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Natural killer T cells (NKTs) are an important part of the immune system. Since

their discovery in the 1990s, researchers have gained deeper insights into the

physiology and functions of these cells in many liver diseases. NKT cells are

divided into two subsets, type I and type II. Type I NKT cells are also named iNKT

cells as they express a semi-invariant T cell-receptor (TCR) a chain. As part of

the innate immune system, hepatic iNKT cells interact with hepatocytes,

macrophages (Kupffer cells), T cells, and dendritic cells through direct cell-

to-cell contact and cytokine secretion, bridging the innate and adaptive

immune systems. A better understanding of hepatic iNKT cells is necessary

for finding new methods of treating liver disease including autoimmune liver

diseases, alcoholic liver diseases (ALDs), non-alcoholic fatty liver diseases

(NAFLDs), and liver tumors. Here we summarize how iNKT cells are activated,

how they interact with other cells, and how they function in the presence of

liver disease.
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Introduction

Natural killer T (NKT) cells are a group of innate immune cells first recognized in the

1990s (1). These cells feature surface receptors of both T cells and NK cells (e.g., NK1.1 in

mice or CD161+/CD56+ in humans). The activation and deactivation of NKT cells are

closely tied to our immune activities, such as pathogen elimination, tumor surveillance,

and autoimmune responses (2–4). NKT cells can be divided into two subtypes, namely

type I and type II. Type I NKT cells, usually referred to as invariant NKT (iNKT) cells,

express a semi-invariant mouse Va14-Ja18/Vb8 or human Va24-Ja18/Vb11 T cell-

receptor (TCR) a chain, hence the name. Type I NKT cells are able to recognize lipid

antigens (such asglycosphingolipids, glycerophospholipids, lysophospholipids, and

cholesterol ester) in the context of CD1d, a non-polymorphic MHC class I-like
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molecule (5–8). Researchers have found that the injection of a-
galactosylceramide(a-GalCer) activates type I NKT cells (9).

Type II NKT cells, in contrast, express a relatively diverse range

of TCR receptors, and are reactive to a self-glycolipid sulfatide

(10). Studies preliminarily suggest contradictory functions for

the two types of NKT cells: type I NKT cells are likely pro-

inflammatory, while type II are anti-inflammatory (6, 11). Note

that type II NKT cells have not been broadly studied due to a

lack of distinctive surface characteristics. In this review, we

mainly focus on iNKT cells, with also a few contents talking

about type II NKT cells, and “NKT cells” will stand for iNKT

cells unless otherwise stated.

The liver is a vital part of the human digestive system, and

functions as the center of metabolism and detoxification.

Though not seen as a primary immune organ, the liver is not

to be neglected when we talk about immune reactions. In

addition to parenchymal cells (i.e., hepatocytes), the liver also

hosts non-parenchymal cells, such as liver sinusoidal endothelial

cells, Kupffer cells (macrophages), lymphocytes, and stellate

cells. Interestingly, the liver has the highest NKT cell/

conventional T cell ratio in the body (12), suggesting that this

organ might play an important role in NKT immunology. In this

review, we mainly focus on two points: 1) how NKT cells are

activated, and 2) how NKT cells interact with other cells (e.g.

Kupffer cells, T cells, hepatocytes) in the presence of liver disease.
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NKT-cell activators

Briefly, it is known that NKT cells can be activated by lipid

antigens (especially a-GalCer) (13–15) cytokines (such as IL-2

(interleukin-2) and IL-18) (16–18) chemokines (including

CXCR6) (19), and other substances, but the type and common

characteristics of these NKT stimulators remain poorly

elucidated. Here we summarize three types of molecules that

lead to NKT-cell activation (Figure 1), and briefly discuss their

roles in the process of liver diseases.
a-GalCer and analogues

Previous studies have shown that lipid antigens are

presented to NKT cells through CD1d located on the surface

of dendritic cells. Among all the lipid antigens, a-GalCer (also
known as KRN7000), a synthetic component, is the first to be

experimentally confirmed to potentiate NKT cells, both in vitro

and in vivo (5, 13, 14).This glycolipid was discovered in an

extract of the marine sponge Agelasmauritianus, and its effect on

NKT in both in vitro and in vivo activation is widely reported.

After a-GalCer administration, there are detectable increases in

the number of NKT cells (15)and NKT-derived cytokines (14)

(TNF (tumor necrosis factor), IFN-g (interferon-g), IL-12, etc.)
FIGURE 1

Activators of NKT cells. a-Galcer and some of its analogues (e.g.ThrCer, a-GalCer-diol, 6′-modifed a-GalCer analogues), iGb3, and LPS are
among lipid antigens proven to activate NKT cells via the CD1d-dependent pathway; interleukins such as IL-2, IL-12, IL-15, IL-18, IL-21, and IL-
33 promote NKT cells by binding directly to their interleukin receptors; CC/CXC/CX3C chemokines are associated with the recruitment and
proliferation of NKT cells, with non-exclusive matches with their receptors that come in the form of GPCRs. Also, a-Galcer and some
interleukins may also lead to activation-induced apoptosis of NKT cells. a-GalCer, a-galactosylceramide; ThrCer, threitolceramide; iGb3,
isoglobotrihexosylceramide; LPS, lipopolysaccharide; IL, interleukin.
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as well as a degranulation marker (CD107a) (20), and symptoms

of experimental animals improve or worsen accordingly (21, 22).

Some researchers have also proposed an a-GalCer-based
therapy for infection and autoimmune diseases (23, 24), but

this proposal has been met with the opposing argument that

administration of a-GalCer is also likely to induce hepatocyte

damage (15)and NKT-cell anergy (25).

In many types of liver diseases, administration of exogenous

a-GalCer changes their pathophysiological process. For

example, a-GalCer-induced NKT activation is responsible for

exacerbation of ALDs (26). The anti-tumor activity of a-GalCer
in the liver is also demonstrated in mice experiments (27).

Interestingly, in the mouse model of CCl4-induced acute liver

injury, natural activation of NKT cells ameliorates liver damage

and inflammation, possibly by suppressing HSC (hepatic stellate

cell) activation, while a-GalCer-induced NKT activation

accelerated acute liver injury, inflammation and fibrosis (28).

Considering its dual effects on liver diseases and hepatic toxicity,

further trial of a-GalCer is needed before clinical use.

Furthermore, analogues of a-GalCer are studied for their

potential to activate NKT cells. In 2008, Jonathan D. Silk et al.

(29)reported that threitolceramide- (ThrCer-) induced

activation of NKT cells. In addition, researchers have managed

to createa-GalCer analogues artificially, including a-GalCer-
diol (with added hydroxyl groups in the acyl chain compared to

a-GalCer, Juan Ma et al., 2020) (30)and6′-modified a-GalCer
analogues (Matthias Trappeniers et al., 2008) (31). Hopefully,

with careful design, these analogues will be applicable as

preventative and therapeutic vaccine adjuvants (32, 33).

However, it is worth noting that not alla-GalCer analogues
have the potential to activate NKT cells. For instance, in 2005,

Jochen Mattner et al. (8)found that injection of a-
glucuronosylceramide (PBS 30) or galacturonosylceramide

(PBS 59) in mice led to the proliferation of NKT cells, but b-
glucuronosylceramide (PBS 50) did not.

Other lipid antigens that activate NKT cells include

glycosphingolipid isoglobotrihexosylceramide (iGb3), an

endogenous antigen synthesized in the endoplasmic reticulum

(ER) and Golgicomplex (34, 35), and bacteria-derived

lipopolysaccharide (LPS), a ligand for Toll-like receptor 4
Frontiers in Immunology 03
(TLR4) expressed on NKT cells, which corresponds with the

roles that NKT cells play during exogenous infection (8, 36, 37).
Interleukins

Interleukins are a group of cytokines that are partially

secreted by NKT cells, and some of them have biological

effects on NKT cells. In brief, interleukins can activate NKT

cells include IL-2, 12, 15, 18, 21, 27, and 33 (Table 1).

Interleukins activate NKT cells by binding to receptors on

the cell surface, and many of the working mechanisms of

functioning interleukins remain elusive. Activated NKT cells

secrete large amounts of Th1/Th2 cytokines, which could be

modulated by administration of the interleukins mentioned

above, indicating that these interleukins have a profound

impact on NKT-cell activation.

IL-2 is found effective for stimulating NKT cells both in vitro

and in vivo inmany studies focused onmice. Co-administration of

IL-2, 12 and 18 results in a stronger ability of NKT cells to secrete

IFN-g (38). Small amounts of IL-2 cDNA (complementary DNA)

increases the number of NKT cells in vivo (39), and potentiates the

effect of a-GalCer (50). Also, studies found that IL-2 enhances the
effect of NKT activation by a-GalCer, but administration of IL-12

alone is not enough to potentiate NKT cells (40). In addition,

exogenous IL-2 and/or IL-15 partially overcome the

hyporeponsiveness of iNKT cells in chronic HBV patients (51).

Murine models showed that IL-15, partly from Kupffer cells,

facilitates the proliferation and maintain the homeostasis of NKT

cells (42, 43). IL-15 can potentiate the a-GalCer-stimulated NKT

expansion (40). Some researchers have found that IL-15-related

NKTactivation is associatedwith theNF-kBsignalingpathway, but
the exactmechanismremains controversial.VallabhapurapuSet al.

claimed that IL-15-relatedNKT activation is dependent on theNF-

kB signaling pathway, because they found that RelA, a member of

Rel/NF-kB family, controls IL-15 signaling by regulating IL-15Ra
chain and gC chain, and deficiency of RelA blocks NKT activation

by administration of IL-15 (44). However, Locatelli I et al. believed

NF-kB deficiencymight stimulate NKT recruitment by promoting

IL-15 activity (45).Mice experiments showed that the IL-18/IL-18R
TABLE 1 Reported interleukin-induced NKT cells activation.

Interleukins Mechanism Effects References

IL-2 No data found Increased number of NKT cells and enhanced secretion of IFN-g (38–40)

IL-12 No data found Enhanced Th1 responses (41)

IL-15 NF-kB signaling Enhanced proliferation and homeostasis (40, 42–45)

IL-18 NF-kB signaling Enhanced Th1 and Th2 responses (16–18)

IL-21 Autocrine Enhanced Th2 responses (46, 47)

IL-27 Modulate IL-12 secretion of DCs Enhanced maintenance and recruitment of NKT cells (48)

IL-33 IL-33/ST2L interaction Enhanced secretion of IFN-g and FasL expression (49)
fr
ontiersin.org

https://doi.org/10.3389/fimmu.2022.1035950
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gu et al. 10.3389/fimmu.2022.1035950
(IL-18 receptor) axis functions via a rapid NF-kB signaling

pathway, directly enhancing IL-4 production by NKT cells.

Unlike IL-12,which mainly promotes Th1 response (41), IL-18

stimulates Th1 and Th2 responses simultaneously (16–18); hence

the two kinds of cytokines are sometimes co-administered for their

combined activation effects (52). Also, we would like to point out

that continuous stimulation of IL-18 may result in impaired long-

term NKT activation, which is important during clinical practice.

Intriguingly, we noticed an autocrine phenomenon with

regard to IL-21, namely that not only does IL-21 enhance the

survival of NKT cells, it is also secreted by NKT cells after CD3

and CD28 administration. NKT cells activated by IL-21 exhibit

higher granzyme and IL-4 expression (46). Some researchers

also report witnessing less IFN-g and TNF production by NKT

cells, indicating that IL-21 leads to “Th1 to Th2” cytokine

transformation (47), though this conclusion needs more

support. Moreover, a-Galcerhas been found to coordinate

with interleukins, including IL-18 and IL-21 (17, 46).

IL-27 and IL-33 also contribute to activation of NKT cells.

IL-27 modulates IL-12 secretion of dendritic cells, thus indirectly

enhancing maintenance and recruitment of NKT cells (48). IL-

33 binds with ST2L (the suppressor of tumorgenicity 2 ligand,

and also the receptor of IL-33) on NKT cells to promote IFN-g
secretion as well as FasL expression (49).

Some researchers have studied the functions of interleukins

on liver NKT cells and examined them as possible treatment

methods. For example, administration of IL-18 potentiates the

cytotoxicity of hepatic NKT cells in a perforin-dependent way

(53). Co-administration of IL-12 and IL-18 triggers higher IFN-g
release from NKT cells than either administered alone, which

demonstrates a higher efficiency for killing liver tumors (54).

However, extra work is urgently needed to investigate the effects

of interleukins on hepatic NKT cells and their clinical values.
Chemokines

The chemokine superfamily was first discovered in the late

1980s to play a role in inflammation. The protein superfamily

consists of four groups, namely XC, CC, CXC, and CX3C, a
Frontiers in Immunology 04
categorization based on the discrete location of cysteine residues

on the initial sequence of the molecules. Chemokine receptors

are defined as a group of seven transmembrane-spanning G-

protein-coupled receptors (GPCRs), having no one-on-one

match with their ligands (55–57). Chemokines are tightly

associated with the maturation and localization of NKT cells.

The effective ligands and receptors are summarized in Table 2.

Of the four chemokine subgroups listed in Table 2, XC and

CX3C have seldom been studied since their discovery; thus,

there are very few articles concerning their functions on NKT

cells. XC, interestingly, has not been reported so far to potentiate

NKT cells. In contrast, CX3C1/CX3CR1 is considered to take

part in NKT-cell trafficking within the thymus, but this function

may not be of vital importance as CX3CR1-deficient mice do not

show NKT-cell developmental disability (67). Also, some

researchers hold opposing views on the NKT-cell-activating

function of CX3C1/CX3CR1 (68). However, CX3CR1

expression on the cell surface can be utilized to define NKT

subtype present in the thymus and peripheral organs (67).

Unlike XC and CX3C, the functions of the other two

subgroups are known in more details. In mice models, CCL2,

also known as MCP-1, recruits NKT cells to peripheral organs

such as the spleen (58) and exerts an anti-inflammatory effect by

interacting with CCR2 to prevent IL-4 secretion of NKT cells,

which demonstrates a hepatoprotective effect in the liver (59).

CCL3 and CCL4, secreted by activated dendritic cells, also

attract NKT cells. This effect is accompanied by CXCR3

ligands (CXCL9-11) which derive from the same dendritic

cells (61). CCL4 has also been found to induce distinct

chemotaxis in different NKT subgroups, attracting CCR5-

expressing cells in particular (69). Lack of CCR5 in mice

promotes fulminant liver failure because of exacerbated

inflammatory responses related to a higher amount of IL-4

from NKT cells that fail to go through apoptosis after

activation (62), suggesting a role for CCR5 in NKT-cell

regulation. Another CC chemokine receptor on NKT cells

surface is CCR1, which together with CCR5 recognizes ligands

that come from activated macrophages and dendritic cells (60).

The last type, CXC, is the most comprehensively studied at

present, especially CXCR6 and its ligand CXCL16. In short,
TABLE 2 Different chemokines on NKT cell activation/inactivation.

Chemokine subgroups Ligands/Receptors Functions References

XC No data found No data found /

CC CCL2/CCR2 Suppress NKT cells (by recruiting NKT cells to spleen and preventing IL-4 secretion) (58–60)

CCL3/unknown Recruit NKT cells (61)

CCL4/CCR5 Recruit NKT cells; activation-induced apoptosis (61, 62)

Unknown/CCR1 Recruit NKT cells (60)

CXC CXCL16/CXCR6 Recruit NKT cells; promote IFN-g and IL-4 secretion of NKT cells (63–65)

CXCL13/CXCR5 Suppress NKT cells (66)

CX3C CX3C1/CX3CR1 Enhance NKT cells trafficking; define NKT sublineages (67)
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CXCR6/CXCL16 functions on the distribution rather than

maturation of NKT cells. Animal research shows that CXCR6

expression of NKT cells is elevated upon NKT-cell activation,

but is not indispensable for NKT-cell development within the

thymus, as CXCR6-challenged mice do not show reduced

numbers of thymic NKT cells. However, CXCR6 is closely

related to localization of NKT cells because of its interaction

with CXCL16, which resides on target organs such as the spleen

and liver (70). As a result, CXCR6-deficient mice possess fewer

NKT cells in their livers, making them more susceptible to

infection (63, 70). The CXCR6/CXCL16 reaction boosts IFN-g
and IL-4 release from NKT cells, enhancing inflammatory

response (64, 65). In particular, CXCR6/CXCL16 is involved

in many liver diseases. For example, CXCR6/CXCL16

expressions greatly increase during liver inflammation (71).

Hepatocytes produce CXCL16 in non-alcoholic fatty liver

disease (NAFLDs), which ameliorates inflammation and

fibrosis (72, 73). In contrast, CXCR5, along with its ligand

CXCL13, is reported to reduce NKT-cell activation (66).
The relationship between NKT cells
and other cells in liver disease

In the liver, NKT cells have close connections with other

cells including hepatocytes (normal liver cells), dendritic cells,

macrophages (Kupffer cells), T cells, and B cells, and are able to

regulate their functions during innate and acquired immune

reactions. This connection is achieved through either direct

contact or secretion of cytokines. Evidence shows the

significance of this connection because changes in how NKT

cells interact with other cells can be found in liver disease and

may lead to severe dysfunction of the organ. Here we summarize

the ways in which NKT cells coordinate with other liver-

resident cells.
NKT cells and hepatocytes

As mentioned above, NKT cells are activated by lipid antigens

through CD1d molecules which, in the liver, are expressed on

macrophages, dendritic cells, and hepatocytes. CD1d then presents

the antigens to the TCR on NKT cells. A decrease in CD1d on

hepatocytes results in dysfunction of NKT cells (74). Some studies

based on HBV transgenic mice find that during liver diseases such

as HBV infection, CD1d expression is elevated on injured

hepatocytes, rather than macrophages (75). Meanwhile,

hepatocyte-derived IL-7 is also important in the maintenance of

NKT cells, which indicates that hepatocytes play a role in the

development and maintenance of the immune system (76).

NKT cells attack hepatocytes by expressing FasL, perforin,

and granzymes, but their main effects on hepatocytes are

achieved by producing Th1 cytokines, especially TNF-a and
Frontiers in Immunology 05
IFN-g. Upon activation, NKT cells start to release more TNF-a
that directly interacts with TNF receptor 1 (TNFR1)expressed

on hepatocytes, on which this molecule has a dual effect, either

promoting hepatocyte death or regeneration indifferent contexts

(77). Increased level of NKT-derived TNF-a is responsible for

exacerbation of a-GalCer-induced liver damage (26). However,

in mice that underwent partial hepatectomy, TNF-a promotes

regeneration of hepatocytes (78). The interactions between NKT

cells and hepatocytes are also tightly associated with a wide range

of liver diseases. For instance, in autoimmune liver diseases,

NKT cells release death signals to hepatocytes through FasL

pathway, and secrete TNF-a, perforin and granzymes in

synchronization, promoting the process of autoimmune liver

diseases (79). In ALDs, NKT cells also play the role of killing

hepatocytes (80). In 2014, Monika Julia Wolf et al. (81)found

that TNFSF14 (TNF superfamily 14, also referred to as LIGHT)

secreted by NKT cells is responsible for enhanced lipid uptake of

hepatocytes as well as liver damage, causing an enhanced

possibility of NAFLDs in mice (Figure 2A).

IFN-g expression is also increased in activated NKT cells.

During HCV infection, IFN-g induces liver sinusoidal

endothelial cells to produce CXCL9 and CXCL10 that bind to

and recruit CXCR-positive T cells. As a result, more T cells start

to locate in the infected liver and negatively affect hepatocytes

(82). Moreover, IFN-g stimulates hepatocytes to express a higher

number of Fas, causing liver cell apoptosis after binding with

FasL on NKT cells (Figure 2B) (83).
NKT cells and B cells

The interactions between NKT cells and B cells mainly lead

to strengthened capacity of B cells. Animal research suggested

that CD1d loaded with lipid antigens from B cells surface is a

source for NKT-cell activation (84, 85). In return, NKT cells

offer helper signals for B cells by expression of CD40L and

CD28, which bind to CD40 and CD80/86, respectively, on B cells

(86). Secretion of IL-21 (87) and IFN-g (86) also play a role in B-

cell activation. In addition, NKT cells can indirectly enhance B

cells by communicating with dendritic and CD4+ T cells (84, 85,

88). Interestingly, stimulation of NKT cells also leads to

recruitment of regulatory B cells to the liver that suppress

inflammation (Figure 2C) (89). However, up to now, it

remains poorly studied how the interactions between NKT

and B cells contribute to the pathogenesis of hepatic diseases.
NKT cells and macrophages (Kupffer
cells)

The interaction between NKT cells and macrophages is

relatively complex as it involves multiple surface and secreted

molecules. As one of the main APCs in the liver, macrophages
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(Kupffer cells) connect with NKT cells in a CD1d-restricted

manner. The CD1d molecule located on the surface of Kupffer

cells presents exogenous lipid antigens to TCR on NKT cells,

leading to NKT-cell activation (90).

Another pivotal means of Kupffer/NKT interaction is

through the LFA-1/ICAM-1 pathway. LFA-1 (lymphocyte

function-associated antigen 1) and ICAM-1 (intercellular

adhesion molecule 1) are resident on the surface of Kupffer

cells and NKT cells, respectively, and bind to each other with

high affinity. Aside from NKT-cell activation, Kupffer cells are

also reported to show quicker iNOS (inducible nitric oxide

synthase) and NO synthesis, indicating mutual activating

functions between NKT cells and Kupffer cells (91). Notably,

over-stimulation of NKT cells by Kupffer cells can result in

activation-induced apoptosis and necrosis of NKT cells (90). Signal

regulatory protein a (SIRPa) on Kupffer cells binding to CD47 on
NKT cells also enhances the function of NKT cells (92).
Frontiers in Immunology 06
Kupffer cells secrete many types of cytokines that have

biological functions on NKT cells, mostly different

interleukins. Kupffer-cell-derived IL-12, IL-1b, and IL-15 are

thought to recruit NKT cells, promote NKT-cell activation, and

participate in the maintenance of NKT cells (42, 93–95). AIM

(“apoptosis inhibitor expressed by macrophages”, also referred

to as CD5L), a protein that is normally considered to inhibit

apoptosis of CD4+CD8+ double-positive thymocytes, is secreted

by Kupffer cells to protect NKT cells from apoptosis (96). On the

other hand, NKT cells are capable of producing large quantities

of pro-inflammatory IL-4 and IFN-g, which are associated with

granuloma formation around infected Kupffer cells (97).

In conclusion, we believe the relationship between NKT cells

and Kupffer cells is reciprocal, enhancing both NKT and Kupffer

cells (Figure 2D). In hepatic diseases like inflammation (93, 98),

alcoholic liver injury (94) and infection (92), the interactions

between Kupffer cells and NKT cells play an indispensable part.
B

C

DE

A

FIGURE 2

Interactions between NKT cells and hepatocytes, dendritic cells, Kupffer cells, and B cells. (A) Hepatocytes present lipid antigens to TCR on NKT
cells via the CD1d-dependent pathway; hepatocytes release IL-7 to activate NKT cells; NKT cells secrete TNF-a that has dual functions on
hepatocytes; NKT cells express FasL and induce Fas expression on hepatocytes, leading to apoptosis of hepatocytes. (B) NKT cells secrete IFN-g
to recruit T cells to kill hepatocytes. (C) B cells present lipid antigens to NKT cells through CD1d; NKT cells and B cells contact each other
directly through CD40L/CD40 and CD28/CD80, 86; NKT cells secrete IL-21 and IFN-g to promote B cells. (D) Kupffer cells present lipid antigens
to TCR on NKT cells via the CD1d-dependent pathway; Kupffer cells express LFA-1 and SIRPa, which bind with ICAM-1 and CD47, respectively,
on NKT cells to activate NKT cells; Kupffer cells secrete IL-12, IL-1b, IL-15, and AIM to recruit and promote NKT cells; NKT cells in return
produce pro-inflammatory IL-4 and IFN-g to function on Kupffer cells. Notably, over-stimulation of NKT cells by Kupffer cells leads to apoptosis
of NKT cells. (E) Dendritic cells (especially myeloid dendritic cells, mDC) present lipid antigens via CD1d towards NKT cells to activate NKT cells;
dendritic cells secrete IL-27 and IL-12 to activate NKT cells; NKT cells express CD40L to bind with CD40L and reciprocally benefit dendritic
cells. mDC, myeloid dendritic cells; IL, interleukin; TNF, tumor necrosis factor; IFN, interferon; SIRP, signal regulatory protein; LFA, lymphocyte
function-associated antigen; ICAM, intercellular adhesion molecule; AIM, apoptosis inhibitor expressed by macrophages.
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NKT cells and dendritic cells

As a type of APC, dendritic cells participate in lipid antigen

(such as a-Galcer) presentation via CD1d towards NKT cells,

which leads to NKT-cell activation (99, 100), just like hepatic

macrophages do. Dendritic cells also secrete cytokines including

IL-27 (48) and IL-12 (101) that both have a positive impact on

NKT cells. Notably, only myeloid dendritic cells (mDC), not all

dendritic cells, mediate activation of NKT cells, whereas

plasmacytoid dendritic cells (pDC) are likely to cause

tolerance of NKT cells in a way concerning the activation of

type II NKT cells (6). In addition, NKT cells also function as

promoters of dendritic cells by expressing CD40L that binds

with CD40 on the surface of dendritic cells, forming a reciprocal

activating loop (5, 101). It has been observed that dendritic cells

respond to TLR stimulation more actively in the presence of

NKT cells (Figure 2E) (102, 103).

The positive influence of dendritic cells on NKT cells might

provide an insight into treatment of liver diseases. In 2007,

Tomohide Tatsumi et al. (104)demonstrated with mice models

that a-GalCer-pulsed dendritic cells suppressed liver tumor by

activating NK cells, and they proposed that NKT cells might also

take a part. Hopefully, future research might provide a more

explicit answer.
NKT cells and T cells

T cells consist of a wide range of different cell subgroups

including CD8+ T cells, CD4+ T cells, and regulatory T cells

(Tregs), each having distinct immune bioactivity.

The interaction between NKT cells and CD8+ T cells seems

confusing as researchers have obtained contradictory experimental

results. Some people believe NKT cells boost CD8+ T cells just like

they do CD4+ T cells, via CD40/CD40L signaling and secretion of

cytokines such as IL-4 and IL-13. Activated CD8+ T cells then

secrete IFN-g, a pro-inflammatory cytokine (105, 106). However,

other researchers have discovered an inhibitory effect of NKT cells

on CD8+ T cells in animal experiments. IFN-g secreted by activated
CD8+ T cells allows NKT cells to produce IL-4 and IL-13, which in

turn inhibit CD8+ T cell activity by harassing their chemotaxis to
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CCL5. Also, NKT cells indirectly suppress CD8+ T cells by

potentiating regulatory T cells (Tregs) (107).

The effects of NKT cells on CD4+ T cells are mainly positive,

leading to enhanced IFN-g secretion (105, 108). Normally, CD4+

T cells are the main producers of IL-10, a cytokine that has anti-

inflammatory effects, but their IL-10 secretion is profoundly

inhibited after activation from NKT cells (105). This indicates

that activation of CD4+ T cells by NKT cells may be pro-

inflammatory. Dendritic cells are also said to participate in

NKT/T crosstalk, enhancing both CD4+ and CD8+ T cells

(106). Moreover, NKT-cell-induced Treg activation plays an

important role in the depletion of CD4+ T cells (109).

Regulatory T cells (Tregs), on the other hand, are a special

subgroup of T cells that can suppress immune reactions. Some

studies show a negative feedback relationship between NKT cells

and Tregs. Activated NKT cells stimulate activation of Tregs by

secreting higher amounts of cytokines such as IL-2, IL-10, and

TGF-b. Tregs then suppress the proliferation and functions of

NKT cells, reducing their cytotoxic activity. Interestingly, the

inhibitory effects of Tregs on NKT cells are achieved in a CD1d-

dependent manner that requires direct cell-to-cell contact (110,

111), rather than TGF-b and IL-10, as the suppression of NKT

cells continues even after neutralization of the two cytokines

(109, 111). This feedback mechanism is likely to prevent over-

stimulation of NKT cells and the disastrous cascade immune

reactions that could ensue (see Table 3 and Figure 3).

The interactions between NKT and T cells play a pivotal role

in liver diseases. For example, during HBV infection in a

transgenic mouse model, NKT cells promotes the proliferation

of HBV-specific CD8+ T cells (112), and blockade of NKG2D

expression prevents hepatitis induced by T cells (113). These

results respond with the investigation which found that HCV-

specific T cell response comes in accordance of NKG2D expression

on NKT cells in healthcare workers who were exposed to small

amounts of HCV but showed no obvious liver damage (114). In

autoimmune liverdisease andNAFLDs,NKTcells contribute to the

recruitment of T cells, and potentiate their biological functions (79,

115, 116). As a result, NKT cells are considered as a factor for

exacerbation of these two diseases. However, in autoimmune liver

diseases, NKT cells promote the activation of Tregs, which

ameliorates the killing effect of T cells (117).
TABLE 3 Interactions between NKT cells and different subgroups of T cells.

T cell subsets Interaction with
NKT cells

Results on T cells Results on NKT cells References

CD8+ T cells CD40/CD40L, IL-4, IL-
13

Enhanced IFN-g secretion, inhibited chemotaxis to CCL5 Enhanced IL-4 and IL-13
secretion

(105–107)

CD4+ T cells CD40/CD40L, IL-4, IL-
13

Enhanced IFN-g secretion, reduced IL-10 secretion Decreased suppression of IL-10
on NKT cells

(105, 106,
108)

Regulatory T
cells (Treg)

Cell-to-cell contact Enhanced secretion of IL-2, IL-10 and TGF-b (which functions
negatively on CD8+ and CD4+ T cells)

Impaired proliferation (110, 111)
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NKT cells and other cells

Besides hepatocytes, dendritic cells, macrophages (Kupffer

cells), T cells, and B cells, hepatic NKT cells also have close

relationship with neutrophils, hepatic stellate cells, and NK cells.

These interactions have a significant influence in modulating

inflammation as well as immune tolerance, and play a role in the

processes of liver cirrhosis and cancerous proliferation. We

outline these cell interactions as follows.

NKT cells secrete IL-4 to recruit and promote accumulation of

neutrophils, thus enhancing hepatitis and liver fibrosis (115, 118).

Additionally, NKT-cell-derived IFN-g acts as a potent suppressor of
neutrophils by inducing apoptosis (118). This may be to prevent

over-activation of pro-inflammatory responses.

HSC activation is among the causes of liver fibrosis as it

enhances synthesis and accumulation of collagen and

extracellular matrix (119). NKT cells can either have a

stimulatory or inhibitory effect on HSCs. Normally, NKT cells

enhance the growth of HSCs via Hh (Hedgehog) signaling

pathway and secreting OPN (osteopontin) (81, 120, 121), but

under certain circumstances NKT cells induce HSCs apoptosis

via FasL (122). (See 4.3”alcoholic liver diseases (ALDs)” and

4.4”non-alcoholic fatty liver diseases (NAFLDs)”).
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Generally, NKT cells are considered to enhance the

activation of NK cells. Tomonori Iyoda et al. (123)found

activated NKT cells induce NKG2D and DNAM-1 (also

known as CD226) expression on NK cells that are necessary

for the anti-tumor effects of NK cells. NKT-cell activation also

leads to improved cytokine production (e.g IFN-g) and killing

activity of NK cells through the mTOR (mechanistic target of

rapamycin) pathway, which brings about enhanced anti-

pathogen capacity (124, 125). However, some researchers have

also reported an inhibitory effect of NKT cells on IFN-g secretion
of NK cells after alcohol intake (126).
NKT cells in liver diseases

Given all the functions of NKT cells on other cells within the

liver, it is easily deduced that NKT cells make an enormous

contribution to the pathogenesis and progression of many kinds

of liver disease ranging from autoimmune hepatitis to hepatoma.

With more insights into how NKT cells work in these diseases,

hopefully new methods to treat or cure liver diseases will be

discovered. For example, tazarotene, a RAR-g (retinoic acid

receptor-g) agonist that inhibits NKT-cell proliferation, as well
FIGURE 3

NKT cells interact with CD8+ and CD4+ T cells through CD40/CD40L and secretion of IL-4 and IL-13. The main functions of NKT cells on CD4+ T
cells are stimulatory, while on CD8+ T cells they are both stimulatory and inhibitory, as NKT cells can harass their chemotaxis. NKT cells potentiate
Tregs by secreting IL-2, IL-10, and TGF-b; Tregs have a negative impact on CD8+ and CD4+ T cells as well as NKT cells. IL, interleukin; TGF, tumor
growth factor; Treg, regulatory T cells.
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as cytokine release, is tested in mice for treatment of liver

steatosis and fibrosis (127). Below, we discuss how NKT cells

play their role in autoimmune liver diseases, alcoholic liver

diseases (ALDs), non-alcoholic fatty liver diseases (NAFLDs),

and liver tumors.
HBV and HCV infection

HBV and HCV infections are two important reasons for

liver damage all across the world, affecting approximately 250

million (128) and 80 million (129) people respectively. Thus,

research aimed at fighting against viral hepatitis has become a

global task. In this chapter, we will review the roles that NKT

cells play during the pathophysiological process of HBV and

HCV infection.

During HBV infection, hepatocytes that are invaded by virus

wouldpresent lipidantigens,namely lysophosphatidylethanolamine,

to NKT cells via CD1d (130). This leads to NKT activation, causing

an elevated amount of IFN-g, which mediates anti-viral effects (131)

but also results in liver damage (132) in mice models. IFN-g inhibits
the proliferation of hepatocytes by inducing apoptosis andnegatively

regulating cell cycle (75). In addition, NKT cells inhibit HBV by

promoting the activation of cytotoxic T lymphocytes (CTL) (112).

BlockadeofNKG2D is found to ameliorate acuteHBVhepatitis both

in vitro and in vivo (113). In a retrospective investigation in 2009,

India, researchers found that the amount of NKT cells is smaller in

fulminant HBV liver failure than acute HBV patients, indicating the

role thatNKTcellsplay in limitingHBVinfection(133).Notably, any

factors thathinder thepresentationof lipid antigens ofhepatocytes to

NKTcells, such as deficiency ofNKTcells orCD1dor dysfunctionof

ER-associated lipid transfer, would result in a delayed anti-viral

reaction (130).

However, data collected from clinical patients demonstrated

that there is a decreased density (134) and down-regulated

function (135) of NKT cells for chronic HBV infection

compared to acute HBV infection. Both animal and human

studies suggested that NKT cells are associated with over-

activation of HSC and excessive healing during HBV infection,

which increases the possibility of liver cirrhosis (136, 137).

Moreover, the number of NKT cells is positively correlated

with the quantity of HBV during chronic HBV infection, and

a decrease in NKT number is witnessed after effective anti-viral

treatment. This indicates NKT density as a potential marker for

evaluating anti-HBV treatments (138).

To this day, plenty of novel NKT-related treating methods of

HBV have been experimented on cells or clinical trials. For

example, a-GalCer was found to inhibit HBV replication by

directly activating NKT cells in mice (131), but clinical trials

showed pessimistic results, as administration of a-GalCer alone
even decreases NKT density and does not influence density of

HBV DNA (139). Also, the function of a-GalCer on NKT

activation decreases during chronic HBV infection, but this
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phenomenon is partly reversible after administration of

exogenous IL-2 and/or IL-15 (51). Other ways to activate

hepatic NKT cells and inhibit HBV replication include IL-18

(140), thymosin-a1 (141), b-glycosphingolipids (142), CD28/

CD80 (143) activation and PD-1/PD-L1 blockade (143), but

these methods have not received clinical confirmation yet.

NKT cells also participate in the process of HCV infection.

Elevated expression of CD1d on infected biliary cells promotes

the activation of NKT cells (144), leading to secretion of

cytokines including IL-4 which recruits T cells and perforin

and granzyme which mediate liver damage (145). Notably, some

researchers claimed that the number of NKT cells in peripheral

blood decreases in patients infected with HCV (146, 147), but

more researchers did not find significant changes in number of

NKT cells (148–150), although hepatic NKT cells showed

enhanced activity (147), producing a higher amount of IL-13

that has a pro-Th2 effect (150). The functions of NKT cells

during HCV are associated with macrophages and T cells.

Macrophages (Kupffer cells) in the liver secrete significantly

more IL-15 that boost NKT activation (95). In healthcare

workers who were continuously exposed to small amounts of

HCV but did not develop symptoms, NKT cells were found to be

activated in a way related to specific T cells activation, indicating

the protective effect of NKT cells against HCV is partly

associated with T cells (114). In patients with chronic HCV,

the sustained response to IFN plus ribavirin therapy is associated

with elevated dynamism of NK and NKT cells, suggesting NKT

cells play a vital role in anti-HCV reaction (151). In addition, in

pregnant women infected by HCV, density of NKT cells increase

in placenta tissues, which is thought to be responsible for

preterm birth (152).

Preclinical studies proposed novel NKT-related anti-HCV

therapy including the administration of IFN-a (153) and IL-2/

OKT3 (a CD3-specific mAb) (154), which leads to NKT

activation and up-regulated IFN-g expression that inhibit virus

replication in mice. Moreover, a clinical trial experimented oral

administration of hepatocyte-extracted proteins and HBV or

HCV proteins to figure out their anti-viral functions in chronic

HBV or HCV patients. Results showed that all patients

experienced increased number of NKT cells for at least 2-fold,

and histological necro inflammatory score improved in 4/13

(30.7%) and 2/12 (17%) patients of HBV and HCV,

respectively (155).
Autoimmune liver diseases

There are three main types of autoimmune liver disease,

namely autoimmune hepatitis (AIH), primary biliary cirrhosis

(PBC), and primary sclerosing cholangitis (PSC), which are

associated with destruction of hepatic parenchyma, small

intrahepatic bile ducts, and large bile ducts, respectively. Liver

NKT cells primarily reside in liver sinusoids. Numerous studies
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have found that NKT cells are closely associated with all three

types of autoimmune disease (79, 115, 117, 156).

Interestingly, liver NKT cells can either promote or combat

autoimmune liver diseases depending on their down-stream

target cells (Table 4). Besides, NKT cells promote the

development of hepatocyte injury in three ways (1): NKT cells

directly kill hepatocytes by expressing FasL and secrete TNF-a,
perforin and granzyme B; (2) NKT-derived IFN-g induces Th0-
cell transduction into Th1 cells and CD8+ T-cell transduction

into CTLs that bind to the MHC I molecule on the surface of

hepatocytes; (3) NKT cells secrete IL-4 that turns Th0 cells into

Th2 cells, enhancing B-cell-producing autoimmune antibodies

(79). Furthermore, TNF-a and IFN-g are involved in

recruitment of functional T cells, and IL-4 probably promotes

neutrophil infiltration within the liver (115). NKT cells are also

potent activators of Tregs, which have a negative effect on

immune response, thus mitigating autoimmune liver injury

(160). Statistics show that simultaneous suppression of NKT

cells and promotion of Tregs is helpful for mitigating

autoimmune liver injuries in experimental animal models (161).

Apart from inflammation, NKT cells are likely to play a role

in liver fibrosis resulting from autoimmune liver diseases. IL-4

and IL-13 from activated NKT cells promote liver fibrosis,

suggesting a role for NKT cells in cirrhosis resulting from
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chronic autoimmune liver injury (77). However, this

fibrinogenic effect requires further examination (115).

Given the roles that NKT cells play during autoimmune liver

diseases, researchers have been experimenting on modulating NKT

cells to find treatments for the disease. In recent years, several

substances have been found effective in mice for alleviating

concanavalin A (Con A)-induced autoimmune hepatitis partly by

inhibiting NKT cells and related production of inflammatory

cytokines, including mitochondrial-targeted ubiquinone(MitoQ)

(162), diammonium glycyrrhizinate (161) and secoemestrin C (163).

Gene modulation such as C6orf120 knockout (164) is also used as a

therapeutic target. However, these experiments were only done on

mice, and lack of clinical statistics limits extensive application.

Other studies also suggested the role that type II NKT cells

plays in autoimmune liver diseases. The number of type II NKT

cells was up-regulated in both peripheral blood and liver during

autoimmune liver diseases (165). Increased CD1d expression on

T cells during autoimmune liver diseases results in activation of

type II NKT cells and favors Th1 cytokine production over Th2

within type II NKT cells (166). It is important to understand the

physiology of type II NKT cells as they might influence iNKT

cells. For example, Ramesh C. Halder et al. reported that

activation of type II NKT cells and pDCs are associated with

recruitment of anergic iNKT cells (167).
TABLE 4 Functions of NKT cells in autoimmune liver diseases, alcoholic liver diseases (ALDs) and non-alcoholic fatty liver diseases (NAFLDs).

Disease type Role of NKT Mechanisms References

HBV Inhibitors of HBV replication Inhibit hepatocyte proliferation (by secreting IFN-g that induces apoptosis and
negatively modulates cell cycle)

(131, 132)

Promote the activation of CTL (112)

Destructive factors Cause liver damage (132)

Cause over-activation of HSCs and excessive healing, promoting cirrhosis (136, 137)

HCV Inhibitors of HCV replication Death of infected liver cells (by perforin and granzyme) (145)

Recruit and activate T cells (145)

Autoimmune liver diseases Promoters of autoimmune
liver diseases

Kill hepatocytes (via FasL, TNF-a, perforin, granzyme B) (79)

IFN-g (induce Th0!Th1 and CD8+ T cells !CTL transformation, recruit T cells)

IL-4 (induce Th0!Th2 transformation that promotes B cells to produce antibodies,
recruit neutrophils)

TNF-a (recruit T cells) (115)

Inhibitors of autoimmune
liver diseases

Activate Tregs (117)

Alcoholic liver diseases (ALDs) Promoters of ALDs NKT cells recruit neutrophils (via TNF-a, etc.) (94, 157, 158)

NKT cells mediate death of hepatocytes (via FasL) (80)

NKT cells inhibit IFN-g secretion of NK cells (126)

Inhibitors of ALDs NKT cells suppress HSCs (via FasL, IFN-g) in early stage of ALDs (122)

Non-alcoholic fatty liver diseases
(NAFLDs)

Promoters of NAFLDs NKT cells improve insulin resistance (81)

Inhibitors of NAFLDs NKT cells enhance lipid intake of hepatocytes (via secretion of LIGHT) (81, 120, 121)

NKT cells activate HSCs (via OPN, Hh pathway) (116)

NKT cells recruit CD8+ T cells and macrophages (120, 159)
fr
ontiersin.org

https://doi.org/10.3389/fimmu.2022.1035950
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gu et al. 10.3389/fimmu.2022.1035950
Alcoholic liver diseases

It is widely known that excessive consumption of alcohol

ranks high among the risk factors for liver pathogenesis.

Alcohol-induced liver diseases include alcoholic hepatitis,

steatosis, cirrhosis, and hepatocellular carcinoma (HCC).

ALDs are closely linked to enhanced immune activation

(168). Activated inflammatory responses are noticed quickly

after alcohol intake with a higher NKT-cell concentration within

the liver as well as mesenteric lymph nodes (169–171).

Conversely, the absolute number of NKT cells in the whole

body is decreased (172), which may be the result of NKT-cell

recruitment to the liver and vast consumption of these cells.

Generally, NKT cells are thought to contribute to the

development of ALDs, in contrast to type II NKT cells that are

considered to attenuate ALDs (157). Binge-feeding with ethanol

results in accumulation and activation of NKT cells combined

with a higher expression of inflammatory and fibrotic genes in

wild-type mice compared to their NKT-deficient counterparts

(158). Evidence shows that alcohol potentiates a-Galcer
stimulation of NKT cells by facilitating CD1d loading (171).

IL-1b from Kupffer cells is also required for hepatic NKT-cell

accumulation during ALDs (94).

Activated NKT cells recruit neutrophils by secreting TNF-a
and up-regulating expression of neutrophil-attracting MCP-1

(monocyte chemoattractant protein-1, also known as CCL2) (94,

157), ICAM-1 (intercellular adhesion molecule-1), E-selectin,

MIP-1a (macrophage inflammatory protein-1a, also known as

CCL3), MIP-2, and osteopontin (OPN) (158). Also, NKT cells

mediate apoptosis of hepatocytes by expression of FasL (80).

Some researchers consider NK cells to be protective against

ALDs by secretion of IFN-g, while NKT cells inhibit this process.

However, a subgroup of IL-10-secreting NKT cells (thus called

NKT10) facilitates the protective effect of NK cells in

ALDs (126).

Controversially, in the early stages of ALDs, NKT cells are

likely to play an anti-fibrotic role by suppressing HSCs. The

negative influence of NKT cells on HSCs is achieved through

direct killing via the Fas/FasL pathway and IFN-g production

(122). Taken together, we conclude that with a few exceptions,

NKT cells are mainly promoters of ALDs (Table 4).

Up to now, we have not found any results of NKT-

based clinical trial for ALD therapy, but there are

experiments done on mice, showing several promising

molecules with therapeutic potential, including retinoids

and sulfatide (157). These two substances alleviate ALDs

by inhibition of NKT cells. Additionally, researchers

found that prednisolone, a drug widely used to antagonize

inflammation, exacerbates ALDs by inhibiting phagocytosis

mediated by macrophages and neutrophils and hepatic

regeneration, which provide an insight into management

of steroid therapy (173).
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Non-alcoholic fatty liver diseases

As the name suggests, the most significant feature of non-

alcoholic fatty liver diseases (NAFLDs) is abnormal lipid storage in

the liver. NAFLDs include simple stenosis, non-alcoholic

steatohepatitis (NASH), cirrhosis, and even liver cancer. In many

studies that focus on NAFLDs, a high-fat feeding model is used.

Statistics have demonstrated that a high-fat diet, especially onewith

high concentrations of saturated fatty acids and monounsaturated

fatty acids rather thanpolyunsaturated fatty acids, is associatedwith

liver inflammation, insulin resistance, and NAFLDs (64, 174, 175).

During NAFLDs, the number of NKT cells within the liver

decreases. This is because: (1) endothelium stress leads to fewer

CD1d’s and impaired lipid presentation (74); (2) Kupffer cells

mediate apoptosis and necrosis of over-activated NKT cells and

secrete IL-12 to suppress NKT cells (64, 90); (3) normally Kupffer

cells-derived IL-15 is stimulating forNKT cells, but inNAFLDs IL-

15 secretion is down-regulated (45, 176) and (4) norepinephrine

(NE) concentration decreases (176). However, some studies also

report an increase in the number of NKT cells in the late stages of

NAFLDs, probably because of enhanced activating functions of

Kupffer cells via the CD1d-dependent pathway, which is

inconsistent with many other study results (120).

Notably, the effects of NKT cells on the development of

NAFLDs are rather controversial. While NKT cells ameliorate

NAFLDs, probably by improving insulin resistance (120, 159),

they are also likely to play a pro-inflammatory role in NAFLDs.

Some studies show that NKT cells secrete LIGHT (TNFSF14),

which significantly enhances lipid intake of hepatocytes (81). Also,

NKT cells lead to activation of HSCs in two ways: (1) they facilitate

OPN (osteopontin) secretion; and (2) they promote the Hedgehog

(Hh) signaling pathway (note thatNKT cells are both inducers and

targets of the Hh signaling pathway). HSC activation is associated

with exacerbation of liver fibrosis or cirrhosis (81, 120, 121).

Activated NKT cells recruit CD8+ T cells and macrophages, too

(116). Overall, NKTmay have a protective effect in the early stages

of NAFLDs but a destructive effect in later stages (Table 4).

In 2017, a published clinical trial said oral administration of b-
glucosylceramide improved the hepatic fat content by 14% inNASH

patients, which is associatedwith a decrease in CD4+ andNKT cells,

suggesting NKT cells as a possible therapeutic target (177). Mice

models also indicate that oral administration of liver-extrated

proteins (178), immunoglobulin G-enhanced colostrums (179) and

PRX-106 (180) (a recombinant anti-TNF-afusion protein). The

number of hepatic NKT cells was increased in all thesemicemodels.

Liver tumors

Liver tumorsareaglobalhealthproblemthatdeprivesmillionsof

people of their lives. primary hepatic carcinoma (HCC) is the main

type of liver tumor.Many studies have shown the tumor-suppressing

effect of hepaticNKT cells.Understanding of the roles thatNKTcells
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play in thepathogenesisof bothprimaryandmetastatic liver cancer is

helpful for finding effective ways of treatment.

NKT cells participate in anti-tumor immune responses

mainly by producing IFN-g. Mice studies found that not only

can activated NKT cells secrete IFN-g, they also stimulate IFN-g
production from NK cells (12, 181). IFN-g then functions on

hepatic T cells and Kupffer cells, enhancing the cytotoxicity and

phagocytosis of T cells and Kupffer cells, respectively (182, 183).

NKT cells also participate in chemotaxis of T cells as they secrete

T cell-recruiting chemokines such as MIP-1a, MIP-1, and IL-8.

IFN-g up-regulates CXCR3 expression of T cells, potentiating T-

cell recruitment. Moreover, NKT cells directly mediate the death

of tumor cells through FasL, perforin, and granzyme (183). On

the other hand, some researchers do not perceive NKT cells as

necessary in anti-tumor immunity (184).

Activation of NKT cells in the background of hepatic cancer

is closely associated with dendritic cells and Kupffer cells.

Dendritic cells communicate with NKT cells in a CD40/

CD40L-dependent way. Up-regulated expression of CD40L in

NKT cells potentiates DC cells, leading to secretion of IL-12 that

in turn activates NKT cells (101). Kupffer cells are also sources of

IL-12 (182). Importantly, IL-12-induced NKT activation is

linked to reduced primary hepatic tumor and less metastasis

to the liver (185) As a result, IL-12-based therapy has been

proposed and examined by many researchers (186, 187).

Interestingly, activation of NKT cells is also dependent on

CXCR6/CXCL16 interaction, as deficiency of CXCR6 or

neutralization of CXCL16 cause hepatic cancer to deteriorate.

CXCR6 is expressed on the surface of liver sinusoid epithelium

cells, while CXCL16 is a characteristic molecule of NKT cells.

However, the deficiency of CXCR6 can be compensated for by

systemic NKT-cell activation through other methods (181, 188).

Given the significant functions of NKT cells in development of

liver tumors, many novel treatments of hepatic cancer based on

NKT cells have been invented in recent years. Mice experiments

showed that exogenous IL-12 anda-Galcer (186), direct transfer of
ex vivomodulated NKT cells (189), tumor antigens (190, 191), and

even antigens of some microorganisms (e.g. LPS from bacteria

(182) and some recombinant oncolytic viruses (192)are used to

potentiate the anti-tumoreffect ofNKTcells. Lowproteindiet (193)

and blockade of PD-1/PD-L1 axis (194)are also found useful in

suppressing hepatic tumors. Notably, clinical trials have confirmed

the effectiveness of some NKT-related treatments. For example, in

2021, Tian-Tian Li et al. (195) reported that stereotactic body

radiotherapy had positive effects on peripheral NKT cells in HCC

patients, which is associated with a higher overall survival. These

results indicate NKT cells as a very promising therapeutic target.
Perspectives and conclusion

In this review, we mainly discussed how NKT cells are

activated and the functions of NKT cells during the
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pathogenesis and development of some liver diseases. It is

widely acknowledged that the role NKT cells play in the

immunity of the liver and even the whole body is

indispensable, and treatment focused on modulating NKT-

cell activity is becoming more and more promising.

However, considering the dual functions NKT cells have

in many liver diseases, the treatment tactics should be

studied thoroughly.

In addition, since this review mainly focuses on the

physiology of type I NKT cells (iNKT cells), more work

needs to be done for a better understanding of type II NKT

cells which are more abundant in the human liver than in mice

(196). Type II NKT cells are normally considered to be anti-

inflammatory, and regulate type I NKT cells (iNKT) and other

immune cells and favor tumor growth (101, 197). However, some

also report the role that Type II NKT cells play in promoting

chronic inflammation (166). Further studies are needed to better

demonstrate the functions of Type II NKT cells and how these cells

interact with type I NKT cells as well as other participants in our

immune system.

Recently, gene analysis has cast new light on NKT

researches. Single-cell RNA sequencing indicates distinct

populations of functional NKT cell subsets with differences on

gene and epigenetic levels (198, 199). This offers a deeper

understanding, and is likely to guide future studies within

this field.
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