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Epithelial ovarian cancer (EOC) ranks as the second most common cause of

gynecologic cancer death. The conventional treatment for patients with EOC is

postoperative therapy along with platinum chemotherapy. However, a more

efficient treatment regimen is of great need for these patients diagnosed with

advanced disease (FIGO stages III–IV), whose survival is approximately 29%.

Immunotherapy seems to be an encouraging therapeutic strategy for EOC.

Given the crucial role in the complicated interactions between tumor cells and

other cells, the tumor microenvironment (TME) influences the response to

immunotherapy. In this review, we discuss feasible strategies for EOC

immunotherapy by exploiting the reciprocity of cancer cells and the

constituents of the TME.
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Abbreviations: EOC, epithelial ovarian cancer; TME, tumor microenvironment; PD-1, programmed cell

death 1; PD-L1, programmed cell death ligand 1; ECM, extracellular matrix; DCs, dendritic cells; TAMs,

tumor associated macrophages; NK, natural killer; ICIs, immune checkpoint inhibitors; Tregs, regulatory T

cells; IL-10, interleukin-10; IL-35, interleukin-35; TGF-b, transforming growth factor-b; IDO,

indoleamine-2,3-dioxygenase; PGE2, prostaglandin E2; LAG3, lymphocyte activation gene 3; VEGF-A,

vascular endothelial growth factor A; EGF, epidermal growth factor; MDSCs, myeloid-derived suppressor

cells; ARG1, arginase 1; CAFs, cancer associated fibroblasts; CAAs, cancer-associated adipocytes; HGF,

hepatocyte growth factor; PDGF, platelet derived growth factor; FGF-2, fibroblast growth factor 2.
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1 Introduction

Epithelial ovarian cancer (EOC) recognized by its high

occurrence and poor prognosis (1), ranks as the second most

common cause of gynecologic cancer death (2). The

conventional treatment for EOC patients is postoperative

therapy along with platinum chemotherapy (3). However,

survival is dismal since over two-thirds of patients are

diagnosed with advanced disease (FIGO stages III–IV) (4), and

the survival rate for advanced stages is about 29% (5). Thus, a

more effective treatment is of great need for these patients.

Currently, immunotherapy is an encouraging treatment for

various cancers (6). Immunotherapy agents are used to

activate effector and cytotoxic T cells that respond to cancer

cells through natural mechanisms, many of which are

suppressed during cancer progression (7). Poor response to

immunotherapy in ovarian tumors was associated with low

expression of programmed cell death ligand 1 (PD-L1) (8).

Therefore, it is urgent to explore the cells in the TME and

their effects on the response of immune checkpoint

inhibitors (ICIs).

The tumor microenvironment (TME), which is made up of

vessels, immune infiltration and extracellular matrix (ECM),

promotes cancer growth, invasion and metastasis (9).

Understanding the interplay between cancer cells and various

immune cells in the TME such as T lymphocytes, dendritic cells

(DCs), tumor associated macrophages (TAMs) and natural killer

(NK) cells, could explain the pathogenesis and explore novel

therapies for EOC (10) (11). Immune editing, defined as the dual

function of the immune system, can suppress and/or promote

tumor growth (12). Studying the dual function of immune cells

in the TME can suppress the key pathways that inhibit

antitumor responses, and promising therapies will be

discovered (13). PD-1 and CTLA-4 expressed on T cells are

the basis of immune checkpoint immunotherapy (14).

Additionally, immunosuppressive molecules in the TME such

as indoleamine-2,3-dioxygenase (IDO), interleukin-10 (IL-10)

and prostaglandin E2 (PGE2), can also be targets of

immunotherapies (15).

In this review, the effect of the TME in immunotherapies and

progress in EOC immunotherapy will be discussed.
2 Tumor microenvironment

2.1 Suppressive immune cells

2.1.1 Regulatory T cells
T-lymphocytes in the TME contain tumor infiltrating

lymphocytes (TILs) and regulatory T cells (Tregs). Tregs have

been shown to weaken antitumor immunity indicating poor

prognosis in patients with EOC (16). Studies have revealed that
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increases in tumor Treg cells represent a low survival rate of

EOC (16), while other studies show their association with a

pleasing clinical outcome biomarker in colorectal cancer (17).

Immunosuppressive mechanisms regulated by Tregs leading to

immunological tolerance and ignorance of cancer are as follows:

1) releasing soluble or membranous repressive cytokines such as

interleukin-10 (IL-10), interleukin-35 (IL-35) and transforming

growth factor-b (TGF-b), which can kill effector T cells (18).

2) high expression of granzymes and perforin mediates the

cytolysis of NK cells and cytotoxic CD8+ T cells (19). 3)

interfering with effector T cell metabolism by reducing IL-2,

which is competitively consumed by T cells, and increasing

adenosine which is an inhibitory molecule (20). 4) inducing DC

tolerance by expressing CTLA-4 and ligands CD80 and/or CD86

on DCs that can generate immunosuppressive tryptophan

metabolites, lymphocyte activation gene 3 (LAG3) molecules

can suppress MHC II molecules on DCs (21). In view of the key

immunosuppressive effect of Tregs, several agents have been

explored that directly target markers such as CTLA-4 and IL-2

(20, 22).

2.1.2 Tumor associated macrophages
Tumor-associated macrophages (TAMs) are recruited from

monocytes in blood and resident peritoneal macrophages, and

these are major infiltrating immune cells in the TME (23). Given

the important heterogeneity and plasticity, TAMs contain two

groups: anti-tumorigenic M1 type and pro-tumorigenic M2 type

(24). In the TME, the most pro-tumorigenic M2-like phenotype

(25) is critical for cancer angiogenesis, invasion and metastasis

through different kinds of cytokines, chemokines, growth

factors, and proteases (26, 27). Vascular endothelial growth

factor A (VEGF-A), a pro-angiogenetic chemokine and

protease secreted by TAMs promotes tumor angiogenesis (26,

28). By producing epidermal growth factor (EGF), TAMs

promote cancer cell proliferation (29). Moreover, TAMs

exhibit immunosuppressive effects through secreting IL-10,

TGF-b, CCL2 and arginase (30, 31). Current studies targeting

TAMs mainly include: 1) suppressing M2-like TAMs via

inhibiting the recruitment of TAMs and exhausting TAMs 2)

activating M1-like TAMs by strengthening the repolarization of

M2 macrophages into M1 macrophages (32, 33). For inhibition

of the recruitment of TAMs, the CCL2/CCR2 axis barricade

which is has been found to be helpful in a mouse ovarian cancer

model (34), and disrupting the CXCL12/CXCR4 axis which

prolongs the survival of a tumor mouse model (35) seem to be

an encouraging therapy. The decrease in TAMs caused by

inhibiting the CSF-1/CSF-1R pathway has been proven to

strengthen the tumor suppressive effect of docetaxel (36). In

EOC, trabectedin can effectively deplete macrophages by

inducing apoptosis of macrophages and thus play an

antitumor role in ovarian cancer (37). Paclitaxel treats ovarian

cancer by reprogramming the M2 to the M1 phenotype through
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TLR4 in gene expression analysis (38). Furthermore, another

macrophage-directed therapy targets PD-L1 on TAMs which is

involved in tumor immune escape mechanisms (39, 40).

2.1.3 Myeloid-derived suppressor cells
Myeloid-derived suppressor cells (MDSCs) are a subpopulation

of immunoregulatory immature myeloid cells that increase

in multiple pathologic situations (41). MDSCs have been

implicated in suppressing T cells and impacting other cells in the

TME (42). The mechanisms of suppressing T cells include the

following: 1) accelerating the depletion of T cell essential amino

acids such as L-cysteine, L-arginine and L-tryptophan which are

critical for T cell activity (43–45). 2) expressing PD-L1 interacting

with PD-1 on T cells to suppress the antitumor effect of T cells and

thus promote immune evasion (46). 3) producing ROS and NO

which are toxic to T cells (47). Moreover, MDSCs boost the

activation of Tregs via IL-10 and TGFb in the need of CD40 (48,

49). MDSCs can be targeted by various strategies: 1) reduction of

MDSCs, 2) inhibition of the recruitment of MDSCs, 3) suppression

of MDSC function and 4) induction of MDSCs to differentiate

into non‐suppressive cells (50). Thus, immunotherapies in

combination with targeting MDSCs could be a major strategy.

Phosphodiesterase‐5 (PDE‐5) inhibitors targeting arginase 1

(ARG1) and iNOS restabilize the immunosuppressive response of

T cells (51). Synthetic triterpenoids activate the Nrf2 gene which

modulates antioxidant enzymes and nitroaspirin, inhibiting iNOS

and ROS production and thus relieving the oxidative stress caused

byMDSCs (52, 53). Furthermore, STAT3 inhibitors combined with

immune checkpoint blockade have been shown to be beneficial in
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lymphoma (54). In addition, blocking COX‐2 which is correlated

with the expression of ARG1 can also be a promising approach to

attenuate MDSC function (55). A schematic illustration of how

suppressive immune cells affect the antitumor immune response in

the TME is shown in Figure 1.
2.2 Activated immune cells

2.2.1 T lymphocytes
TILs contain CD8+ T and CD4+ T lymphocytes, especially

CD8+ TILs which represent a good prognosis of EOC (56).

CD8 + T cells recognize and kill pathogenic infections or cancer

cells through perforin and granzyme (57). In addition to

destroying cancer cells directly, CD8+ T cells suppress tumor

vascularization via secreting IFN-g which suppresses the

development of cancer. Emerging evidence has revealed that

CD8+ T cells in the TME are often beneficial to survival in

ovarian cancer patients (58). Furthermore, CD4+ T cells are

divided into different subtypes which include T helper 1 (Th1)

cells, a group of cells that provide cytokines such as IL-2 and

IFN-g to support the antitumoral effect of CD8+ T cells (59).

Moreover, high expression of CCL5 released by CD4+ T cells

benefits the activation of DCs and thus induces an antitumor

response (60). Hence, increases in Th1 cells within the TME are

related to significant outcomes in a variety of cancers (61). As

mentioned above, not all T cells function as antitumor effectors

such as Tregs and Th17 cells. Thus, immunotherapies targeting

the main impaired antitumor T effector cells are considered
FIGURE 1

Immunosuppressive cells in the TME. Immune suppressive cells mainly contain Tregs, TAMs and MDSCs. Tregs restrain antitumor effector T cells
including (i) secretion of repressive cytokines such as IL-10, IL-35 and TGF-b; (ii)induction of cytolysis via releasing granzymes and perforins;
(iii) metabolic disturbance through adenosine production. Also, Tregs induce antigen presenting cell dysfunction for a tolerant phenotype. TAMs can
(i) secrete EGF and MMPs to promote tumor progression; (ii) produce VEGF to aid in tumor angiogenesis; (iii) secrete IL-10 and TGF-b to induce Treg
activation. MDSCs suppress T cells through (i) secretion of IL-10 and TGF-b which induce Tregs; (ii) production of NO and ROS which induce cytolysis
and inhibit T cell activation; (iii) depletion of essential amino acids which play a crucial role in T cell activation and proliferation.
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optimistic therapeutic approaches (62, 63). Recently, major

advances have been made in developing PD-1 therapy which

can potentiate the efficacy of CD8+ T cell based immunotherapy

(64). T cells express PD-1 while other cells such as Tregs, TAMs,

and cancer cells express PD-L1. Consequently, blockade

targeting PD-1 or PD-L1 can suppress activation of T cell and

breakdown immune tolerance and thus potentially mobilize

immunity in tumors (65, 66).
2.2.2 Natural killer cells
NK cells are the most efficient antineoplastic effectors and do

not need any prior sensitization or HLA-independent tumor

target recognition (67, 68). NK cells encompass two main

populations with CD56bright/CD16– functioning to produce

IFN-g and TNF-a cytokines, while CD56dim/CD16+ killing

tumor cells directly via releasing perforin/granzyme or

through TRAIL pathways (69). However, NK cells usually

exhibit dysfunction in the TME, such as reduced proliferation,

decreased secretion of cytotoxic molecules and abnormal

expression of immune checkpoints (70). Studies have revealed

that PD-L1 on tumor cells can inhibit PD-1 expression on NK

cells, thereby promoting immune escape from cancer (71). A

series of molecules such as IDO and PGE2 secreted by fibroblasts

were shown to suppress the expression of the activating receptor

NKG2D and thus mediate immune escape (72). Several

immunotherapeutic strategies based on NK cells are currently

being explored including adaptive NK cells, cytokines,

antibodies and ICIs (68). Remarkably, adaptive NK cell

therapy induced by various cytokines exhibits enhanced

antitumor effects in ovarian cancer (73). Currently, therapy

based on cytokines such as IL-2 and IL-15 is shown to

vigorously increase NK cells (74, 75). Although antibody-based

immunotherapy is not the gold standard treatment for ovarian

cancer patients, antigens on tumor cells including NY-ESO-1

and MUC1 have attracted great attention (76). Furthermore,

evidence has revealed that PD-1 and CD96/TIGIT inhibitors

potentiate the tumor lysis mediated by NK cells (77).
2.2.3 Dendritic cells
DCs capture and process antigens to T cells and secrete

inflammatory cytokines to induce pathogen-specific T-cell

effects (78). Generally, DCs submit exogenous antigen peptides

to CD4+ T cells through MHC II molecules and endogenous

antigens to CD8+ T cells with MHC I molecules, and strengthen

CD4+ and CD8+ T cell activity via presenting exogenous

antigens (79, 80). However, the tumor microenvironment

inhibits DC maturation through immunosuppressive factors

including VEGF, IL-6, IL-10 and TGF-b, as well as repressive
molecules including IDO (81, 82). Nevertheless, upregulating

suppressive receptors such as PD-L1 and LAG3 induces T cell

exhaustion thereby limiting the immune response (83). IDO

produced by DCs restrains the function of NK cell and CD8+ T
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schemes targeting DCs have attracted great attention. Clinical

studies revealed that IDO1 inhibitors combined with

chemotherapy or ICIs elicit tumor regression (85).

Collectively, potential DC based immune therapy seems to be

an encouraging target against ovarian cancer. Furthermore, with

such an effective ability for Ag presentation and T cell activation,

DCs were tested as cancer vaccines that can produce “trained”

DCs carrying tumor antigens and thus potentially induce strong

antitumor T-cell effects (86, 87). In particular, it is well

documented that DC vaccines combined with ICIs may result

in synergistic effects (88, 89). A schematic illustration of how

immune active cells exhibit dysfunction in the TME is shown

in Figure 2.
2.3 Tumor-associated stromal cells

2.3.1 Cancer-associated fibroblasts
CAFs derived from mesenchymal stem cells are crucial

components of stromal cell types (90, 91). CAFs produce

proteins, paracrine cytokines and various ECMs that

contribute to shaping the tumor microenvironment (92, 93).

Classical growth factors secreted by CAFs include the following:

1) TGF-b regulates the interaction between cancer and stroma

thereby facilitating tumor initiation and progression (94). 2)

Epidermal growth factor (EGF) maintains the expression of

ATC integrin a5 (ITGA5) which can promote the early

peritoneal spread of HGSOC (95). 3) Hepatocyte growth

factor (HGF) contributes to proliferation via the c-Met/PI3K/

Akt and GRP78 pathways (96). 4) CXCL12, IL6, and VEGFA

induced by CAFs result in the epithelial-to-mesenchymal

transition (EMT) which can promote peritoneal metastasis of

ovarian cancer (97). 5) CAFs activate MMPs to assist in the

growth, invasion, and metastasis of tumors (98). 6) Lipoma-

preferred partner (LPP) which has been proven to increase the

focal adhesion and stress fiber formation of ECs contributes to

ovarian cancer chemoresistance (99). Therapeutic strategies

targeting CAFs fall into several aspects, one of which involves

TGF-b inhibitors which were shown to improve the overall

survival of EOC in a mouse model with peritoneal metastasis

(100). Imatinib, an inhibitor targeting PDGF-D produced

by fibroblasts was found to suppress ovarian cancer cell

growth (101).

2.3.2 Cancer-associated adipocytes
Cancer-associated adipocytes (CAAs) are documented to

promote stromal reshaping and the invasion of cancer cells

through interacting with ovarian cancer cells in the TME (102).

It has been proven that metastases appear in the omentum which

is made up of adipocytes in most patients with ovarian cancer

(103). Adipocytes secrete various molecules such as metabolites,

MMPs, enzymes and growth factors supporting tumor cell
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progression (104). Furthermore, coculture studies found that

CAAs boost the oxidation of cancer cells, indicating that CAAs

supply energy to maintain the ovarian cancer cells proliferation

(105). Additionally, CAAs produce adipokines that can promote

tumor development. Among them, leptin stimulates the

migration and invasion abilities of ovarian cancer cells

through the JAK/Stat3, PI3K/Akt and RhoA/ROCK pathways

(106). FABP4, a lipid chaperone protein is a key regulator in

ovarian cancer metastasis (107). Molecules including IL-6, IL8

and TNF-a secreted by CAAs have also been proven to aid in the

growth and invasion of breast tumor cells (108). Collectively, the

reciprocation between CAAs and cancer cells results in the

metastasis of tumor cells. Overall, therapeutic strategies

specifically targeting lipid metabolism and transport such as

FABP4 inhibitors in ovarian cancer are full of hope (107).

2.3.3 Endothelial cells
Endothelial cells (ECs) impact the process of cancer growth

and invasion (109). Angiogenesis is known to be a process

regulated by the interplay of angiogenic activators and

inhibitors. During tumor progression, oxygen deficiency and

accumulation of metabolic products lead to hypoxia and acidity

in the TME (110). Hypoxia in the TME induces the production

of hypoxia-inducible factors (HIFs), which promote pro-

angiogenic factors secreted by ECs, thereby promoting

angiogenesis (111). In the course of angiogenesis, factors

produced by cancer cells contain VEGF, platelet derived

growth factor (PDGF), fibroblast growth factor 2 (FGF-2) and

angiopoietins (112). VEGF, a chemokine secreted into malignant
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ascites contributes to the genesis of tumor blood via signaling

with VEGF receptor-2 (113). To stabilize and increase the

maturation of endothelial cell channels, pericytes express

PDGFR-b which can interact with PDGF-B (114).

Furthermore, FGF-2 promotes the production of MMPs,

collagenase and plasminogen activator resulting in

vascularization (115). In addition, FGF expression has been

proven to be responsible for resistance to VEGF targeted

therapies (116). Angiopoietin 1 and 2 (Ang1/2) has been

found to promote the proliferation and survival of ECs via

binding to the Tie-2 receptor (117). Thus, considerable attention

is being paid to exploring therapeutic strategies to block the

angiogenic signaling pathway. Bevacizumab as the most studied

anti-VEGF monoclonal antibody has been demonstrated to

positively increase PFS with cisplatin-based chemotherapy in

several randomized phase III trials and has been recognized as

the standard treatment in EOC (118, 119). Tyrosine kinase

inhibitors (TKIs) such as pazopanib and cediranib are

promising VEGFR targeting agents for ovarian cancer patients

(120, 121). Trebananib, an inhibitor that targets non-VEGF

signaling has meaningful effects on PFS when used in

combination with paclitaxel in recurrent ovarian cancer

through binding to Ang1/2 (122).
3 Novel combination approaches

It is obviously that ICIs have revolutionized immunotherapy

and brought concrete benefits to many patients. However, the
FIGURE 2

Immunoactivated cells in the TME. Immune activated cells include CD8+ and CD4+ T lymphocytes, NK cells and DCs. Th1 cell which is a
subtype of CD4+ T cells express CCL5 to induce DC activation and produce IL-2 and IFN-g to assist CD8+ T cells. CD8+ T cells recognize
antigens expressed on MHC class I on cancer cells leading to the cytotoxic killing of cancer cells via granzymes and perforins. CD8+ T cell
dysfunction is mediated by elevated inhibitory ligand PD-L1 and B7 molecules on cancer cells. NK cell dysfunction mechanisms include (i) PGE2
and IDO derived from CAFs downregulate the expression of activating receptor NKG2D on DCs; (ii) inhibitory ligand PD-L1 and B7 molecules
expressed by cancer cells restrain NK cell function by combining with PD-1 and CTLA-4. The mechanism of impaired DC function includes
(i) overexpression of PD-1 ligands and LAG3 on DCs results in T cell exhaustion; (ii) IL-6, IL-10 and TGF-b produced by cancer cells alter DC
maturation and migration capacity.
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response rate is unsatisfactory with different anti-PD-1 or PD-L1

agents since EOC is known to have a high immunosuppressive

TME and low expression of PD-L1 (8). Novel combination

therapies are currently evolving. Inhibitor of PD-1 in

combination with CTLA-4 increased the frequency of tumor

infiltration by effector T cells as well as uniquely decreased the

frequency of Tregs in tumors (123). Evidence from clinical trials

found that this combination blockade therapy is effective. The

NRG-GY003 study showed that in recurrent epithelial ovarian

cancer, nivolumab combined with ipilimumab led to an effective

response rate of 31.4% while nivolumab alone is 12.2%. In

addition, the mPFS was 2 months in the monotherapy group

and 3.9 months in the combination treatment group (124).

Combining nivolumab with ipilimumab produced higher

response rates and longer PFS in EOC than nivolumab alone,

but is still limited, so more combination clinical studies such as

NCT02834013 and NCT03508570 are underway.

In a mouse model of intraperitoneal ovarian cancer,

compared with single drug therapy of AMD3100 (CXCR4

antagonist) and aPD-1, the antitumor efficacy of combined

therapy in inhibiting tumor growth and prolonging the

survival time of mice was significantly improved (35). This

provides strong preclinical evidence for ovarian cancer

combination therapy, but to date, no clinical trials related to

ovarian cancer have been carried out. It is worth noting that in a

phase IIa trial, disease control with BL8040 plus pembrolizumab

was 34.5% in 29 patients. 22 patients were treated with BL8040

plus pembrolizumab plus chemotherapy. The results exhibited

an effective response rate of 32% and a disease control rate of

77% (125). These data all suggest that the combination of

CXCR4 antagonists and PD-1 inhibitors can amplify the

antitumor effect of chemotherapy.

In recent years, transmembrane protein triggering receptor

expressed on myeloid cells 2 (TREM2) has gained great attention

in anti-PD-1 resistant therapy since its enriched expression on

TAMs in EOC (126). In a model of invasive ovarian cancer in

situ, anti-TREM2mAb therapy can drive effective antitumor

immunity (126). This finding indicates that TREM2 is a

potential immunotherapy target when ICIs are ineffective and

TAMs are rich in the tumor microenvironment. A phase I

clinical trial (NCT04691375) to evaluate the single drug anti-

TREM2 and anti-TREM combined with pembrolizumab in solid

tumors which include ovarian cancer is underway.

Evidence has shown that PD-1 blockade in combination

with a VEGF-A inhibitor can potentiate antitumor efficiency via

increases in CD8+ and CD4+ T cells, and decreases in MDSCs

and Tregs (127, 128). In a single-arm phase 2 clinical study, 38

women with recurrent epithelial ovarian cancer were screened

for intravenous treatment with nivolumab and bevacizumab.

The results showed that the ORR was 28.9%, among which

40.0% were platinum sensitive patients and 16.7% were platinum

resistant patients (129). These data indicate that the combining
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nivolumab with bevacizumab is effective and feasible in ovarian

cancer patients, especially those who are sensitive to platinum.

Poly-(ADP)-ribose polymerase inhibitors (PARPi), known

as synthetic lethal agents in tumors with BRCA1/BRCA2

mutations are rapidly evolving (130). Combining PARPis with

PD-1/PD-L1 blockades is a promising therapy that can

synthetically enhance the antitumor effect (131). A phase II

clinical study of MEDIOLA found that 32 patients received

olaparib combined with durvalumab, and the overall disease

control rate was 81% (132). The final result of the study showed

that the OS of 31 patients treated with olaparib combined with

durvalumab and bevacizumab was 31.9 months compared with

that of 23.2 months in the two-drug group. In addition, the DCR

of the two-drug group at 56 weeks was 9.4%, and that of the

three-drug group was 38.7%, which indicated that the three-drug

treatment mode was superior to the two-drug treatment mode

for platinum-sensitive recurrent non-gBRCA ovarian cancer

patients (133). The three-drug regimen has been applied

to a third-phase clinical study of first-line maintenance

therapy (NCT03737643).
4 Discussion

Immune checkpoint immunotherapy has been the most

prominent therapeutic strategy for successfully treating

different kinds of cancers. However, the response rate in EOC

is low since the immunosuppressive tumor microenvironment

could limit the efficiency of ICIs. It is urgent to improve the effect

of immunotherapy for EOC. Novel targets have been described

and targeting approaches combined with ICs have already

impacted the clinical outcomes of ovarian cancer. Targeting

immune subtypes such as TAMs, Tregs, CAFs or angiogenesis

could contribute to potentiating the antitumor effect of ICs.

However, there are still many details to explore and discuss. In

summary, the constituents within the TME should all be

considered to explore novel combinations that contribute to

achieving maximal benefits in EOC.
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