS) is a general term for risk factors

of cardiovascular and cerebrovascular diseases, diabetes, obesity

and hypertension (2), including insulin resistance, low level good

cholesterol (HDL), abdominal obesity, hypertension and

hypertriglyceridemia, which affects approximately 35% of

adults (3). MetS is not only a health problem, but also an

economic burden. Clinical and epidemiological evidence

indicates that MetS clusters such as obesity, hypertension,

dyslipidemia and Type 2 diabetes promote the development of

mild cognitive impairment (MCI), dementia and AD in several

ways (4–8). A meta-analysis of 9,788,021 patients with an

average follow-up of 4.5 years showed a significant association

between MetS and AD (9). MetS can activate microglia through

the interface of the blood-brain barrier (2). A growing body of

epidemiological evidence has allowed the development of a

pathophysiological model called “metabolic-cognitive

syndrome” , which aims to understand the complex

relationship between metabolic disorders and cognitive

impairment, thereby generating therapeutic strategies for Mets
etabolic syndrome;

, peripheral blood

O, Gene Expression

etwork analysis; RF;
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that will help prevent or improve cognitive impairment observed

in AD patients (10). Although this relationship is supported by

several evidence, the molecular mechanism of metabolic-

cognitive syndrome is still being explored.

Currently, bioinformatics tools and software provides almost

perfect and accurate comprehensive comprehensive analysis of

cell metabolites (11). There is increasing evidence that the

etiology of AD is closely related to the immune response (12).

A network pharmacology analysis conducted by Liu (13)

tentatively suggests that Yuanzhi powder may affect immune

regulatory mechanisms AD treatment. A basic experiment

elucidated that high sugar and high fat, as key factors of Mets,

played a great role in the development of neuroinflammation

and immunity (14). Currently, interdisciplinary research in

neuroscience and immunology has linked nutritional excess

with neuroinflammation (15). These findings highlight that

immune mechanisms may play a key role in linking AD

and MetS.

In recent years, integrated bioinformatics analysis has been

used to identify new genes associated with various diseases,

which may serve as biomarkers for diagnosis and prognosis.

However, the common diagnosis and interlinked genes in MS

and AD are unclear. Therefore, this study used bioinformatics

methods to screen the biomarkers related to immune infiltration

of the two, providing theoretical basis for diagnosis

and treatment.
Materials and methods

Dataset acquisition, processing and
differential expression analysis

The datasets we analyzed were obtained from the National

Center for Biotechnology Information (NCBI) Gene Expression

Omnibus (GEO) database (16), including the AD dataset
frontiersin.org
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GSE63060 (17), GSE63061 and one AD single-cell RNA-

sequencing dataset GSE168522 (18); the same method was

used to obtain the MetS dataset GSE (19). The software R

(https://www.bioconductor.org/) was used for data analysis.

Datasets were filtered, background corrected, log2 transformed

and normalized. In addition, the datasets GSE63060 and

GSE63061 were merged, and the merged data were batch

corrected using the Combat method of the “sva” package. The

|log2 Fold change (FC)| > 1 and p <0.05 were set as the criteria

for identifying differentially expressed genes (DEGs) using the

“limma” package in R.
Single-cell sequencing quality control
and dimensionality reduction

We downloaded the single-cell RNA sequencing dataset

(GSE168522) from the GEO database. “Seurat” and “SingleR “

software packages were used to analyze the scRNA-seq dataset.

The retained cells were those with ≤ 10% of mitochondrial genes

and ≤ 3% of red blood cell genes. Simultaneously, we filtered out

the cells with number of genes (nFeature RNA) ≤ 200 or ≥ 2000.

Next, we performed dimensionality reduction and clustering and

selected 3000 hypervariable genes. By combining with the elbow

plot and selecting the inflection point and the PC with a smooth

curve, we selected the first 10 dimensions for follow-up analysis

and showed the dimension reduction effects of UMAP and tSNE.

Then, we performed cell-related annotation through immune

cell related maker (20). Finally, we visualized the expression of

the hub gene in different immune cells using a violin diagram.
Functional enrichment analysis

The Metascape database (https://metascape.org) was used

for Gene Ontology (GO) (21)enrichment analysis and protein–

protein interaction network construction (22). Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis (23) was performed using the SangerBox database

(http://sangerbox.com/Tool). In this study, we performed GO,

KEGG and protein–protein interaction analyses on the up-

regulated and down-regulated genes that were co-expressed by

AD and MetS using the two databases. Simultaneously, we

performed GO analysis on the key module genes obtained by

weighted gene co-expression network analysis (WGCNA)

analysis via the Metascape database.
Weighted gene co-expression network
analysis

To investigate the relationship between gene networks and

diseases, we looked for the co-expressed gene modules (AD and
Frontiers in Immunology 03
MetS associated modules) with high biological significance using

the algorithm of the WGCNA (24). The “WGCAN” package was

used to construct the co-expression modules (25). We used

genes with expression > 0 for further analysis to exclude outlier

data. By setting the optimal soft threshold, we simultaneously

identified the most relevant AD and MetS modules and the

multi-co-expressed module genes for further analysis.
Machine learning to screen
candidate genes

Two machine learning algorithms, random forest (RF) (26)

and least absolute shrinkage selection (LASSO) (27), were

adopted to further filter candidate genes for AD and MetS

diagnosis. RF is an ensemble prediction method that can

handle a large number of input variables and evaluate the

importance of variables. LASSO is a regression method that

has shown superiority in evaluating high-dimensional data. We

used the RF algorithm to initially screen diagnostic genes, with

an importance score greater than 0. Among the obtained genes,

the LASSO algorithm was utilized to further reduce the

dimension to obtain the final diagnostic genes, as well as draw

their respective ROC curves. We performed RF analysis and

LASSO regression with the R packages “random forest” and

“glmnet” (28).
Evaluation of candidate gene diagnostic
value

The eXtreme Gradient Boosting (XGBoost) (29), a

commonly used supervised integrated learning algorithm, has

strong scalability and convenient features to facilitate model

visualization and optimization. We used the XGBoost to build

candidate gene models with the training set (GSE63060) and

evaluated them on the validation set (GSE63061). Subsequently,

the receiver operating characteristic (ROC), precision-recall

(PR) curves, and area under the curve (AUC) were drawn to

evaluate the diagnostic efficacy of the model. It was verified

in MetS.
Immune infiltration analysis

The CIBERSORT deconvolution algorithm (26) is a machine

learning method based on linear support vector regression,

which is a calculation method used to evaluate the percentage

of 22 immune cells in tissues or cells. The experiment was based

on R and linked to CIBERSORT deconvolution method to

simulate the transcription characteristic matrix of 22 kinds of

immune cells, such as B cells, plasma cells, T cells, natural killer

cells, monocytes, macrophages, dendritic cells, mast cells,
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https://www.bioconductor.org/
https://metascape.org
http://sangerbox.com/Tool
https://doi.org/10.3389/fimmu.2022.1037318
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.1037318
eosinophils, and neutrophils. We compared the immune cell

infiltration of peripheral blood mononuclear cells (PBMC)

samples from the disease group with normal samples.

Meanwhile, the relationship between the hub gene and

immune cells in AD and MetS was explored.

The hallmark gene set was downloaded from Molecular

Signature Database (MSigDB) (27), and the metabolic related

pathways were analyzed by single sample gene set enrichment

analysis (ssGSEA) of the hub genes. The ssGSEA was an

extension algorithm of the GSEA approach. Finally, we

performed a correlation analysis of immune infiltration and

metabolism in AD and MetS.
Statistical analysis

All statistical tests were implemented using the R software

version 4.1.2. The Wilcoxon or Student’s t-test was utilized to

analyze the difference between the two groups. The correlation

between the variables was determined using the Pearson’s or
Frontiers in Immunology 04
Spearman’s correlation test. Statistical significance was set at a

two-tailed p < 0.05.
Results

Identification of DEGs in AD and MetS

The research flowchart of is shown in Figure 1. The principal

component analysis (PCA) was used to visualize the distribution

of these samples prior to and after correcting batch effect. In

addition, before data correction and normalization, we

performed PCA on the three datasets (GSE63060, GSE63061

and GSE8895) (Supplementary Figures S1E, F). After

standardizing the dataset results, 3235 DEGs (1738

upregulated and 1479 downregulated) were identified in AD,

while 2639 DEGs (1354 upregulated and 1285 downregulated)

were identified in MetS. In addition, a Venn diagram analysis

was performed to evaluate the common DEGs between AD and

MetS, showing that 314 and 241 overlapping DEGs were
FIGURE 1

Research technology flow chart.
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identified in the up-regulated and down-regulated DEGs,

respectively (Figures 2A, D).
Enrichment analysis of AD and MetS co-
upregulated- and co-down-regulated
genes

In order to explore the biological functions and pathways of

the identified overlapping DEGs, we performed GO and KEGG

analyses, which were plotted through bar diagram and cnetplots.

KEGG analyses results showed that the up-regulated DEGs were

mainly enriched in tight junction, HIF-1 signaling pathway and

leukocyte transendothelial migration, the down-regulated DEGs

were enriched in the ribosome, spliceosome and mTOR

signaling pathway (Figures 2B, E). Based on the GO analysis,

we could see the up-regulated DEGs were involved in membrane

trafficking and positive regulation of hydrolase activity, whereas

the down-regulated DEGs were involved in metabolism of RNA

ribonucleoprotein complex biogenesis and positive regulation of

apoptotic signaling pathway (Figures 2C, F).
Co-expressed modular genes and
enrichment in AD and MetS

Co-expression analysis was employed to construct the co-

expression network. In our study, cluster analysis was performed

with the “flash clust” function. With a threshold set to 20, 13

outlier samples were detected and removed, and 51 samples were
Frontiers in Immunology 05
retained (Supplementary Figures S1G, H). The “pick Soft

Threshold” function in the “WGCNA” package to filter out

the power parameters from 1 to 30. A power of b = 5 was chosen

as the most appropriate soft threshold to guarantee the scale-free

network (Figure 3A). The “cutree” dynamic and module

eigengenes functions to construct cluster diagram (Figure 3B),

A total of 17 modules consisting of genes with similar co-

expression traits were obtained. Then, a heat map about

module–trait relationships was mapped according to the

Spearman correlation coefficient to evaluate the association

between each module and the disease (Figure 3C). The

modules “brown” indicates a high connection between AD

and MetS (AD: r = 0.29, p = 1e−06; MetS: r = 0.1, p =0.08).

The brown module contains the positively correlated genes of

AD and the negatively correlated genes of MetS (Figures 3D, E).

GO analysis of this brown module gene for AD and MetS was

performed through the Metascape website. The results showed

that it was mainly enriched in intracellular transport,

establishment of localization in cell and organelle organization

in BP, cytosol, nucleoplasm, organelle membrane in CC and

catalytic activity, nucleotide binding and nucleotide phosphate

binding in MF (Figures 3F–H).
Identification of candidate central genes
in AD and MetS using machine learning

Using the RF method, we initially screened out 30 diagnostic

genes (Figure 4C), and then used LASSO to further reduce the

dimensionality to obtain the final eight diagnostic genes
B C

D E F

A

FIGURE 2

Difference and enrichment analysis of AD and MS patients. (A) The intersection of AD up-regulated DEGs and MetS up-regulated DEGs.
(B) KEGG analysis of up-regulated intersection genes. (C) GO analysis of up-regulated intersection genes. (D) The intersection of AD down-
regulated DEGs and MetS down-regulated DEGs. (E) KEGG analysis of down-regulated intersection genes. (F) GO analysis of down-regulated
intersection genes.
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(Figures 4A–C), namely ARHGAP4, SNRPG, UQCRB, PSMA3,

DPM1, MED6, RPL36AL, RPS27A. We further evaluated the

diagnostic values of these genes. The AUC values of ROC

curves were 0.716 of ARHGAP4 (Supplementary Figure S2A),

0.725 of DPM1 (Supplementary Figure S2B), 0.774 of MED6

(Supplementary Figure S2C), 0.774 of PSM3 (Supplementary

Figure S2D), 0.841 of RPL36AL (Supplementary Figure S2E),

0.809 of RPS27A (Supplementary Figure S2F), 0.720 of SNRPG

(Supplementary Figure S2G) and 0.775 of UQCRB

(Supplementary Figure S2H). We found that they all had high

accuracy with AUC >0.7, revealing the predictive efficacy of all

eight gene signatures.

We used the XGBoost to build candidate gene models with

the training set (GSE63060), evaluated them on the validation set

(GSE63061). In GSE63060, the VUC of ROC was 0.936 and PR

was 0.955 (Figure 4D). For GSE63061, ROC was 0.775 and PR

was 0.801 (Figure 4E), which illustrated the diagnostic efficacy of

the model. Similarly, it was verified in MetS, indicating that the

model is also applicable and effective in MetS, with a ROC of

0.982 and PR of 0.982 (Figure 4F).
Frontiers in Immunology 06
Immune infiltration analysis in AD and
MetS patients

We performed immune infiltration analysis on these eight

key genes, and the analysis results revealed that seven genes

(SNRPG, UQCRB, PSMA3, DPM1, MED6, RPL36AL, RPS27A)

had significantly lower levels of activated regulatory T cells

(Tregs), CD4 naïve cells, memory B cells, resting NK cells,

neutrophils, macrophages M0, and mast cells than ARHGAP4

in AD patients (p<0.01). In contrast, the levels of macrophages

M2, T cells, mast cells resting, dendritic cells activated, CD4

memory resting T cells, eosinophils, macrophages M1, gamma

delta T cells, CD8 NK cells, naïve B cells and follicular helper T

cells were significantly higher than ARHGAP4 in AD patients

(Figure 5A). However, seven genes (SNRPG, UQCRB, PSMA3,

DPM1, MED6, RPL36AL, RPS27A) had a higher levels of

macrophages M1, neutrophils, CD4 memory resting T cells

and macrophages M2, as well as lower level of memory B cells,

regulatory T cells (Tregs) and resting dendritic cells than

ARHGAP4 (p<0.01) (Figure 5C). The correlation between the
B

C D E

F G H

A

FIGURE 3

WGCNA co-expression and enrichment analysis in AD and MS patients. (A) Analysis of network topology for various soft-thresholding powers.
(B) The cluster dendrogram of co-expression genes in AD and MetS. (C) Module–trait relationships in AD and MetS. Each cell contains the
corresponding correlation and p-value. (D) The correlation between genes and AD in the brown module. (E) The correlation between genes and
MetS in the brown module. (F) The BP in GO analysis of co-expression genes in AD and MetS. (G) The CC in GO analysis of co-expression
genes in AD and MetS. (H) The MF in GO analysis of co-expression genes in AD and MetS.
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immune cell contents patients and control in AD or MetS was

also calculated. The patients with AD showed a higher

proportion of macrophages M0, and a lower proportion of B

cells naïve, macrophages M2 and eosinophils (Figure 5B).

Patients in MetS showed a lower proportion of eosinophils

than control (Figure 5D). According to ssGSEA metabolic

analysis, the metabolic pathways of hub genes in AD dataset

were mainly clustered in glycolysis, hypoxia and oxidative

phosphorylation adiposis (Figure 5E), and the metabolic

pathways of Hub gene in MetS were mainly clustered in

glycolysis and heme metabolism (Figure 5F).
Single-cell sequencing analysis in AD and
normal patients

We downloaded the single-cell RNA sequencing dataset

(GSE168522) from the GEO database and selected a healthy

and AD patient in the dataset as Seurat object for analysis. First,

we conducted data quality control. We retained cells with less than

10% of mitochondrial genes and less than 3% of red blood cells.

Cells with a gene number (nFeature RNA) greater than 2000 or

less than 200 were filtered out (Supplementary Figures S3A, B).

We identified 3000 hypervariable genes and marked the 10 most

important genes. All hypervariable genes were highlighted in red

as shown in Supplementary Figure S3C. T-SNE algorithm was

used to cluster all cells. The cells could be divided into 19

categories (Supplementary Figure S3D). Uniform Manifold
Frontiers in Immunology 07
Approximation and Projection (UMAP) was used for non-

linear dimension reduction. The “FindCluster” function was

used to cluster cells, obtaining 19 clusters (Figure 6A). The

result revealed increased percentage of monocytes clusters, B

cells, T cells, CD8+_Tcells and NK in the AD group

(Figure 6B). The expression of cell type marker genes is shown

in the dot plot (Supplementary Figure S3E). Next, we performed

cell related annotation through immune cell between AD and CT

groups, which showed that RPL36AL, RPS27A, UQCRB and

SNRPC were highly expressed in the two groups, while the

remaining four genes were less expressed (Figure 6C). Finally,

we visualized the expression of eight hub genes in different

immune cells by violin diagram. RPL36AL, RPS27A, UQCRB

and SNRPC were annotated in all seven cell groups, PSMA3

was by dendritic cells and macrophages, ARHGAP4 was only by

dendritic cells,MED6 and DPM1were hardly annotated. Then we

performed cell ratio and expression analysis, RPL36AL, RPS27A,

UQCRB and SNRPC were highly expressed in the seven cells types

of all samples (Figure 7A), RPL36AL, UQCRB and SNRPC had a

high expression rate, RPS27A had a high expression rate in

CD8_T_cells, NK cells and T cells in two samples (Figure 7B).

The results were basically consistent with the Figure 6D we

analyzed before. Through ssGSEA metabolic pathway analysis,

we found that the glucose metabolism scores of B cells and NK

cells in normal and AD were different (Figure 7C, D). In the two

cell populations, the glucose metabolism fraction in AD was lower

than that in the normal group, and the analysis showed that

SNRPG participated in this important pathway (Figure 7E).
B C

D E F

A

FIGURE 4

Machine Learning Screening Genes and Modeling. (A) LASSO coefficient profiles of candidate genes. (B) Cross-validation to select the optimal
tuning parameter log (Lambda) in LASSO regression analysis. (C) RF coefficient profiles of candidate genes. (D) XGBost modeling in AD training
set. (E) Validate through the AD validation set. (F) Validate with MetS dataset.
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Discussion

Candidate therapies that effectively target the core pathology of

AD have achieved disappointing results in clinical trials, and this

failure may be attributed to late intervention in the course of the

disease (28). There is a growing consensus that therapeutic

intervention must be started at the early stage of the disease

(preclinical or prodromal symptoms) to make meaningful disease

changes in AD (1). Moreover, studies have shown that multiple

factors drive the cell phase of AD. For example, early impaired brain

metabolism seems to play an important role in cognitive decline.

Specifically, defects in glucose metabolism in the frontal and

temporal parietal lobes may contribute to disease progression

(30). Insulin resistance (IR) was the main feature of MetS.
Frontiers in Immunology 08
Because it could increase the accumulation of and NP, it was

thought to play an important role in the metabolism of tau protein,

which affects the development of AD. In addition, IR was an

important link between MetS and MCI (2, 31). Therefore, we

used machine learning method to identify the key genes of AD in

PBMC for the identification of early patients.

Although considerable literature has examined the link between

AD and MetS, few studies have explored the common diagnostic

effector genes of the two diseases, as well as the correlation between

these genes and immune cells. To explore the common diagnostic

effector genes of the two diseases, we used WGCNA to obtain the

co-expressionmodule (brownmodule), and the biological functions

of this module genes were clustered in cell localization, transport

and catabolism. Furthermore, intracellular transport played an
B

C D

E F

A

FIGURE 5

Correlation of AD and MS patients with immune cells and metabolic signaling pathways. (A) Immune infiltration analysis of eight candidate
genes in AD. (B) Comparison of immune cell infiltration between AD and CT samples. (C) Immune infiltration analysis of eight candidate genes
in MetS. (D) Comparison of immune cell infiltration between MetS and CT samples. (E) Metabolic pathway analysis of eight candidate genes in
AD. (F) Metabolic pathway analysis of eight candidate genes in MetS. *P < 0.05, **P < 0.01, ***P <0.001.
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irreplaceable role in the molecular mechanism of AD. For instance,

intracellular transport changed in the expression of app and tau

through intracellular transport, leading to cognitive decline and

neurodegeneration in AD (32). High levels of circulating lipid and

glucose imbalance can lead to high levels of oxidative metabolism,

leading to neuronal damage (33). These studies were consistent with

our findings. Moreover, our study explored genes in which AD and

MetS have a common diagnostic effect.

We obtained eight co-effect genes, namely ARHGAP4, SNRPG,

UQCRB, PSMA3, DPM1, MED6, RPL36AL and RPS27A through

machine learning methods. ROC analysis showed that they had

good prediction effect. It could be seen from the immune infiltration

analysis that the four genes (RPL36AL, RPS27A, UQCRB and

SNRPC) were highly expressed in different immune cell

subpopulations. Ribosomal Protein L36a Like (RPL36AL) is a

Protein Coding gene that mainly exists at the E-site in human

ribosomes and can be crosslinked in situ with the CCA end of p-

tRNA (34, 35). Previous studies have shown that RPL36AL acts as

an immune related gene in AD, but its mechanism has not been

elucidated (35, 36). In the immune infiltration analysis, RPL36AL

was mainly on B cells. Single-cell RNA sequencing reveals

significant decrease in B cells detected in blood of AD patients,

and similar studies have previously yielded similar results (18).
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Ribosomal protein S27A (RPS27A),as a ribosomal protein, was

mainly involved in the functional role of ribosomal biogenesis and

post-translational modification (37). It can perform both synthetic

ribosomal and in vitro ribosomal functions (38, 39), and

overexpression in multiple malignancies, such as leukemia (40).

RPS27A might act as a controller of microglia activation in

triggering neurodegenerative diseases (41). Small Nuclear

Ribonucleoprotein Polypeptide C (SNRPC), was a protein coding

gene (42). Relevant have shown that SNRPCwas themain causative

gene of MCI and AD (43). MetS was a risk factor for AD (44). One

study found that tau phosphorylation may accelerate psychosis in

AD (45). These results suggested that the Hub gene we are looking

for may be involved in the occurrence and development of AD and

MetS diseases. There are very few studies on the above three genes

in AD and MetS, so our analysis can only be used as a preliminary

reference, so follow-up experiments are needed to further confirm.

The brain was the most abundant organ of human energy

metabolism. Although the adult brain accounted for 2% of the total

body weight, it used 25% of the whole body’s glucose during rest

and wakefulness (46), which makes it vulnerable to impaired energy

metabolism. Accumulated evidence indicated that AD was an age-

related metabolic neurodegenerative disease (47). One of the

pathophysiological features of AD was impaired cerebral glucose
B

C D

A

FIGURE 6

Expression of 8 model genes in immune subsets of AD and normal patients. (A) UMAP display of single cell grouping in patients with AD. (B) AD
and normal patients are divided into 7 immune cell subsets. (C) Violin pictures show the expression of model genes in normal and AD patients.
(D) The violin picture shows the expression of model genes in immune cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1037318
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.1037318
metabolism, which occurred long before cognitive impairment and

pathological changed, and this prodromal period could last up to 10

years (48–50). Research confirmed diabetes can increase the risk of

AD, and even the use of hypoglycemic drugs cannot reduce the risk

(51), which can be increased two to threefold by previous study,
Frontiers in Immunology 10
which is not related to the risk of vascular dementia (52–55).

Recombinant interferon g the metabolic enhancement of treatment

reversed the glycolytic metabolism and inflammatory functional

defects of microglia, thereby alleviating the AD pathology of 5xfad

mice (56). Through metabolic correlation analysis, we proved the
B

C D

E

A

FIGURE 7

Expression and co-localization of key genes in immune cells of AD patients. (A, B) Expression of different genes in immune cells of AD and normal
patients. (C) The violin shows the difference in the fraction of glucose metabolism in B cells between normal patients and AD patients. (D) The violin
shows the difference in the fraction of glucose metabolism in NK cells between normal patients and AD patients. (E) Colocalization of glucose
metabolism and SNRPG in AD patients and normal patients, respectively. ***p<0.001.
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correlation of hub gene in glucose metabolism related pathways of

AD and MetS. Next, we will continue to further explore the

mechanism of glucose metabolism for AD in animal models.

The XGBoost machine learning model further improves the

diagnostic value of eight genes in AD andMetS, which is helpful for

the early diagnosis of patients through PBMC. However, this study

still has some limitations. First, the available clinical information in

public databases is limited, which may lead to biased results.

Second, further in vitro experiments are needed to better

understand the common mechanism of MetS and AD regulation.

Finally, more data sets or clinical prospective studies are needed to

validate the identified diagnostic genes. To alidate the experimental

findings, it is necessary to collect more clinical samples for clinical

validation, as well as to perform modeling of rat models and knock

out some key genes.
Conclusion

Our study provides key co-diagnostic effector genes for AD

and MetS patients, while revealing that disease co-involvement

genes are associated with diverse immune cells. Glucose

metabolism-related pathways may be the common mechanism

of AD and MetS, and glucose metabolism may act on AD

patients through NK cells and B cells. Meanwhile, we found

that the gene SNRPG may act as a key gene related to glucose

metabolism in AD patients.
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Enrichment analysis and dataset quality control. (A–D) Enrichment and

protein interaction analysis of co-up- and down-regulated genes in AD

and MetS patients. (E, F) PCA between integrated datasets after de-
batching. (G) Before clustering of WGCNA analysis (H) After clustering

of WGCNA analysis.

SUPPLEMENTARY FIGURE 2

Receiver operating characteristic (ROC) curves of 8 candidate genes.

(A–H) ROC analysis of eight candidate genes

SUPPLEMENTARY FIGURE 3

Single-cell quality control and annotation. (A) The genes (features), counts,
and mitochondrial gene percentage before quality control. (B) The genes
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(features), counts, and mitochondrial gene percentage after quality control.
(C) Correlation between genes and counts on the left side. Highly variable

genes (HVGs) were colored in red, and the top 10 HVGs were labeled on the
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right side. (D) All cells were clustered using t-SNE algorithm. This experiment
could be divided into 19 clusters. (E) Dot plot of cell type marker genes of top

differentially expressed genes for each T and NK cluster.
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