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Skeletal muscle atrophy is a common complication in survivors of sepsis, which

affects the respiratory and motor functions of patients, thus severely impacting

their quality of life and long-term survival. Although several advances have

been made in investigations on the pathogenetic mechanism of sepsis-

induced skeletal muscle atrophy, the underlying mechanisms remain unclear.

Findings from recent studies suggest that the nucleotide-binding and

oligomerisation domain (NOD)-like receptor family pyrin domain containing

3 (NLRP3) inflammasome, a regulator of inflammation, may be crucial in the

development of skeletal muscle atrophy. NLRP3 inhibitors contribute to the

inhibition of catabolic processes, skeletal muscle atrophy and cachexia-

induced inflammation. Here, we review the mechanisms by which NLRP3

mediates these responses and analyse how NLRP3 affects muscle wasting

during inflammation.
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Introduction

Skeletal muscle is a plastic organ and the most abundant tissue in vertebrates. It plays

a key role in movement, respiration and metabolism. In the skeletal muscle of healthy

individuals, there is a balance between protein synthesis and degradation. Critically ill

patients in the ICU frequently experience substantial loss of muscle strength and mass,

commonly known as intensive care unit-acquired weakness (ICUAW), which is

associated with increased morbidity and mortality rates in these patients (1). Sepsis

and systemic inflammation are the major risk factors for ICUAW (2, 3). It not only

prolongs the ICU treatment time but also worsens the long-term prognosis of patients (1,

3, 4). However, the pathogenesis of inflammation-associated muscle atrophy remains

unclear, hindering its diagnosis and treatment.
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The nucleotide-binding and oligomerisation domain (NOD)-

like receptor family pyrin domain containing 3 (NLRP3)

inflammasome can detect various harmful stimuli, including

pathogens such as bacteria and viruses and signals of tissue

damage (5, 6). In the classical activation pathway, the NLRP3

inflammasome assembles and subsequently activates caspase-1 to

induce pyroptosis, while proinflammatory cytokines such as

interleukin (IL)-1b and IL-18 mature and are released, thus

causing an inflammatory response (5, 6). Moderate activation of

NLRP3 inflammasome can help the host effectively eliminate the

microbial infection. However, excessive activation of the NLRP3

inflammasome causes excessive inflammation and cell damage

(7–9). In recent years, NLRP3 has been reported to be widely

involved in sepsis-related immune cell death and dysfunction of

multiple organs (5, 7–10). Additionally, it is reportedly an

important regulator of skeletal muscle metabolism (11–13). In

recent times, an increasing number of studies have demonstrated

that the NLRP3 inflammasome is involved in the pathogenesis

and development of inflammation-related skeletal muscle wasting

(14, 15). Here, we provide a comprehensive review of the current

literature on the mechanisms and treatment of NLRP3

inflammasome in inflammation-related skeletal muscle depletion.
Definition and composition of
NLRP3 inflammasome

Tschopp, who first defined the inflammasome in 2002,

revealed that inflammasomes play an important role in

microbial infection, regulation of mucosal immune responses

and metabolic processes (16). Inflammasome activation can also

play an important role in pathogen defence by stimulating innate

and adaptive immune responses (17). Inflammasome is a group

of multiprotein complexes composed primarily of sensors,

adapters and pro-caspase-1, which can recognise various

stress, exogenous microorganisms and endogenous danger

signals (18–21). NLRs include various isoforms, such as the

NLRP1, NLRP3, NLRP6, NLRP7, NLRP12 and NLRC4 (22).

NLRP3 inflammasome consists of NLRP3, adaptor apoptosis-

related speck-like protein containing caspase recruitment

domain (CARD) (ASC) and procaspase-1, which has been

studied extensively (5, 9). NLRP3, as the core protein of the

NLRP3 inflammasome, contains a central NOD (NACHT) that

possesses ATPase activity and a propensity for self-oligomerise.

When the host cell is stimulated by infection or other factors,

NLRP3 inflammasome interacts with ASC through the CARD/

CARD and pyrin domain (PYD)/PYD to catalyse the pre-

cleavage of caspase-1 into two subunits, P20 and P10. Active

caspase-1 is composed of P20 and P10 tetramers, which cleaves

gasdermin D (GSDMD) to form activated N-GSDMD, which

can perforate the cell membrane and induce programmed cell

death, known as pyroptosis. Simultaneously, caspase-1 cleaves
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pro-IL-1b and pro-IL-18 to form IL-1b and IL-18, respectively,

which are released from pyroptotic cells and initiate a cascade of

pathological reactions (5, 9). At the same time, caspase-1 cleaves

pro-IL-1b and pro-IL-18 to form IL-18 and IL-1b, which are

released from pyroptotic cells and play a series of pathological

reactions (23, 24). Dysregulation of NLRP3 inflammasome has

been implicated in many human diseases, such as gout, diabetes

and sepsis-related organ dysfunction and metabolic disorders (5,

25–28). Therefore, numerous inflammation-related diseases can

be treated by targeting the NLRP3 inflammasome.
Activation and regulation of
NLRP3 inflammasome

There are two stages involved in the activation of the NLRP3

inflammasome. The first stage involves priming signals, such as

Toll-like receptors (TLRs) and NLRs, which recognise specific

pathogen-associated molecular patterns (PAMPs) or danger-

associated molecular patterns (DAMPs) and activate nuclear

factor kappa-B (NF-kB)-mediated upregulation of NLRP3

protein, IL-1b, and IL-18 expression (29). The second signal is

the assembly of inflammasomes in response to the activation of

PAMPs and DAMPs. NLRP3 assembles via the NACHT domain

and provides a scaffold for ASC oligomerisation through the

CARD homology interaction between PYDs and caspase-1.

Activation of the NLRP3 inflammasome leads to self-cleavage

of pro-caspase-1 to generate active caspase-1, which in turn

mediates the maturation and secretion of IL-1b and IL-18.

Additionally, activated caspase-1 can induce GSDMD-

mediated pore formation, osmotic swelling and plasma

membrane rupture, leading to a cascade of inflammatory

reactions (30–33). This canonical NLRP3 inflammasome

activation has been observed to occur in a variety of

myopathies (11, 12, 34), including skeletal muscle atrophy

caused by sepsis (14).

NLRP3 inflammasome can be activated by a variety of

pathogenic and aseptic inflammatory signals (33, 35).

Examples include exogenous PAMPs from fungi, bacteria and

viruses, as well as host-derived molecules such as reactive oxygen

species (ROS) and extracellular ATP. In addition, some crystals

and particles (uric acid crystals, silica, asbestos and alum) are

activated (36, 37). Lysosomal instability, mitochondrial function

and ion flux dysfunction (K+ efflux, Ca2+ signalling, Na+ influx

and Cl- efflux) are additional conditions that can activate the

NLRP3 inflammasome (35). Multiple sources of Ca2+ lead to an

increase in intracellular Ca2+ during NLRP3 inflammasome

activation. The calcium-sensitive receptor (CaSR) and

GPRC6A are stimulated and then activate phospholipase C,

which then hydrolyzes phosphatidylinositol 4, 5-diphosphate

(PIP2) to form inositol 1,4, 5-triphosphate (IP3) (38). IP3 then

induces Ca2+ efflux from the lumen of the endoplasmic
frontiersin.org
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reticulum (ER) to the cytoplasm through ligand-gated ion

channels, which are termed IP3 receptors (IP3R) (38). In

addition, lysosomes have also been suggested to be an

important source of Ca2+ and may contribute to NLRP3

inflammasome activation (39). Regardless of the source, this

stimulation-induced increase in cytosolic Ca2+ was shown to be

essential for NLRP3 inflammasome activation; however, how

this increase in cytosolic Ca2+ contributing to NLRP3

inflammasome activation remains unclear. Furthermore, K+

efflux inducible stimuli can trigger NLRP3 inflammasome

activation in macrophages when cultured with Ca2+ -free

media, suggesting that at least the extracellular Ca2+ pool is

not required for NLRP3 inflammasome activation (40, 41).

ROS, especially mitochondrial ROS (mtROS), are important

stimulators of NLRP3 activation (42–44). Mitochondrial

dysfunction and ROS generation are important factors causing

NLRP3 inflammasome activation, and ROS inhibitors or

scavengers can limit inflammasome activation (45). In

addition to mtROS, cytosolic mtDNA is a crucial factor

mediating NLRP3 activation. Numerous NLRP3 activators can

induce mtDNA release, and cytosolic oxidised mtDNA can

trigger NLRP3 inflammasome assembly and activation (46).

Oxidised mtDNA, a key component of the NLRP3

inflammasome, can directly interact with NLRP3 (47). NEK7,

a member of the mammalian never in mitosis gene A (NIMA)-

related kinase family (NEK protein), has been reported to bind

to NLRP3, act downstream of potassium efflux and regulate

NLRP3 oligomerisation and activation (48). NEK7 was observed

to regulate gene transcription or protein expression in the

NLRP3 inflammasome signalling pathway. These signalling

pathways include ROS, potassium efflux, lysosomal

destabilisation and NF-kB. In addition, NEK7 has been
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suggested as a potential therapeutic target for NLRP3-related

diseases owing to its involvement in various NLRP3-related

diseases in human or animal models (49). Mitochondria are

thought to be the central organelle that regulates NLRP3

inflammasome activation. Mitochondrial destabilisation,

NLRP3 deubiquitination, ASC linear ubiquitination and the

externalisation or release of mitochondria-derived molecules

such as cardiolipin and mtDNA. These molecules bind to

mitochondrial translocated NLRP3 and activate NLRP3

inflammasomes (50) (Figure 1).

Some factors that disrupt lysosome function and

homeostasis, including particle stimulation with alum, silicon

and asbestos, cause lysosome rupture and release of particles into

the cytoplasm to activate the NLRP3 inflammasome (51).

Lysosomal content, such as cathepsin B, is thought to play a

role in the initial assembly and activation of the inflammasome,

which is also an important mechanism for particle activation of

NLRP3 (52). CA-074-ME, a chemical inhibitor of cathepsin B,

inhibits NLRP3 inflammasome activation through particulate

matter (51, 53). It has been observed that lysosomal release of

cathepsin B is required for the release of IL-1b, but not for pro-
IL-1b production, which also suggests that cathepsin B is

involved in NLRP3 inflammasome activation (39) (Figure 1).

NLRP3 can be regulated by various post-translational

modifications, such as ubiquitination, phosphorylation and S-

nitrosation (35). The activation of NLRP3 involves several

regulators. For example, thioredoxin-interacting protein

deficiency can affect the act ivation of the NLRP3

inflammasome, the secretion of IL-1b and improve glucose

tolerance and insulin sensitivity (54). Guanylate binding

protein 5 stimulates inflammasome assembly, promotes the

selective response of NLRP3 inflammasome to pathogenic
FIGURE 1

Activation and effector functions of the NLRP3 inflammasome.
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bacteria and soluble inflammasome primers and is considered a

unique rheostat for NLRP3 inflammasome activation (55). In

periodontal disease, double-stranded RNA (dsRNA)-dependent

protein kinase R (PKR) regulates inflammation by regulating

NLRP3 inflammasome surface through the NF-kB pathway (56)

and migration inhibitor (57), microtubule affinity-regulating

kinase 4 (58) and heat shock protein 90 (59, 60). Inhibition of

NLRP3 involves multiple regulators, and the PYD-only protein 1

(POP1) inhibits ASC-dependent inflammasome assembly by

preventing inflammasome nucleation, thereby interfering with

caspase-1 activation and IL-1b and IL-18 release (61). The POP2

inhibits inflammasome assembly by binding to ASC and

interfering with ASC recruitment to upstream sensors, thereby

preventing caspase-1 activation and cytokine release (62). It can

be concluded that many stimulators have involved in the

activation and regulation of NLRP3, especially in the

inflammatory microenvironment, while the underlying

regulatory mechanisms still need to be further explored.
NLRP3 and sepsis-induced
muscle atrophy

Sepsis is an overreaction of the body to infection, leading to

tissue and organ damage and muscle atrophy (63), which is a

poor prognostic factor in sepsis (1). Different cell death types,

including autophagy and necroptosis etc., are involved in skeletal

muscle degradation or wasting (64, 65). Currently, excessive

activation of NLRP3 inflammasome is found to be a significant

factor in septic tissue inflammation and muscle atrophy (14, 66).

In vivo and in vitro studies have confirmed that NLRP3-KO can

reduce skeletal muscle atrophy caused by inflammation by

reducing the expression of IL-1b (14). In the CLP mouse

model, inhibition of the NLRP3/IL-1b pathway can alleviate

sepsis-induced myocardial atrophy and cardiomyopathy and has

a certain effect on the prevention of sepsis-induced

cardiomyopathy (67). Furthermore, NLRP3/IL-1b, MuRF1 and

MAFbx expression were significantly increased in mice with

lipopolysaccharide (LPS)-induced sepsis. However, a dsRNA-

dependent PKR inhibitor, a negative regulator of NLRP3, could

inhibit the expression of these signals and significantly improve

muscle atrophy and mass loss (68). Similarly, triptolide, a plant

derivative that inhibits NLRP3 (69), attenuates LPS-induced

myotube atrophy in C2C12 cells in vitro. It has a protective

effect on the loss of skeletal muscle weight, strength and exercise

ability and muscle atrophy induced by LPS in mice (70). In

addition, dapansutrile (OLT1177) can inhibit NLRP3-ASC and

the interaction of NLRP3-caspase-1, thereby inhibiting the

oligomerisation of NLRP3 inflammasomes. It has also been

demonstrated to reduce the IL-1b and oxidative stress induced

by LPS in muscle and reverse metabolic consumption (71).
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Ketone body b-hydroxybutyrate (b-OHB) inhibits NLRP3

inflammasome by preventing K+ effusion and reducing ASC

oligomerisation and spot formation (72). In humans,

administration of the ketone body b-OHB reduces muscle

protein breakdown following LPS injection. This indicates that

b-OHB may have a protective effect against inflammation-

induced muscle wasting (73). It can be concluded that NLRP3

is involved in inflammation-induced skeletal muscle atrophy

and plays a central role. However, it should be emphasized that,

to the best of our knowledge, no studies exploring the role of

NLRP3-targeted drugs in septic myopathy exist. Therefore, this

is an area of research that deserves further study.
NLRP3 direct inhibitors

NLRP3 inflammasome is a potential therapeutic target for a

variety of inflammatory diseases. Based on different mechanisms

of action, we reviewed the NLRP3 inflammasome direct

inhibitors that have been instigated in inflammatory diseases.
Inflammasome assembly

The ketone body b-OHB inhibits the NLRP3 inflammasome

by preventing K(+) efflux, reducing ASC oligomerisation and

speck formation and protecting against muscle protein

catabolism in volunteers with LPS-stimulated inflammation

(72, 73). Exogenous hydrogen sulphide can reduce

hyperglycaemia-induced fibrosis of diabetic diaphragm and

enhance its biomechanical properties, possibly by inhibiting

the inflammatory response mediated by nucleotide binding

NLRP3 inflammasome (74, 75). RRx-001, which is currently

considered to be a highly selective NLRP3 inhibitor, binds

covalently to cysteine 409 of NLRP3 and blocks NLRP3-NEK7

interaction, thereby preventing the assembly of inflammasome

(76). Fluoxetine, an FDA-approved drug for clinical depression,

prevents NLRP3-ASC activation (77). INF39 is a non-toxic and

irreversible acrylate NLRP3 inhibitor that inhibits NEK7-NLRP3

interaction, and subsequently inhibits NLRP3-NLRP3, NLRP3-

ASC, ASC oligomerisation and speck formation interaction (78).

Oridonin (Ori), a bioactive ent-kaurane diterpenoid, forms a

covalent bond with the cysteine 279 of NLRP3 in NACHT

domain to block the interaction between NLRP3 and NEK7,

thereby inhibiting NLRP3 inflammasome assembly and

activation (79). It can be concluded that NLRP3 is involved in

inflammation-induced skeletal muscle atrophy and plays a

central role. However, it should be emphasized that, to the

best of our knowledge, no studies have explored the role of

NLRP3-targeted drugs in septic myopathy yet. Therefore,

research regarding to this area deserves to be further studied.
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Targeting the ATPase activity of NLRP3

To inhibit the ATPase activity of the NLRP3 inflammasome,

several inhibitors have been developed. These include gleazone

(CY-09), 3, 4-methylenedioxy-b-nitrostyrene (MNS), MCC950

and OLT1177 (80–84). The diarylsulfonylurea-containing

compound MCC950 (also known as CP-456773), which

directly targets the NACHT domain of NLRP3 and maintains

NLRP3 in an inactive state, is one of the most extensively

researched compounds (85–87). In phase II clinical trials for

rheumatoid arthritis, MCC950 was observed to cause liver injury

by increasing serum liver enzyme levels (88). MCC950 promotes

glucose transporter type 4 translocation in skeletal muscle,

reduces NLRP3 inflammasome activation in skeletal muscle

and improves insulin resistance in obesity (89). Additionally,

in the mouse model of valosin-containing protein (VCP)

myopathy, MCC950 improved the physical performance of

mice by inhibiting the activation of the NLRP3 inflammasome,

which has an effective therapeutic potential in the treatment of

VCP-related myopathy (90). Preliminary test results of MCC950

for Duchenne muscular dystrophy (DMD) pathogenesis were

promising and also exhibited improved muscle performance and

protection against muscle inflammation (91). Thus, MCC950

can be a promising treatment option for a variety of myopathies.

OLT1177 is believed to covalently modify the NACHT

domain to block its ATPase activity, ameliorate systemic and

muscle inflammation and reduce muscle wasting in LPS-

stimulated mice (71). Compound 6, a tetrahydroquinoline

inhibitor of the NLRP3 inflammasome, was recently

discovered and synthesised. It inhibits NLRP3 inflammasome

assembly and activation by directly binding to the NACHT
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domain, inhibiting its ATPase activity and preventing ASC

oligomerisation (92). CY-09 directly binds to the ATP-binding

motif of the NLRP3 NACHT domain to inhibit its activity (93).

NLRP3 ATPase activity is also disrupted by direct binding to

MNS (94) and several other compounds, including BOT-4-one

(95) and INF39 (78) (Table 1). Current available data suggest

that several reagents targeting NLRP3 ATPase activity have

protective effects against skeletal muscle inflammation and

failure. However, its protective effect on sepsis-induced skeletal

muscle wasting, especially in clinical trials, needs to be

further verified.
NLRP3 indirect inhibitors

Target upstream signals

Blocking the ATP receptor P2X7 is one potential method

that researchers have tried to inhibit the NLRP3 inflammasome.

Avastin is a P2X7 receptor (P2X7R) selective inhibitor that can

prevent ATP-induced NLRP3 inflammasome activation (97).

However, studies have reported that P2X7 stimulation can

improve the innervation and metabolism of muscle fibres in

amyotrophic lateral mice models and induce the proliferation/

differentiation of satellite cells. Therefore, skeletal muscle

denervation is prevented (98). Additionally, by blocking P2X7/

K+ channels, both bright blue G (99–101) and Glyburide (101)

demonstrated a recovery of muscle strength in IIM mouse

models. MM01 interferes with ASC particle formation and

oligomerisation, which prevents procaspase-1 activation in

vitro and inhibits ASC-dependent inflammasome activation in
TABLE 1 Direct NLRP3 inhibitors and their mechanisms.

Agent Mechanism Cell or animal model Ref.

MNS Inhibitory of NLRP3 ATPase
activity

Bone-marrow derived macrophages (94)

CY-09 Monocytes; mouse models of cryopyrin-associated autoinflammatory syndrome (CAPS) and type 2
diabetes

(93)

MCC950 iPSC-Derived VCP Patient Myoblasts; VCPR155H/+ Mice;mouse model of Duchenne muscular
dystrophy

(12, 86, 90,
91)

OLT1177 LPS-stimulated human blood-derived macrophages; mouse
model of LPS-induced systemic inflammation

(71)

INF39 Macrophages (78)

Compound
6

Dextran sulfate sodium (DSS)-induced colitis mouse model (92)

BOT-4-one Bone-marrow derived macrophages primed with LPS (95)

Fluoxetine Alu RNA-induced RPE degeneration in mice (77)

b-OHB Inhibitory of NLRP3
oligomerization

Human monocytes were stimulated with LPS; Mouses were primed with LPS (72)

RRx-001 RRx-001 ameliorates inflammatory diseases by acting as a potent covalent NLRP3 inhibitor (76)

Tranilast BMDMs from C57BL/6 mice; mouse models of gouty arthritis,
cryopyrin-associated autoinflammatory syndromes, and type 2 diabetes

(96)

Oridonin BMDMs treated with 50 ng/ml LPS (79)
fr
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cell lines (77, 102). IC100, a novel humanised antibody targeting

ASC, has been demonstrated to be effective in preventing and/or

suppressing the disease in an experimental autoimmune

encephalomyelitis model (103).

Several natural extracts have exhibited remarkable potential

in the treatment of inflammatory diseases. Triptolide inhibits

NF-kB/TNF-a and regulates protein synthesis/degradation

pathways to prevent LPS-induced skeletal muscle atrophy (70).

Carbenoxolone improves insulin sensitivity in high-fat diet-

induced obese mice by regulating the NLRP3 inflammasome

(104). Melatonin has been demonstrated to improve muscle

structure and activity in sarcopenic mice (11, 105). Curcumin

was demonstrated to reduce ROS levels and proinflammatory

cytokines in C2C12 muscle cells with palmitate-induced

inflammation. It was also reported to improve the dystrophic

phenotype in muscular dystrophy X-linked (MDX) mice (106,

107). In cell cultures and animal models, molecules such as

adiponectin, metformin and resveratrol have also been observed

to attenuate DMD, primarily through activation of AMP-

activated protein kinase signalling and limiting inflammasome

activation (108–110). Inflammasome NLRP3 expression is

upregulated in DMD skeletal muscle fibers, where it is

downregulated by ApN and its anti-inflammatory mediator

Mir-711 and attenuates the dystrophic phenotype, suggesting

that NLRP3 inhibitors may have therapeutic potential for muscle

inflammation and myopathy (111). In addition, ghrelin was

reported to improve motor function, attenuate muscle damage

and reduce inflammatory cell infiltration in MDX mice through

NLRP3 inflammasome activation (112). Shikenin, a pyruvate

kinase M2 inhibitor used in Chinese medicine, inhibits NLRP3

activation and protects muscle cells (113, 114). Human

volunteers on a high-palmitate diet (saturated fatty acids) had

high levels of NLRP3 mRNA in skeletal muscle biopsies, whereas

switching to a high-oleate diet (monounsaturated fatty acids)

reduced NLRP3 priming and activation (115). Trimetazidine

attenuates dexamethasone-induced muscle atrophy by

inhibiting NLRP3/GSDMD pathway-mediated pyrosis (116).

Al though indirec t inh ib i tors can prevent NLRP3

inflammasome activation, some of these molecules may have a

tissue-specific mechanism of action. Additionally, the alkaloid

piperlongumine (PL) from Piper Longum L. can prevent NLRP3

activity by interfering with the assembly of NLRP3 and NEK7

and NLRP3 oligomerisation (117). Licochalcone B, a major

component of liquorice, directly binds to NEK7 and inhibits

the interaction between NLRP3 and NEK7, thereby inhibiting

the activation of NLRP3 inflammasome (118). Andrographolide,

a bioactive chemical in andrographolide, inhibits NLRP3

activation by promoting mitophagy (119, 120). Other recently

identified herbaceous agents include brevilin A (121),

pristimerin (Pri) (122), pterostilbene derivatives (123) and

berberine (124), all of which exhibit limiting effects on NLRP3

inflammasome activation. Some drugs have certain protective
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effects on skeletal muscle atrophy under certain conditions, but

whether they play a protective effect on sepsis-induced skeletal

muscle depletion remains to be discussed. There is no doubt that

these drugs, especially natural extracts, offer broader ideas for

the treatment of skeletal muscular atrophy because of their

regulatory effects on NLRP3.
Targeting downstream signals

Several drugs and molecules may act downstream of the

NLRP3 inflammasome to inhibit pyroptosis and/or

inflammation. The downstream signals of NLRP3 include

caspase-1, IL-1b/IL-1R and IL-18. Caspase-1 inhibitors include

ritonavir, disulfiram and VX-765 (125–127). As previously

described, disulfiram and VX-765 act to improve the prognosis

of sepsis by blocking the formation of GSDMD pores (128);

however, whether it improves skeletal muscle metabolism

remains unclear. Anti-IL-1b therapies were first tested in

humans and showed efficacy in several inflammatory diseases

albeit their effects on metabolic disorders are less significant (129,

130). Anti-IL-18 therapies are currently being developed for

different inflammatory diseases. For example, a humanised

antibody to IL-18, GSK1070806, is currently being assessed in

phase I trials in atopic dermatitis (ClinicalTrials.gov Identifier:

NCT04975438). Recent studies have demonstrated that dimethyl

fumarate can react with key cysteine residues of GSDMD to form

S-(2-succinyl)-cysteine, thereby inhibiting GSDMD-induced cell

death (131). Surprisingly, several drugs targeting the downstream

of NLRP3 have conducted clinical trials for certain diseases, and to

our knowledge, these drugs have not been investigated for the

treatment of sepsis-related skeletal muscle atrophy yet. Therefore,

it is an urgent demand of developing new therapies that directly

targeting the NLRP3 inflammasome.
Conclusion and future perspectives

It has been more than 20 years since NLRP3 inflammasome

was first discovered. With overwhelming studies have been

conducted in these years, we’ve gained comprehensive

understanding of the structure, composition, regulation, and

function of NLRP3. However, the precise molecular mechanism

of NLRP3 regarding to diseases has not been fully elucidated. In

recent years, the role of NLRP3 inflammasome in skeletal muscle

wasting has drew growing attention. Increasing evidence has

confirmed that NLRP3 inflammasome activation plays an

important role in the pathogenesis and progression of

inflammation-related skeletal muscle wasting. In both cellular

and animal models, inhibition of NLRP3 body assembly or

activation can alleviate skeletal muscle atrophy and thereby

enhance muscle strength. Therefore, targeting the NLRP3
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inflammasome may represent a new trend in inflammation-

related skeletal muscle wasting. The activation and regulation of

NLRP3 inflammasome involves upstream signal-related

initiation signals, activation signals, regulatory factors, and

downstream caspase-1, IL-1b and IL-18. Currently, strategies

to block downstream inflammatory cytokines, such as inhibitors

targeting IL-18, have been used in clinical trials, but the results

remain unknown. At present, attention has gradually turned to

NLRP3 inflammasome and their constituent molecules, and many

targeted drugs have been developed for the purpose of maximizing

therapeutic specificity and reducing nonspecific effects. In addition,

although upstream regulators of NLRP3 inflammasome are also

considered aspromisingpharmacological targets, their interactions

are not specific. To date, although many compounds have been

found to exert regulatory effects on NLRP3 inflammasome in vivo

or in vitro, their therapeutic efficacy and safety in patients with

skeletal muscle wasting need to be further verified in clinical trials.

In addition, it is surprising thatmore andmore traditional Chinese

herbalmedicines andplant-derived compoundshavebeen found to

be effective and safety, and they are expected to provide new

direction for the treatment of skeletal muscle wasting.

In conclusion, NLRP3 inflammasome overactivation plays a

key pathological role in the development and progression of

sepsis-induced skeletal muscle atrophy. As we continue to

comprehend the physiological and pathological mechanisms

involved and the development of new therapies targeting the

NLRP3 inflammasome, promising outcomes have been

demonstrated in animal studies. Several NLRP3 inhibitors

have been approved for the use in human clinical trials, and it

is believed that the treatment and the drug development

targeting NLRP3 will provide new directions for the

prevention and strategies of sepsis-induced muscle atrophy.
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