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Integrated analysis from
multi-center studies
identities m7G-derived
modification pattern and risk
stratification system in skin
cutaneous melanoma
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1Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong
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The m7G modification has been proven to play an important role in RNA post-

transcriptional modification and protein translation. However, the potential role

of m7G modification patterns in assessing the prognosis of Skin cutaneous

melanoma (SKCM) and tumor microenvironment (TME) has not been well

studied. In this study, we investigated and finally identified 21 available m7G-

related genes. We used hierarchical clustering (K-means) to classify 743 SKCM

patients into three m7G-modified subtypes named m7G/gene cluster-A, B, C.

We found that both m7G cluster B and gene cluster B exhibited higher

prognosis and higher immune cell infiltration in TME compared to other

subtypes. EIF4E3 and IFIT5, two m7G related genes, were both markedly

elevated in Cluster B. Then, we constructed an m7G score system utilizing

principal component analysis (PCA) in order to evaluate the patients' prognosis.

High m7G score subtype was associated with better survival prognosis and

active immune response. Overall, this article revealed that m7G modification

patterns were involved in the development of the tumor microenvironment.

Evaluating patients' m7Gmodification patterns will enhance our understanding

of TME characteristics and help to guide personal treatment in clinics in

the future.
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Introduction

Skin cutaneous melanoma (SKCM) is a malignant tumor

originating from melanocytes and is one of the most lethal

human tumors. Around 25% of melanomas are transformed

from the original nevus (1) and sunlight exposure, especially

strong intermittent exposure patterns, is also an important

environmental factor that increases the risk (2). Patients with

early-stage melanoma can be cured by surgery. But patients with

advanced melanoma are still unsatisfactory, with a 5-year

survival rate of about 27% (3). Because metastatic melanoma

is not sensitive to conventional chemoradiotherapy (4), the

treatment of melanoma remains a great challenge.

In recent years, emerging immunotherapy has become an

important means of treating melanoma, such as anti-CTLA4

antibodies and anti-PD1/L1 antibodies, which were called

immune checkpoint inhibitors (ICIs). Among them, anti-PD1/L1

antibodies are more widely used and can effectively improve the

prognosis by increasing infiltrating CD8+ T cells (2, 5). ICIs have

significantly improved progression-free survival and overall survival

in some patients, however, for most patients, ICIs are associated

with low overall response rates. Although the identification of PD-

L1 expression can screen patients with an immune response to PD-

L1 antibodies, PD-L1 expression is not recommended as a predictor

of immune response, as individual heterogeneity results in the

inconsistency between PD-L1 expression levels and clinical benefits

(5). Recent studies have shown that specific components of the

TME, especially the activation of CD8+ T cells, upregulate the

expression of immunosuppressive factors such as PD-L1 through a

negative feedback regulatory mechanism of immunity (6). This

means that immunotherapymay preferentially benefit patients with

substantial CD8+ T infiltration in the TME. Therefore, predicting

response to ICIs based on the characteristics of TME is a critical step

to improve response to existing ICIs therapy (7).

RNA methylation is a common form of epigenetic

modification, including m6A, m1A, m5C, m7G, etc., according to

the different methylation sites (8). m7G refers to the addition of a

methyl group to guanosine at the N7 position of the RNA ribosome.

m7G exists not only in the 5’ cap region of mRNA but also in

mRNA, tRNA, and rRNA, which plays an important role in the

maintenance of normal physiological functions of the human body

(9). m7G is involved in almost every stage of mRNA life cycle

including transcription, splicing of pre mRNA, nuclear export, and

translation (10–13). In recent years, more and more studies have

shown that m7G-related genes play an important role in the

pathogenesis of tumors. As the most studied methyltransferase

involved in m7G-related processes, METTL1 usually forms a

complex with WDR4, and its overexpression is often associated

with some malignant tumors such as intrahepatic

cholangiocarcinoma (14). This is mainly because the METTL1/

WDR4 complex can increase the m7G modification of a subset of

tRNAs, thereby reducing ribosomal pausing and increasing the

translation efficiency of cancer-promoting mRNAs such as EGFR,
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which drives cancer development (14–16). Furthermore, the

expression of METTL1 correlates with tumor drug resistance.

Okamoto et al. (17) showed that knockdown of NSUN2 and

METTL1 genes enhanced the sensitivity of HeLa cells to 5-FU,

which provides a new perspective to address the mechanisms of

resistance to cancer chemotherapy drugs. Ago2 is also involved in

the m7G methylation process of RNA, forming a complex by

assembling with microRNA, inhibiting the initiation of mRNA

translation by binding to the m7G cap of targeted mRNA,

precluding the recruitment of eIF4E and inhibiting the migration

of lung cancer cells (18, 19).

At present, there are few studies on m7G modification, and

the relationship between m7G and TME is still unclear. Most of

the studies are limited to 1-2 m7G regulators, therefore, a

comprehensive analysis of multiple m7G regulators will

deepen our understanding of the TME.

Therefore, in this paper, a comprehensive analysis of m7G-

related genes was performed through the malignant melanoma

transcriptomic and genomics sequencing database. Three m7G

modification patterns and gene subtypes were established by

unsupervised clustering and the relationship between each

subtype and the prognosis of SKCM patients and immune cell

infiltration in the tumor microenvironment were analyzed. In

addition, we also constructed an m7G scoring model using PCA

to quantify the m7G modification pattern of individuals and

used it to explore the potential relationship between this scoring

model and survival prognosis, immune response, and TME. The

establishment of a Nomogram helps to guide better prediction of

patient’s survival prognosis in clinical. In conclusion, our finding

suggests that m7G modification plays a crucial role in the tumor

immune microenvironment formation and in predicting patient

prognosis and immunotherapy efficacy.
Materials and methods

Data acquisition and preprocessing

The RNA-Seq (Level-3 HTseq-FPKM) sequencing data of all

SKCM patients were downloaded from the TCGA database (20)

and 3 repeated sequencing samples from the same patient were

excluded. Finally 465 non-repeated tumor samples were included.

At the same time, the RNA-Seq data of 557 normal skin samples

from the GTEx project were downloaded as normal controls. After

excluding non-coding RNAs, they were standardized with tumor

samples for difference analysis. In addition, the GSE53118,

GSE65904, and GSE78220 datasets were downloaded from the

GEO database (21), and gene annotation was performed on the

respective platform files as a validation cohort. In the survival

analysis, no survival status was excluded and samples with an

overall survival time of less than 1 day were modeled and validated.

Finally, 454 SKCM patients were included in TCGA-SKCM, 79

SKCMpatients were included in GSE53118 and 210 SKCMpatients
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were included in GSE65904. It is worth noting that GSE78220 is an

anti-PD-1 immunotherapy cohort, including a total of 27 SKCM

patients, in which clinical information includes the corresponding

situation of immunotherapy. In addition, the copy number

variation (CNV) and somatic mutation data of SKCM were

downloaded from the TCGA database. It is worth mentioning

that in the TCGA-SKCM cohort, RNA-seq data in FPKM format

were converted to TPM. The “ComBat” algorithm in the “sva”

package was used to eliminate batch effects in the TCGA and

GEO databases (22) and three cohorts indicated above were

integrated to establish a Meta cohort. m7G related genes were

obtained from the existing literature (23) and related gene sets

GOMF_m7G_5_PPPN_DIPHOSPHATASE_ACTIVITY,

GOMF_RNA_CAP_BINDING, GOMF_RNA_7_ METHYL

GUANOSINE_CAP_BINDING. m7G-related genes: DCP2,

IFIT5, EIF3D, EIF4G3, NSUN2, GEMIN5, AGO2, NUDT10,

EIF4E, EIF4E2, NCBP2, NUDT11, NUDT3, NCBP1, METTL1,

LARP1, NUDT4, EIF4E3, SNUPN, WDR4, LSM1, NUDT16,

DCPS, CYFIP1.
Unsupervised clustering

An unsupervised consensus clustering analysis was

performed based on m7G regulators or m7G pattern-regulated

gene expression levels. Principal component analysis (PCA) to

determine whether each subtype is relatively independent of the

other subtypes. The number of clusters was determined by the R

package “conensusClusterPlus” (24), and 100 replicates were

performed with pltem=0.8 to verify the stability of the subtypes.

Kaplan Meier curves were used to evaluate overall survival (OS)

of different SKCM patients in the dataset and log-rank test was

used. We performed PCA analysis to reduce the dimensionality,

judging the ability of distinguishing patients.
Calculation of m7G score

First, we normalized the differentially expressed genes (DEGs)

extracted from different m7G clusters and extracted overlapping

DEGs, we used Cox regression method to perform prognostic

analysis on each overlapping DEG and screened genes at P<0.05.

Principal component analysis (PCA) was used to construct the

m7G cluster signatures. Both principal components 1 and 2 are

selected as feature scores, m7Gscore=∑(PC1i+PC2i).
Enrichment analysis

Differences in biological pathways between subtypes were

assessed using gene set variation analysis (GSVA) (25). Gene

Ontology (GO) is used to annotate the biological processes,

molecular functions, and cellular components of genes (26). Gene
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pathways were annotated using the Kyoto Encyclopedia of Genes

and Genomes (KEGG) (27). Differential genes between different

subtypes were analyzed using the “limma” package (p < 0.05) (28),

and then the overlapping genes among the three groups were

analyzed by GO and KEGG using the “clusterProfiler” package. In

addition, c2.cp.kegg.v7.0.symbols.gmt was used as the reference

gene set, and FDR < 0.05 was the screening threshold.
Drug sensitivity analysis

IC50s were calculated using the prophetic package in R

software, and chemotherapeutic drugs were obtained from the

genome of Drug Sensitivity in Cancer (GDSC) database.
Immunoassay

In immune cell analysis, we simultaneously used different

algorithms, such as TIMER, CIBERSORT, QUANTISEQ, MCP-

counter, XCELL, and EPIC, to estimate the abundance of immune

cells in different samples (29). In addition, the ESTIMATE

algorithm was used to calculate the immune score, and the

interstitial score to reflect the microenvironmental status.
Statistical analysis

Correlation coefficients between immune cells and m7G

regulator expression were calculated by Spearman correlation

analysis. The Kruskal-Wallis test was used for differences among

the three groups, and the c2 test was used for associations

between categorical covariates. Based on the correlation of

m7Gscore with patient prognosis, the optimal cutoff value for

each dataset subset was defined using the “survminer” R

package. This value divided patients into high and low

m7Gscore subgroups. The log-rank statistic is used to reduce

batch effects of calculations. OS maps were drawn using the

Kaplan-Meier method and the log-rank test was used to identify

statistical differences. Univariate Cox regression was used to

calculate hazard ratios for m7G regulators and genes associated

with m7G phenotypes. Multivariate Cox regression was used to

identify independent survival factors. The “Maftools” package

and its “oncoplot” function were used to present mutational

differences (30). P<0.05 was considered statistically significant.
Results

Genetic variation profile of m7G-related
genes in SKCM

In this study, a total of 24 m7G-related genes were identified

in the TCGA cohort and the locations of m7G-related genes on
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chromosomes are shown in Figure 1A. Firstly we summarized

the frequency of copy number variation (CNV) and somatic

mutation of m7G-related genes in SKCM. EIF4G3 and GEMIN5

had the highest mutation frequency out of 465 samples, with 86

mutated with a frequency of 18.49 percent (Figure 1B). Missense

mutations were common. Additionally, strong mutational co-

occurrence links between EIF4G3, METTL1, IFIT5, MSUN2,

AGO2, and GEMIN5 were discovered in the co-mutation map of

24 m7G regulators (Figure 1C). According to the frequency of

CNV modifications, AGO2 focused on copy number

amplification, CNV deletion frequencies in DCPS were

common, and CNV alterations were common in m7G-related

genes (Figure 1D). Combining SKCM samples in the TCGA

database with normal skin samples in the GTEx database, it was

discovered that based on the expression of m7G-related genes,

SKCM samples could be completely distinguished from normal

samples using PCA (Figure 1E). To determine whether the

aforementioned genetic variants affect the expression of m7G-

related genes in SKCM patients, we investigated the mRNA

expression levels of m7G-related genes between normal and

SKCM samples. With the exception of EIF3D, most of the m7G-

related genes showed significantly different expression levels

between samples. Compared with SKCM samples, NSUN2,

NUDT4, EIF4E3, EIF4E and EIF4E2 showed higher expression

in normal tissues (Figure 1F, G). The above analysis showed that

m7G-related genes were highly heterogeneous between normal

and SKCM samples, suggesting that the imbalanced expression

of m7G-related genes plays a crucial role in the occurrence and

progression of SKCM.
Modification patterns mediated by m7G-
related genes

A Meta cohort was created by combining three datasets

(GSE53118, GSE65904, and TCGA-SKCM) with complete

prognostic data. 21 m7G-related genes were subsequently

annotated in the Meta cohort. The Kaplan-Meier survival

analysis and log-rank test were used to separate the prognostic

significance of 15 m7G-related genes for SKCM patients using

the optimal cut-off value for each group (Figure S1A). Low

expression of other genes was linked to better prognostic

outcomes, with the exception of high expression of EIF4E3,

IFIT5, and CYFIP1, which exhibited a greater survival

advantage. The m7G-related gene network outlines a thorough

picture of gene interactions and their prognostic consequences

for individuals who have the gene (Figure 2A). Most m7G-

related genes, according to our research, demonstrated a

substantial association and had good predictive capacity

(univariate cox regression analysis). And IFIT5 and EIF4E3

were significantly positively correlated with patient survival.

According to the results mentioned above, distinct m7G

methylation modification patterns may be significantly
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influenced by crosstalk between m7G-related genes. We used

the “ConsensusClusterPlus” R package to classify the patients

based on the expression of m7G-related genes; when the K value

is 3, the slope of CDF decline was the smallest (Figure 2B). And

finally three modification patterns were identified, which we

refer to m7G cluster-A, B, and C respectively. PCA showed that

three patterns were relatively discrete (Figure 2C), indicating

that SKCM patients could be divided into three clusters based on

the expression of m7G-related genes. Prognostic analysis

revealed a considerable advantage in the m7G cluster B

(Figure 2D), but no apparent survival difference between m7G

cluster A and C. To explore the biological behavior between

different m7G modification patterns, we performed a GSVA

enrichment analysis on the meta-SKCM cohort. As shown in

Figure 2E, compared with m7G cluster A, cluster B presented

enriched pathways associated with immune activation, such as T

cell receptor signaling pathway, B cell receptor signaling

pathway, chemokine signaling pathway and cytokine-cytokine

receptor interaction. In addition, KEGG pathways also varied

among different modifications. The purine and pyrimidine

metabolic pathways were substantially more active in m7G

cluster C than in cluster B. When compared to cluster C,

cluster A had a considerably higher concentration of the TGF-

bmetabolic pathway (Figure S1B, C). The results indicated above

may provide some evidence support for the prognostic

advantage of m7G cluster-B.
Infiltration characteristics of TME cells
under different modification patterns

We used single sample GSEA (ssGSEA) to analyze immune

cell infiltration on various m7G clusters in light of mounting

evidence that TME plays a significant role in tumorigenesis and

progression (31). To our surprise, analysis of the TME showed

that m7G cluster B is very abundant in immune cell infiltration,

including CD4+ T cells, CD8+ T cells, NK cells, macrophages,

eosinophils, mast cells, Myeloid-derived suppressor cells

(MDSCs) and dendritic cells, while m7G clusters A and C

were dominated by type 2 helper T cells (Th2) and monocytes

respectively (Figure 3A). GSVA on Hallmarker gene set (32)

revealed different biological behavior of three m7G modification

clusters. NF-KB pathway and IL6-JAK-STAT3 pathway activity

were significantly enhanced in m7G cluster B. In contrast, m7G

cluster A was predominantly and significantly enriched in the

Wnt-b-catenin signaling pathway and m7G cluster C was

characterized by DNA repair-related pathways (Figure 3B).

PCA analysis also showed that three m7G modification

patterns could also be distinguished based on cancer activity

pathway scores (Figure 3C). In addition, the heatmap showed

that among three subtypes, IFIT5 and EIF4E3 genes were

significantly up-regulated in m7G cluster-B, NUDT10 and

NUDT11 were significantly up-regulated in m7G cluster A
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and METTL1 was mainly up-regulated in m7G cluster-

C (Figure 3D).
The m7G-related DEGs in SKCM

We discovered 248 differentially expressed genes (DEGs)

associated with the m7G phenotype using the “limma” package

and carried out GO enrichment analysis on DEGs using the

“clusterProfiler” tool to further explore the potential biological

function of the m7G modification pattern. Surprisingly, these

genes showed enrichment for biological processes significantly

associated with immune infiltration, confirming that m7G

modification plays a non-negligible role in the immune regulation
Frontiers in Immunology 05
of the TME (Figure 3E). To further validate this regulatory

mechanism, we performed an unsupervised clustering analysis

based on the prognostic-relevant DEGs in order to classify

patients into different genotypes. Consistent with the grouping of

m7G modification patterns, an unsupervised clustering algorithm

revealed three distinct gene subtypes, named gene cluster-A, B, and

C (Figure 4A).We observed that gene cluster B had the best survival

prognosis and gene cluster A, C had no significant difference in

survival prognosis (Figure 4B). In addition, among three gene

subtypes, significant differences in the expression of m7G

regulators were observed, which is consistent with the expected

results of the m7G methylation modification pattern, while the

m7G-related genes EIF4E3, IFIT5 were significantly upregulated in

gene cluster B (Figure 4C, D).
A B

D E

F G

C

FIGURE 1

The landspace of genetic and variation of 24 m7G genes in SKCM. (A) The location of 24 m7G genes on chromosomes. (B) The mutation
frequency of 24 m7G regulators in 465 patients, with each color representing the mutant types. Numbers on the right part of the figure
represent the mutation frequency. (C) Co-occurrence and exclusion of 24 m7G genes mutations. Green color represents co-occurrence, and
yellow color represents exclusion. (D) The CNV frequency of 24 m7G genes. The red color represents amplification as well as the blue color
represents deletion. (E) Principal component analysis of m7G genes. (F, G) The expression levels of 24 m7G genes in normal and tumor tissues.
(*p < 0.05;***p < 0.001).
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The m7G score for individual
SKCM patients

The aforementioned analysis is based only on the population

and cannot accurately predict the pattern of m7G methylation

modification in each patient. Considering the individual

heterogeneity of m7G modification, we constructed the m7G

score system using PCA algorithm to systematically quantify the

m7G modification pattern of SKCM patients based on these

phenotype-related genes. All patients with SKCM were classified
Frontiers in Immunology 06
into high and low groups based on the m7G cut-off value. The

alluvial diagram shows the connections between the subtypes

(Figure 4E). The ssGSEA algorithm analysis showed that the

activity of hallmark pathway was significantly enhanced in high

score patients (Figure 4F). Meanwhile, the analysis of related

pathway activity showed that high score may be strongly

associated with the heightened activation of the NF-KB and

IL6-JAK-STAT3 pathways (Figure 4G). The Kruskal-Wallis test

revealed that there was a significant difference in m7G score

between m7G clusters, with the highest score in m7G cluster B
A B

D

E

C

FIGURE 2

Patterns of m7G methylation modification. (A) Interaction network of the 21 m7G genes. In meta-SKCM cohort(GSE53118, GSE65904, TCGA).
Purple dots represent risk factors and green dots represent favorable factors. (B) 743 SKCM patients were divided into 3 groups using Consensus
clustering matrix. (C) Principal component analysis of m7G modification pattern. (D) Kaplan–Meier survival analysis of OS for different m7G
clusters in meta-SKCM cohort(p < 0.001). (E) GSVA enrichment analysis between m7G cluster A and B.
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(Figure 4H). There was also a significant difference in m7G score

between gene clusters, with the highest score in gene cluster B

(Figure 4I). However, immunological activation was more

pronounced in m7G cluster B and gene cluster B. Therefore,

the results above strongly suggest that high m7G score is

significantly associated with immune activation and m7G

Score system can better assess m7G modification patterns in

individual patient.
Frontiers in Immunology 07
Prognostic value of m7G score in
individual patient

We further specified the value of m7G Score system in

predicting patient outcomes. Patients with high m7G Score

demonstrated a substantial survival benefit (Figure 5A),

whereas patients with advanced disease demonstrated a lower

m7G Score (Figure 5B, C). In addition, we discovered that the
A

B

D E

C

FIGURE 3

The characteristics of TME in distinct m7G clusters. (A) The infiltration level of immune cells in three m7G clusters. (*p < 0.05; **p < 0.01; ***p < 0.001).
(B) GSVA enrichment analysis based on Hallmark gene set according to different m7G clusters. (***p < 0.001). (C) Principal component analysis based
on pathway activity score corresponding to m7G clusters. (D) Unsupervised clustering of gene expression of 21 m7G genes in the meta-SKCM
cohort.M7G cluster, pathologic stage, gender, and age were used as annotations. (E) GO enrichment analysis of prognosis-related DEGs.
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m7G Score had greater survival discriminating value in several

clinical subgroups, including various age groups (Figure S2A)

and sex groups (Figure S2B). The m7G Score system also has a

good prognostic value in patients with different pathological

stages, especially stage II and III (Figure S2C). Given that TMB is

clinically significant in directing immunotherapy in SKCM

patients, we sought to explore the intrinsic correlation between

TMB and m7G Score. It was found that the TMB score was
Frontiers in Immunology 08
slightly higher in the low m7G Score group (Figure 5D) and the

Low-TMB group represented a worse prognostic outcome

(Figure 5E). Dividing SKCM patients into four subgroups

based on m7G score and TMB, we found that low m7G score

combined with Low-TMB indicated worse prognostic outcomes

(Figure 5F). Then, we used the “maftools” package to analyze the

differences in the distribution of somatic mutations between low

m7G Score and high m7G Score in the TCGA-SKCM cohort
A B

D

E

F

G

I

H

C

FIGURE 4

Construction of gene clusters and m7G score based on the DEGs. (A) DEGs were divided into 3 groups using Consensus clustering matrix. (B)
K-M survival analysis of OS for different m7G gene clusters in meta-SKCM cohort(p < 0.001). (C) Histogram showing expression of m7G related
genes in different gene clusters. The lines in the boxes mean median value. (D) Unsupervised clustering of gene expression of 21 m7G genes in
the meta-SKCM cohort. Gene cluster, pathologic stage, gender, and age were used as annotations. (E) Alluvial diagram showing an association
between m7G cluster,m7G gene cluster, m7G score, and survival status. (F) GSVA enrichment analysis based on Hallmark gene set according to
high and low m7G scores. (**p < 0.01; ***p < 0.001). (G) Spearman analysis displaying the correlations between m7G score and hallmark gene
set. Red represents positive correlation, blue represents negative correlation. (H, I) The difference of m7G score in distinct m7G clusters (above)
and gene clusters (below). *represents p < 0.05.
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(33), in which TTN was the most widely mutated gene in both

groups, while the high m7G Score group had a TTN mutation

rate of 56% (Figure 5G), while the TTN mutation rate in the low

m7G Score group was 70% (Figure 5H).
The role of m7G score in anti-PD-1/L1
immunotherapy

Previous results suggest that m7G modification patterns can

influence immune cell infiltration. Therefore, we hypothesized

that the immune response to anti-PD-1/PD-L1 may be

significantly mediated by the differential modification pattern

of m7G. Immunotherapy represented by PD-L1 and PD-1

blockade has undoubtedly become a major breakthrough in

cancer treatment. We examined the potential predictive value

of m7G modification signatures for immunological response to

immune checkpoint blockade based on two immunotherapy

cohorts (GSE78220 and IMvigor210). GSE78220 is the anti-PD-

1 immunotherapy cohort, while IMvigor210 is the anti-PD-L1

immunotherapy cohort. In the anti-PD-1 cohort, patients with

high m7G score showed significant clinical benefit and

significantly prolonged OS (Figure 6A). Immunotherapy

outcomes in patients with high m7G score were more inclined

to CR/PR (Figure 6B, C). Likewise, in the anti-PD-L1 cohort,

patients with high m7G Score had better prognostic outcomes

(Figure 6D) and were more prone to CR/PR (Figure 6E, F). The

aforementioned content suggests that quantification of m7G

modification patterns is a potential and reliable biomarker for

predicting prognosis and assessing therapeutic effectiveness of

immunotherapy. Subsequently, we predicted the hallmark

pathway activity level in the anti-PD-L1 cohort and found

that, similar to the m7G Cluster, patients with high m7G

scores had more notable immune activation (Figure 6G). In

addition, the expression levels of PD-L1 and CTLA4 were also

significantly up-regulated in patients with high m7G score

(Figure 6H). In conclusion, our research strongly demonstrates

that m7G methylation modification patterns are highly

associated with tumor immunophenotype and response to

anti-PD-1/L1 immunotherapy. And the established m7G

modification signature will aid in the prediction of the anti-

PD-1/L1 response to immunotherapy.
Indicative role of m7G score in the
immune microenvironment

Based on the gene expression profiles of all solid tumors in

the TCGA, Thorsson et al. identified five immune-expression

signature subtypes: Wound Healing (Immune C1), IFN-gamma

Dominant (Immune C2), Inflammatory (Immune C3),

Lymphocyte Depleted (Immune C4) and TGF-beta Dominant

(Immune C6) (34). Based on the aforementioned results, we
Frontiers in Immunology 09
discovered that immunological subtypes varied considerably

between different m7G score groups and that “IFN-gamma

Dominant” predominated (Figure 7A), representing a higher

proportion of lymphocytes Infiltration in the high m7G score

group. Significant differences in the m7G score between various

immunological subtypes were also observed (Figure 7B). The

ESTIMATE algorithm also demonstrated that as the m7G score

is increased, the immune score and stromal score are also

increased (Figure 7C), indicating that high m7Gscore was

associated with high immune cell infiltration and high stromal

cell levels. We conducted a correlation analysis of the stemness

scores for DNA and RNA in patients with SKCM in light of the

crucial role that stemness plays in tumor formation and

treatment (35). Unsurprisingly, stemness scores decreased as

m7G scores increased. (Figure 7D). To comprehensively explore

the relationship between different m7G score groups and the

immune microenvironment, we calculated the immune cell

infiltration level of each patient in the TCGA-SKCM cohort

based on six algorithms (TIMER, CIBERSORT, QUANTISEQ,

MCP-counter, XCELL, and EPIC). It was discovered that the

TME was in an active state and there was higher immune cell

infiltration in the group with high m7G scores (Figure 7E).

Similarly, the majority of immune cells were positively

correlated with m7G score (Figure 7F). Although most

literature reported that SKCM is not susceptible to

radiotherapy and chemotherapy, we explored whether m7G

score could have a certain indicative effect on traditional

cytotoxic drugs. Therefore, we used the “prophetic” package to

calculate the IC50 values of various drugs. With the exception of

Docetaxel, it was found that high m7G score groups were more

sensitive to chemotherapy drugs (Figure S3).
Construction of nomogram based on
m7G score

We developed a nomogram based on m7G score since the

nomogram can be applied intuitively to clinical practice to assess

the prognosis of patients. To construct the nomogram, we

incorporated the statistically relevant indicators from the

multivariate Cox regression, such as the m7G score, Age, and

Stage (Figure S4A). For example, in the low m7Gscore

population, patients with a total score of 58.4 in stage I and

older than 60 years old had a probability of survival of 0.042 for

less than one year, 0.225 for less than three years, and 0.333 for

less than five years (Figure S4B). According to ROC curve,

nomogram had good predictive performance for survival in

TCGA and GEO cohorts (GSE53118, GSE65904) (Figure S4C,

D). In addition, calibration curve results for 1-, 3-, and 5-year

survival showed that actual survival was close to predicted

survival in the TCGA-SKCM cohort (Figure S4E). In the GEO

cohort (GSE53118, GSE65904), the result is the same as the

aforementioned content (Figure S4F).
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Discussion

Due to the presence of variable loops, tRNAs are the most

common m7G-modified RNA species (36). The m7G

modification of tRNA is important for normal mRNA

translation and maintenance of embryonic stem cell self-

renewal. If damaged, it can lead to the progression of

microcephaly primitive dwarfism and cancers (37). Previous

studies have shown that m7G modification selectively promotes
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the regulation of cell cycle and translation of oncogenic

mRNAs, which correlates with the number of codons decoded

by m7G-modified tRNAs (16). In addition to intrahepatic

cholangiocarcinoma, abnormal m7G modification is also

associated with esophageal squamous cell carcinoma, acute

myeloid leukemia, glioblastoma multiforme, and breast cancer

(14, 36). However, the relationship between m7G modification

and melanoma is unclear. Therefore, this article aims to explore

the relationship between multiple m7G-related genes and TME
A B

D E F

G H

C

FIGURE 5

The connection between m7G score and clinical characteristics. (A) K-M survival analysis of OS in high and low m7G score groups in meta-
SKCM cohort (p < 0.001). (B, C) The association between m7G score and clinicopathologic stage. (*p < 0.05 **p < 0.01 ***p < 0.001). (D)The
difference of TMB in high versus low m7G score(p=0.047). (E) K-M survival analysis of OS in high and low TMB subgroups in the meta-SKCM
cohort (p <0.001). (F) M7G score combined with TMB better predicted the prognosis of SKCM patients. (G, H) Mutational landscape of
significantly mutated genes (SMGs) stratified by high (left panel) versus low m7G score (right panel) subgroups. Mutation types were used in
different colors as annotations.
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in order to better predict patient prognosis and guide more

effective immunotherapy strategies.

First, we identified three distinct modification patterns based

on 21 m7G-related genes with distinct biological behaviors and

prominent TME infiltration characteristics. Tumors were

classified into three immunophenotypes: immunological-
Frontiers in Immunology 11
inflammatory, immune-desert, and immune-excluded based

on the immune background of the tumor (31). The immune-

inflammatory type refers to the infiltration of CD4+T, CD8+T

and other immune cells in the tumor parenchyma, which is

related to the inflammatory response (38). Immuno-excluded

means that immune cells are surrounded by a matrix and cannot
A B

D E F

G H

C

FIGURE 6

The prediction to Immunotherapy using m7G score. (A) K-M survival analysis of OS in high and low m7G score groups in the GSE78220 cohort
(p = 0.043). (B) Distribution of m7G scores between immune response and non-response in the GSE78220 cohort. (p=0.03). (C) The percentage
of patients with different responses to immune therapy in the GSE78220 cohort. (D) K-M survival analysis of OS in high and low m7G score
groups in the IMvigor210 cohort (p = 0.04). (E) Distribution of m7G scores between immune response and non-response in the IMvigor210
cohort. (p=0.046). (F) The percentage of patients with different responses to immune therapy in the IMvigor210 cohort. (G) GSVA enrichment
analysis based on Hallmark gene set according to high and low m7G scores in the PD-L1 cohort. (*p < 0.05 **p < 0.01 ***p < 0.001). (H) PD-L1
(i) and CTLA4 (ii) expression levels between high and low m7G score subgroups. NS, no significance; CR, complete response; PR, partial
response; SD, stable disease; PD, progressive disease.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1034516
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2022.1034516
penetrate into the parenchyma (39). Immune desert type refers

to the lack of infiltration of relevant immune cells in both the

parenchyma and stroma of the tumor (31, 39). GSVA showed

that m7G Cluster B significantly enriched immune activation-

related pathways such as T and B cell receptor signaling

pathways and m7G Cluster B had higher infiltration of

adaptive immune cells and macrophages in TME. The levels of

these immune cells directly affect the onset of the adaptive

immune response and correlate with a patient survival

advantage (6, 40, 41). m7G Cluster A was significantly
Frontiers in Immunology 12
enriched for matrix-related pathways, such as TGF-b. TGF-b
suppresses immune responses by limiting T cell infiltration into

tumors (42). m7G Cluster C is associated with immune-

oncogenic pathways such as DNA repair. There is a tendency

to classify Cluster B as an immune-inflammatory phenotype and

m7G Clusters A and C into an immune-desert phenotype.

Then we further investigated the DEGs associated with the

m7G phenotype to further explore the potential biological

functions of these genes. GO enrichment analysis showed that

DEGs were significantly associated with immune-related
A B

D

E

F

C

FIGURE 7

The characteristics of TME in high and low m7G score subgroups. (A) The fraction of Immune Subtypes in high and low m7G score subgroups.
(B) The distribution of m7G score between different Immune subtypes. (C) The association between immune score (i) or stromal score (ii) and
m7G score. (D) The relationship between DNAss (i) or RNAss (ii) and m7G score. (E) Heatmap of immune cell infiltration level based on TIMER,
CIBERSORT, QUANTISEQ, MCP-counter, XCELL, EPIC algorithms. (F) The correlation between m7G score and activity of immune cells in TME.
ns, no significance.
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biological pathways and were identified as three genomic

subtypes, indicating that m7G modification is important in

shaping the TME. In addition, JAK/STAT3 signaling was

upregulated in cluster B, and previous study reported that

JAK/STAT3 signaling enhances PD-L1 expression (43),

therefore they can response to PD-L1 therapy better than

cluster A and C. What’s more, we found that EIF4E3 and

IFIT5 were significantly up-regulated in Cluster B regardless of

m7G modification grouping or gene grouping and were

associated with high survival prognosis of patients. We

reasonably suspect that EIF4E3 and IFIT5 may enhance

antitumor activity by promoting the activation of immune

responses. IFN-induced tetratricopeptide repeat protein 5

(IFIT5), a member of the IFIT family, is an important

enhancer of the innate immune response, initiating several

immune signaling pathways to defend itself, including IRF3,

NF-kB (44, 45). IFIT5 has a special tetratricopeptide repeat

(TPR) structure that regulates cell function by recognizing its

partner to form a complex, affecting cell migration ability and

proliferative activity (46, 47). Studies have reported that high

expression of IFIT5 is associated with more immune cell

infiltration and its low expression is an independent risk factor

for the prognosis of patients with malignant melanoma (48),

which is consistent with the conclusion of this paper.

Furthermore, IFIT5 plays different roles in the development of

certain tumors. For instance, by preventing the transformation

of microRNA (miRNA), IFIT5 can increase the expression of

EMT transcription factors and increase the risk of developing

renal cell carcinoma (49). EIF4E3 is a member of the eukaryotic

translation initiation factor EIF4E family, which affects mRNA

processing, nuclear export, translation and cancer development

by specifically recognizing the 5′m7G cap structure of mRNA.

Unlike other EIF4E family members in their cancer-promoting

roles (50, 51), EIF4E3 competes with EIF4E1 for the same

transcriptional and translational targets, such as VEGF,

cyclinD1, through atypical binding to the cap and hinders

tumor development by reducing the expression of these

factors, which is important. tumor suppressor and was

confirmed in AML (52, 53).

Afterwards, based on DEGs, we established an m7G scoring

system to better assess the heterogeneity of individual m7G

modification patterns. Although high TMB showed better

survival and was often associated with better immune responses

in patients receiving immunotherapy, our results showed lower

TMB in the high m7G score subgroup, suggesting that the m7G

scoring system can be a more effective predictor of patient

prognosis than TMB. We also noticed that the somatic

mutation rate of TTN was highest in the low subgroup, with a

statistically significant difference between the two groups. Studies

have shown that TTN deficiency can down-regulate cell cycle-

related proteins such as Cyclin D1, CDK2 and up-regulate

apoptosis-related proteins, which may be related to the

regulation of its upstream long non-coding RNA TTN-AS1
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(LncRNA-TTN-AS1). Hypomethylation of the transcription

initiation site leads to overexpression of lncRNA-TTN-AS1,

which increases TTN expression by activating promoters

upstream of TTN and promotes tumor proliferation and

migration (54). This may provide a new therapeutic target and

therapeutic strategy for malignant melanoma.

In recent years, only a minority of the population has

benefited from immunotherapy, so we sought to assess whether

the m7G score could serve as a novel biomarker to predict patient

responses to immunotherapy. Two independent immunotherapy

cohorts confirmed the predictive power of the m7G score in anti-

PD-1/L1 immune response, with a significantly higher response

rate in the high m7G score subgroup than in the low group. We

also noticed that NF-KB signal transduction pathway in the high

m7G score subgroup was significantly active in the PD-L1 cohort.

Studies have demonstrated that in patients who have seen a full or

partial response to immunotherapy, the codon G34E mutation in

the NF-KB inhibitor epsilon (NF-KBIE) causes loss of NF-KBIE

function and activation of the NF-KB signal transduction

pathway. Overactivated NF-KB pathway allows patients to

better benefit from immunotherapy and will promote the

maturation of dendritic cells and recruit more CD8+ T cells (55,

56). In addition, we also explored the potential relationship

between m7G score and TME and found a higher degree of

immune cell infiltration of TME in high m7G score subgroup.

This suggests that different m7G modification patterns can have a

huge impact on TME shaping. Subsequently, we established a

nomogram, combined with a variety of clinical indicators, to

establish a personalized prognostic prediction scale to quantify

multiple risk factors of different individuals. These results suggest

that the m7G score can be used to guide immunotherapy

regimens and assess patient prognosis.

However, there are some limitations in this paper. Firstly,

although this paper integrates 21 m7G-related genes, only using

retrospective data may introduce some bias. Therefore, our next

goal is to collect more samples from patients with melanoma and

verify the molecular mechanism of m7G-related gene regulation

through relevant experiments. In addition, due to the small

number of immunotherapy cohorts, more data on patients

receiving ICI treatment in medical centers will be further

collected in the future to establish a prospective study.
Conclusion

In conclusion, we comprehensively assessed the characteristics

of the tumor microenvironment with different m7G modification

patterns and the results indicated that m7G modification plays an

important role in regulating immune responses. Importantly, in

three m7G modification patterns, Cluster B was associated with

high survival prognosis of patients, which showed significant

upregulation of m7G-related genes, EIF4E3 and IFIT5. We also

established an m7G scoring system, which can be an effective
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predictor of patient prognosis. These m7G-related genes may play a

role as a prognostic biomarker for patient resistant or sensitive to

immunotherapy. Assessing the m7G modification pattern of

patients will better guide the immunotherapy regimen and

improve the overall survival rate of patients in the future.
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