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TLR7 agonism accelerates
disease in a mouse
model of primary Sjögren’s
syndrome and drives
expansion of T-bet+ B cells
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1Department of Oral Biology, School of Dental Medicine, The University at Buffalo, State University of
New York, Buffalo, NY, United States, 2Department of Immunology, Microarray & Immune Phenotyping
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Biostatistics, School of Public Health and Health Professions, The University at Buffalo, State University of
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Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease

characterized by chronic inflammation of exocrine tissue, resulting in loss of

tears and saliva. Patients also experience many extra-glandular disease

manifestations. Treatment for pSS is palliative, and there are currently no

treatments available that target disease etiology. Previous studies in our lab

demonstrated that MyD88 is crucial for pSS pathogenesis in the NOD.B10Sn-

H2b (NOD.B10) pSS mouse model, although the way in which MyD88-

dependent pathways become activated in disease remains unknown. Based

on its importance in other autoimmune diseases, we hypothesized that TLR7

activation accelerates pSS pathogenesis. We administered the TLR7 agonist

Imiquimod (Imq) or sham treatment to pre-disease NOD.B10 females for 6

weeks. Parallel experiments were performed in age and sex-matched C57BL/

10 controls. Imq-treated pSS animals exhibited cervical lymphadenopathy,

splenomegaly, and expansion of TLR7-expressing B cells. Robust

lymphocytic infiltration of exocrine tissues, kidney and lung was observed in

pSS mice following treatment with Imq. TLR7 agonism also induced salivary

hypofunction in pSS mice, which is a hallmark of disease. Anti-nuclear

autoantibodies, including Ro (SSA) and La (SSB) were increased in pSS mice

following Imq administration. Cervical lymph nodes from Imq-treated

NOD.B10 animals demonstrated an increase in the percentage of activated/

memory CD4+ T cells. Finally, T-bet+ B cells were expanded in the spleens of

Imq-treated pSS mice. Thus, activation of TLR7 accelerates local and systemic

disease and promotes expansion of T-bet-expressing B cells in pSS.
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1 Introduction

Primary Sjögren’s syndrome (pSS, also referred to as Sjögren’s

disease) is an autoimmune disease that primarily affects women.

Patients with pSS experience many debilitating disease

manifestations, including salivary hypofunction, diminished tear

production, interstitial lung disease and nephritis (1). In addition,

several hematopoietic abnormalities are noted, such as

hypergammaglobulinemia and hypocomplementemia (2, 3) and

pSS patients are at increased risk of B cell lymphoma development

(4). Primary SS is incurable at present, although clinical trials are

ongoing to discover effective therapeutics (5). Previous studies

from our group and others highlight the importance of MyD88-

mediated signaling cascades in specific disease manifestations (6–

8), although the receptor-ligand interactions that culminate in

MyD88-dependent disease sequelae remain incompletely

understood. Indeed, additional studies are needed to define the

molecular networks that contribute to disease initiation

and persistence.

Both TLR and IL-1R family members drive MyD88-

dependent inflammation, and TLR7 is a MyD88-dependent

endosomal TLR that has been shown to be of critical

importance in several autoimmune diseases (9–11), most

notably Systemic Lupus Erythematosus (SLE) or lupus (12).

Since SLE shares overlapping clinical and molecular features

with pSS (13–16), we hypothesized that activation of TLR7

accelerates disease in a pSS mouse model.

Although TLR7 is expressed by diverse cells types, there is

considerable evidence that the activation of TLR7-expressing B

cells, in particular, is a central disease mechanism that drives SLE

in mice and humans (17–20). TLR7 plays an integral role in host

defense, as it elicits a protective response upon recognition of

single-stranded viral RNA (21). Seminal studies revealed that

self-derived ligands also activate TLR7, including RNA-

associated immune complexes and U11 small nuclear RNA

(U11snRNA), and this ability to recognize self-derived

moieties underlies its pivotal role in autoimmunity (22–24).

Although there is compelling evidence that TLR7 is integral

to lupus pathogenesis, there is a relative paucity of studies

examining this TLR in pSS. Indeed, TLR7 activation is

implicated in pSS patients, but little is known regarding its

role in disease. Studies in pSS patients reveal TLR7 is expressed

and elevated in salivary gland epithelial cells, minor salivary

glands, and in parotid tissues from pSS patients (25–28).

Additionally, TLR7 is dysregulated in the immune

compartment, as levels are increased in PBMCs, B cells, and

CD14+ monocytes from pSS patients (26, 28–31). Treatment of

pSS B cells with a TLR7 agonist (CL264) caused elevated IFNa
secretion as compared to B cells derived from healthy controls

(30). Moreover, stimulation of TLR7 in pSS patient-derived

naïve B cells using Imiquimod (Imq) resulted in increased

plasma cell differentiation and class switching compared to B

cells from healthy controls (32). Lastly, alterations in TLR7
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signaling were identified in PBMCs from pSS patients using

phosphorylation profiling (33).

Data from mouse models also provide corroborating evidence

that TLR7 agonism mediates organ-specific disease (11, 34, 35).

Studies in TLR8-/- animals revealed that these mice develop lupus

and SS concomitantly, as sialadenitis, autoantibody production,

immune complex deposition, salivary cytokine production,

glomerulonephritis, and lung inflammation were observed (34,

36). These disease manifestations were dependent on TLR7, as

disease was abrogated in mice lacking both TLR7 and TLR8 (34,

36). While these studies provide compelling evidence that TLR7

mediates SS, it is important to note that SS and lupus share

overlapping disease features and so it is difficult to examine disease

characteristics that result from SS specifically in the background of

another autoimmune disease (15, 16). Further work in the NOD/

ShiLtJ model revealed that TLR7 is required for lacrimal gland

inflammation that is characteristic of SS (11). It is also challenging

to assess SS-specific disease manifestations in the NOD/ShiLtJ

mouse model, however, as these animals develop SS and type 1

diabetes (T1D), and hyperglycemia often accompanies T1D in this

strain. Recent work revealed that hyperglycemia seen in the

context of T1D influences salivary disease manifestations

previously thought to be specific for SS (37, 38). Thus, given the

potential of other autoimmune conditions to influence or

confound interpretation of SS-related disease manifestations,

studies are needed in pSS models to examine how TLR7

activation mediates SS-specific pathology.

To this end, we treated pre-disease stage (6-week-old)

NOD.B10Sn-H2b (NOD.B10) pSS females with the TLR7

agonist Imiquimod (Imq) for 6 weeks, euthanized the animals,

and evaluated local and systemic disease. Of note, we used a

well-characterized pSS mouse model that develops clinical stage

disease at 26 weeks of age. The use of pre-disease mice allowed us

to determine if TLR7 activation accelerates disease, as animals

normally display negligible signs of disease at 12 weeks of age

(39). We performed parallel studies in age and sex-matched

C57BL/10 (BL/10) healthy controls to assess whether the

changes induced by Imq treatment were more robust in the

pSS model. Strikingly, NOD.B10 mice exhibited cervical

lymphadenopathy and splenomegaly following topical Imq

treatment. Additionally, the percentage of TLR7-expressing

cervical lymph node (cLN) B cells was expanded in NOD.B10

mice that received the TLR7 agonist. TLR7 agonism promoted

exocrine-gland inflammation, and pSS mice treated with Imq

exhibited a significant loss of salivary flow that was more

pronounced than that observed in the sham treatment group.

Pulmonary and renal inflammation were enhanced in NOD.B10

mice that received Imq, and total IgG was elevated in the sera of

these animals compared to BL/10 females that also received Imq

treatment. Autoantibodies were also enriched in pSS mice

following TLR7 agonism. Finally, the percentage of activated/

memory cLN CD4+ T cells were increased and T-bet+ B cells

(also referred to as age-associated B cells or ABCs) were
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dramatically expanded in Imq-treated pSS animals. Thus, TLR7

agonism drives local and systemic pSS disease, and resulted in

accelerated disease in the context of pSS.
2 Materials and methods

2.1 Mice

C57BL/10 (BL/10) (stock #000666) and NOD.B10Sn-H2b

(NOD.B10) (stock #002591) were obtained from Jackson Labs.

Animals were bred and maintained at the University of Buffalo

laboratory animal facility in accordance with IACUC and NIH

guidelines. All animals used in this study were female.
2.2 Treatment regimen

NOD.B10 female mice at a pre-disease stage (6 weeks of age)

were given a sham base cream or 5% Imq cream. The Imq-

containing cream was identical to the sham, with the exception

of the addition of Imq. The treatments were administered

epicutaneously to the ear three times a week for 6 weeks, as

previously described (40). Parallel studies were performed using

age and sex-matched healthy BL/10 controls. A detailed description

of the treatment groups is provided in Supplementary Table 1.
2.3 Saliva and sera collection

Saliva was collected as previously described (7). Briefly, mice

were injected with 0.3 mg/mL pilocarpine HCL (Sigma Aldrich)

and saliva was collected for ten minutes on ice. Saliva was

centrifuged and the volume assessed using a pipette. Saliva was

collected prior to any treatment (5 weeks of age) and before

euthanasia (12 weeks of age). Sera were harvested upon

euthanasia by cardiac puncture. Blood was incubated at room

temperature for 2 hours, and centrifuged at 0.7 g for 20 minutes.

Sera were collected and frozen at -20 °C until use.
2.4 ELISAs

ELISAs were performed to quantify levels of IgM and IgG

(Bethyl Laboratories), BAFF (R&D Systems), and b2-
microglobulin (Lifespan Biosciences). Serial dilutions were

prepared and values were calculated in accordance with

manufacturer instructions. All samples were evaluated

in duplicate.
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2.5 HEp2 staining and autoantigen arrays

HEp2 staining was performed as previously described (7).

Briefly, sera were diluted and incubated with HEp2 slides (Bion

Enterprises) and goat anti-mouse IgG-Alexa 488 (Southern

Biotech, 1.1 mg/mL) was used to detect the presence of anti-

nuclear autoantibodies (ANAs). Slides were imaged using an

Andor Dragonfly Microscope with a 20X glycerol objective (NA

0.75). Indirect immunofluorescence staining patterns were

classified according to the ICAP using ImageJ after

normalizing to the median intensity of each group (41).

Autoantigen arrays were performed in collaboration with the

UT Southwestern Genomics and Microarray Core Facility as

previously described (7).
2.6 Flow cytometry

Spleens and cLNs were harvested and dissociated by

mechanical dispersion. Following RBC lysis with ACK Lysis

Buffer (Lonza), cells were incubated with Fc block (CD16/32,

clone 2.4G2, BD Biosciences) and treated with antibodies

directed against the following as indicated: B220 (clone RA3-

6B2, BD Biosciences), CD23 (clone B3B4, Biolegend), CD21/35

(clone 7G6, BD Biosciences), T-bet (clone 4B10, BD

Biosciences), CD11c (clone HL3, BD Biosciences), CD4 (clone

GK1.5, BD Biosciences), CD8a (clone 53-6.7, BD Biosciences),

CD44 (clone IM7, BD Biosciences), CD62L (clone MEL-14, BD

Biosciences), CD138 (clone 281-2, BD Biosciences), CD69 (clone

H1.2F3, Biolegend), and TLR7 (clone A94B10, BD Biosciences).

Data were acquired using a BD Biosciences Fortessa and

analyzed with FlowJo software (BD Biosciences).
2.7 Tissue collection and
histological assessment

Submandibular salivary glands (SMGs), parotid salivary

glands, lacrimal glands, lung and kidneys were harvested,

tissue was fixed in 10% formalin and paraffin-embedded.

Tissues were sectioned and stained with H&E. Slides were

scanned using an Aperio ScanScope system (Leica Biosystems)

with a 20X objective and 0.75 numerical aperture. Image/Fiji

(version 1.53c) was used to measure the lymphocytic infiltration

present in the tissues (42–44). The percent of lymphocytic

infiltration was quantified by dividing the area of tissue

occupied by lymphocytes by the total area of tissue examined

and multiplying the value by 100.
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2.8 Statistics

Autoantigen array data were analyzed using previously

described methods (7). Briefly, for each comparison of two

groups (BL/10 sham-treated versus BL/10 Imq-treated,

NOD.B10 sham-treated versus NOD.B10 Imq-treated, BL/10

Imq-treated versus NOD.B10 Imq-treated, and BL/10 sham-

treated versus NOD.B10 sham-treated) we first performed the

two-sample t-test for all autoantigens, and then used the p. adjust

R function in the stats R package to adjust the p-values in order to

control the false discovery rate (45). The method proposed by

Benjamini and Yekutieli was used in the adjustments (46). An

autoantigen was deemed significant if the corresponding adjusted

p-value was less than 0.05. The autoantigen array data is deposited

in the Gene Expression Omnibus (GEO) database under the

accession number GSE212467. Where appropriate, all other

data were analyzed using paired student-T tests or ANOVA

(Kruskal-Wallis test with multiple comparisons). All analyses

were performed using the R programming language and Prism

software (GraphPad) (47).
3 Results

3.1 Imq-treated pSS mice developed
splenomegaly, cervical lymphadenopathy
and expansion of TLR7-expressing B cells

To determine if TLR7 agonism accelerates pSS pathogenesis,

we administered the TLR7 agonist Imq or sham base cream to

pre-disease NOD.B10 females. Parallel experiments were

performed in age and sex-matched BL/10 mice. An overview

of the treatment timeline is provided in Figure 1A. BL/10 mice

were treated in 3 individual groups, and NOD.B10 mice were

treated in 4 groups. Data from each strain and treatment group

were pooled from multiple experiments. An overview of the

treatment groups is provided in Supplementary Table 1. Imq-

treated BL/10 and NOD.B10 strains exhibited splenomegaly and

cervical lymphadenopathy compared to sham-treated controls,

and NOD.B10 mice had significantly higher spleen weights than

sham-treated counterparts (p = 0.0001). BL/10 mice, in contrast,

showed no difference in spleen weights between sham and Imq-

treated groups (Figure 1B).

Since B cells are integral to pSS pathogenesis and TLR7 is

highly expressed in the B cell compartment, we sought to

determine if B cell TLR7 expression was altered following Imq

treatment. There were no significant differences in

the percentage of splenic B cells expressing TLR7 between the

sham or Imq-treated strains in BL/10 or NOD.B10 mice. The

percentage of B cells expressing TLR7 was upregulated in Imq-

treated NOD.B10 mice, however, as compared to B cells derived

from Imq-treated BL/10 controls (p = 0.01) (Figure 1C). The
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percentage of TLR7+ cLN B cells was similar between sham and

Imq-treated BL/10 mice, although Imq treatment caused an

increase in this population in pSS mice as compared to sham-

treated NOD.B10 controls (p = 0.03). Additionally, the cLN B

cell population derived from Imq-treated NOD.B10 mice that

expressed TLR7 was expanded compared to B cells derived from

Imq-treated BL/10 mice (p = 0.009) (Figure 1C). Finally, the

percentage of activated splenic and cLN B cells expressing TLR7

did not differ between sham and Imq-treated groups in both BL/

10 or NOD.B10 mice (Figure 1D), although the percentage of

activated TLR7+ splenic B cells derived from sham-treated

NOD.B10 mice was elevated as compared to those derived

from sham-treated BL/10 females (p = 0.02). In addition, the

percentage of activated TLR7+ splenic B cells was elevated in

Imq-treated pSS mice and compared to their BL/10 counterparts

(p = 0.01) (Figure 1D). Finally, activated TLR7+ splenic and cLN

B cells derived from Imq-treated NOD.B10 animals were

expanded as compared to those derived from Imq-treated BL/

10 mice (p = 0.0005) (Figure 1D). Thus, TLR7 agonism induces

cervical lymphadenopathy, splenomegaly, and expansion of

TLR7-expressing B cells in secondary lymphoid organs, and

these changes are more pronounced in pSS mice as compared to

healthy controls.
3.2 TLR7 agonism induces sialadenitis,
dacryoadenitis and loss of salivary flow

We next evaluated exocrine gland inflammation and loss of

salivaryflow ineachof the treatmentgroups, as these arehallmarksof

pSS. Sialadenitis in the submandibular gland was increased in BL/10

and NOD.B10 mice that received Imq treatment as compared to

sham-treated controls, (p = 0.01 and p = 0.003 respectively). Of note,

the parotid glands were spared from inflammation in all treatment

groups, as lymphocytic infiltration was only observed in 1NOD.B10

Imq-treated mouse (Supplementary Figure 1). Dacryoadenitis was

enhanced in BL/10 and NOD.B10mice that received Imq treatment

as compared to sham-treated controls (p = 0.02 and p = 0.001,

respectively), although there were no differences observed in either

salivary or lacrimal inflammation between BL/10 and NOD.B10

mice that received Imq (Figures 2A, B).

To examine whether salivary gland function was altered

following TLR7 activation, we quantified salivary production in

all groups at pre- and post-treatment time points (Figure 1A).

Salivary flow remained unchanged in BL/10 animals that

received either sham cream or Imq (Figure 2C). In pSS mice,

both sham and Imq-treated animals lost salivary flow over time

(p = 0.01 and p < 0.0001, respectively). These changes, however,

were more pronounced in animals that received Imq as

compared to the sham treatment group (Figure 2C).

Therefore, TLR7-mediated signals mediated exocrine

inflammation and salivary hypofunction.
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3.3 TLR7 agonism induced pulmonary
and renal inflammation in pre-disease
NOD.B10 mice

To determine if TLR7 stimulation induces systemic

inflammation in pSS mice that is characteristic of pSS patients,

we assessed pulmonary and renal inflammation in each of the

treatment groups. There were no significant differences in the

area of lymphocytic infiltration in either lung or kidney tissue in

BL/10 mice treated with Imq as compared to strain-matched
Frontiers in Immunology 05
sham controls (Figures 3A, B). In contrast, TLR7 activation

induced interstitial pneumonitis and nephritis in pSS mice (p =

0.04 and 0.02, respectively), although there was no difference in

inflammation in either tissue between Imq-treated BL/10 and

NOD.B10 mice (Figures 3A, B). All of the Imq-treated NOD.B10

mice displayed perivascular lymphoplasmacytic inflammation in

the kidney, concentrated at the pelvis but tracking into the

medulla and cortex in some cases (Figure 3B). In addition,

kidneys from 3 of the NOD.B10 Imq-treated mice had evidence

of glomerular damage (proteinuria), which was scored as
A

B

DC

FIGURE 1

TLR7 agonism induces splenomegaly, cervical lymphadenopathy and expansion of TLR7-expressing B cells in NOD.B10 mice. (A) NOD.B10 and
BL/10 mice were treated with sham or Imq-containing cream beginning at 6 weeks of age for 6 weeks. The treatment timeline is shown. (B)
Representative images of spleen and cLNs from each treatment group and quantification of spleen weights is shown (n = 6 BL/10 sham, 6 BL/10
Imq-treated, 8 NOD.B10 sham, and 9 NOD.B10 Imq-treated mice). (C) Spleens and cLNs of sham (n = 6 BL/10 and 9 NOD.B10) or Imq-treated
mice (n = 6 BL/10 and 7 NOD.B10) were harvested and flow cytometry was performed. Cells were gated on B220 and expression of TLR7 is
shown. The percentages of B220+, TLR7+ B cells are quantified for spleen and cLNs, respectively. (D) Cells were gated on B220, and the
percentages of cells in spleen and cLNs expressing TLR7 and CD69 are shown. Horizontal lines represent the mean and SEM (NS, non-
significant, *p < 0.05, ***p < 0.001, and ***p < 0.0001).
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minimal (n = 1/9), mild (n = 1/9), or severe (n = 1/9). None of

the Imq-treated BL/10 mice exhibited glomerular damage.

Therefore, TLR7 agonism drives systemic inflammation that is

characteristic of pSS.
3.4 Total and ANA-specific antibodies
are increased in pSS mice following
TLR7 activation

We next assessed total and ANA-specific antibodies in sham

and Imq-treated BL/10 and NOD.B10 mice. There were no

differences in total IgM or IgG titers between sham and Imq-

treated strains in both BL/10 and NOD.B10 mice. We noted a

significant increase, however, in total IgG titers when comparing

Imq-treated NOD.B10 mice to their BL/10 counterparts (p =

0.0003) (Figure 4A). We next performed HEp2 assays to evaluate

ANA-specific IgG antibodies in the sera of pSS mice. Of note, we

did not carry out these analyses in the BL/10 treatment groups,

as IgG titers were low and remained unchanged following Imq

treatment. We observed negligible ANAs in most of the sham-
Frontiers in Immunology 06
treated pSS mice (7/11), although a minority of animals

displayed nucleolar homogenous (1/11) or nuclear speckled

patterns (3/11) (Figure 4B). We then analyzed the Imq-treated

pSS mice. In contrast, all animals displayed ANA-specific IgG

autoantibodies. The majority of the sera examined displayed a

nuclear speckled pattern (6/7), while a cytoplasmic speckled

pattern was observed in one of mice examined (1/7) (Figure 4B).

Thus, TLR7 agonism induced ANA production in Imq-treated

pSS mice, and the patterns observed were consistent with RNA-

associated autoantigens.
3.5 RNA-associated autoantigens
are increased in pSS mice following
Imq treatment

To confirm and extend the ELISA and HEp2 studies, we

performed autoantigen arrays on sera derived from sham or

Imq-treated BL/10 and NOD.B10 mice. We focused our analyses

on ANA-specific IgM and IgG (Figure 5). We first examined

whether ANAs were elevated in sera from BL/10 mice treated
A

B

C

FIGURE 2

pSS mice treated with Imq exhibit robust lymphocytic infiltration of exocrine tissues and loss of salivary flow. (A) SMG and (B) lacrimal tissues
were harvested from sham (n = 10) or Imq-treated female mice (n = 9) and from sham (n = 6) or Imq-treated age and sex-matched controls
(n = 6). One representative photomicrograph is shown from each group. White arrows indicate exocrine gland ducts and black arrows indicate
inflammation. Lymphocytic infiltration was quantified using ImageJ. Horizontal lines represent the mean and SEM (C) Stimulated saliva was
collected prior to treatment and at the conclusion of the experiment from BL/10 and NOD.B10 mice. (NS = non-significant, *p < 0.05, **p <
0.001, ***p < 0.001).
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1034336
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Punnanitinont et al. 10.3389/fimmu.2022.1034336
with Imq as compared to sham controls. We found IgM

autoantibodies directed against SmD (p = 0.001), ssDNA (p =

0.04), SP100 (p = 0.02), gp210 (p = 0.006), genomic DNA (p =

0.003), and U1-snRNP 68/70 kDa (p = 0.002) were elevated in

Imq-treated mice (Figures 5A, B). Additionally, IgG

autoantibodies directed against genomic DNA (p = 0.01), PL-7

(p = 0.006), U1-snRNP-A (p = 0.005), Jo-1 (p = 0.002), Ku (p70/

p80) (p = 0.001), Nup62 (p = 0.001), PL-12 (p = 0.001), and U1-

snRNP 68/70 kDa (p = 0.001) were elevated in Imq-treated BL/

10 mice (Figures 5C, D). We next examined autoantibodies in

sham and Imq-treated NOD.B10 mice. As expected, we found

enrichment of numerous IgM and IgG specific ANAs in the sera

from NOD.B10 mice, and many of them recognized ribonuclear

proteins. Indeed, IgM directed against U1-snRNP-A (p = 0.05),

PL-7 (p = 0.04), nucleosome (p = 0.03), histone (p = 0.02), Ku

(p70/p80) (p = 0.02), SRP54 (p = 0.02), genomic DNA (p = 0.02),

La/SSB (p = 0.02), PL-12 (p = 0.02), ssDNA (p = 0.01), TIF1-g (p
= 0.01), Sm (p = 0.01), PM/Scl-100 (p = 0.008), Scl-70 (p =

0.007), SP100 (p = 0.006), nucleolin (p = 0.006), SmD1 (p =

0.006), Nup62 (p = 0.005), dsDNA (p = 0.005), Mi-2 (p = 0.005),

Sm/RNP (p = 0.005), CENP-A (p = 0.003), CENP-B (p = 0.003),

PM/Scl-75 (p = 0.003), Ro/SSA (60 kDa) (p = 0.003), DFS70 (p =

0.003), U1-snRNP 68/70 kDa (p = 0.001), Ro/SSA (52 kDa), U1-

snRNP-C (p = 0.001), SmD (p = 0.001), and U1-snRNP-B/B

were enriched in Imq-treated mice as compared to sham

controls (Figures 5A, B). Finally, ANA-specific IgG was also

elevated in the NOD.B10-treated mice, as TIF1-g (p = 0.03),

SmD1 (p = 0.03), gp210 (p = 0.03), U-snRNP-B/B (p = 0.02),

PM/Scl-100 (p = 0.01), Scl-70 (p = 0.01), Ku (p70/p80) (p =

0.009), Mi-2 (p = 0.009), dsDNA (p = 0.008), nucleolin (p =
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0.006), Nup62 (p = 0.006), PM/Scl-75, (p = 0.006), Ro/SSA (52

kDa) (p = 0.006), Histone (p = 0.005), PL-12 (p = 0.005), Ro/SSA

(60 kDa) (p = 0.004), La/SSB (p = 0.002), U1-snRNP-C (p =

0.002), and U1-snRNP 68/70 kDa (p = 0.001) were elevated. Of

note, there were no differences observed between Imq-treated

BL/10 and NOD.B10 animals in either IgM or IgG

autoreactivity, although both ANA-specific IgM and IgG were

elevated in NOD.B10 sham-treated animals as compared to

analogous BL/10 mice (Supplementary Figure 2).
3.6 TLR7 agonism resulted in the
expansion of activated/memory
T cells and T-bet+ B cells

Since autoantibodies were elevated in pSS mice following

Imq treatment, we performed studies to evaluate CD4+ and

CD8+ T cell populations and T-bet+ B cells in the spleens and

cLNs of each treatment group. There were no differences in the

percentage of CD4+ T cells in either the spleens or cLNs from

derived from BL/10 or NOD.B10 mice in any of the groups

(Supplementary Figures 3A, C). In addition, the percentage of

splenic CD8+ T cells was unchanged between BL/10 sham and

Imq-treated animals, although this population was significantly

diminished in the Imq-treated NOD.B10 mice as compared to

sham-treated controls (p = 0.0004) (Supplementary Figure 3B).

In the cLNs, the percentage of CD8+ T cells was decreased

significantly in both Imq-treated NOD.B10 and BL/10 mice as

compared to sham-treated controls of the same strain (p = 0.04

and p = 0.01, respectively) (Supplementary Figure 3D).
A

B

FIGURE 3

TLR7 agonism induces significant pulmonary and renal inflammation in pSS mice. (A) Lung and (B) kidney tissues were harvested from sham (n = 10)
or Imq-treated female pSS mice (n = 9) and from sham (n = 6) or Imq-treated age and sex-matched controls (n = 6). One representative
photomicrograph is shown from each group. Lymphocytic infiltration was quantified using ImageJ and black arrows indicate tissue inflammation.
Horizontal lines represent the mean and SEM (NS = non-significant, *p < 0.05).
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We next assessed CD4+ and CD8+ activated/memory B cells

in spleens and cLNs. We found that the percentage of splenic

activated/memory CD4+ T cells was increased significantly in

Imq-treated BL/10 mice compared to the sham controls
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(p = 0.003), although there was no difference in this

population in spleens derived from sham and Imq-treated

NOD.B10 mice. Moreover, the percentage of splenic activated/

memory CD4+ T cells was similar in Imq-treated BL/10 and
A

B

FIGURE 4

NOD.B10 mice treated with Imq demonstrate high IgG titers and ANA levels. Sera were harvested from NOD.B10 sham (n = 10) and Imq-treated
female mice (n = 9) and from BL/10 sham (n = 6) and Imq-treated female BL/10 mice (n = 6) by cardiac puncture following euthanasia. (A) Total
IgM and IgG titers were quantified by ELISA. Horizontal lines represent the mean and SEM (NS, non-significant, ****p < 0.0001). (B) Anti-nuclear
autoantibodies were detected by HEp2 staining. One representative image is shown from each group.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1034336
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Punnanitinont et al. 10.3389/fimmu.2022.1034336
NOD.B10 animals (Figure 6A). In contrast, cLN activated/

memory CD4+ T cells were expanded in both BL/10 and

NOD.B10 Imq-treated mice as compared to their sham-treated

counterparts (p = 0.02 and p = 0.01, respectively) (Figure 6A). Of
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note, there was no significant difference the activated/memory

CD4+ T cell populations in Imq-treated cLNs derived from

NOD.B10 mice as compared to those derived from Imq-

treated BL/10 animals (Figure 6A).
A B

DC

FIGURE 5

Autoantigen arrays reveal enrichment of autoantibodies in the sera of Imq-treated NOD.B10 mice. Sera were harvested from NOD.B10 sham (n
= 9) or Imq-treated female mice (n = 7) by cardiac puncture following euthanasia. Sera were harvested similarly from BL/10 sham (n = 6) or
Imq-treated female BL/10 mice (n = 6). Autoantigen arrays were performed and heatmaps for ANA-specific (A) IgM and (C) IgG are shown.
ANA-specific (B) IgM and (D) IgG that was significantly enriched in Imq-treated BL/10 and NOD.B10 mice as compared to sham-treated strain-
matched controls is shown.
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CD8+ activated/memory T cells were expanded in the spleen

of BL/10 mice following Imq treatment (p = 0.0006), and no

changes were observed in this population in Imq-treated

NOD.B10 mice as compared to sham-treated controls

(Supplementary Figure 3E). Finally, the percentage of

activated/memory CD8+ T cells remained unchanged in cLNs

from both BL/10 and NOD.B10 Imq-treated mice as compared

to sham controls (Supplementary Figure 3F). In contrast, in

NOD.B10 sham-treated mice showed a higher percentage of

activated/memory CD8+ T cells as compared to sham-treated

BL/10 mice (p = 0.004) (Supplementary Figure 3F).
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To assess if B cell populations were altered following TLR7

agonism, we assessed the percentage of total B cells, as well as the

Fo and MZ B cell populations in our treatment groups. We found

that the percentages of total splenic and cLN B cells and Fo B cells

in the spleen did not differ between sham and Imq-treated strains

in both BL/10 and NOD.B10 mice (Supplementary Figures 4A, B,

D). Additionally, there was no change in the percentage of MZ B

cells between sham and Imq-treated BL/10mice. In contrast, Imq-

treated MZ B cells from NOD.B10 mice were decreased

dramatically as compared to those from NOD.B10 sham

controls (p < 0.0001) (Supplementary Figure 4C). Additional
A

B

DC

FIGURE 6

Activated/memory T cells and T-bet-expressing B cells are expanded in secondary lymphoid organs of pSS mice. Spleens and cLNs of sham (n
= 9) or Imq-treated NOD.B10 mice (n = 7) and from sham (n = 6) or Imq-treated age and sex-matched controls (n = 6) were harvested and
flow cytometry was performed. (A) Cells were gated on CD4 and CD44 and CD62L expression is shown. The percentages of activated/memory
T cells (CD4+, CD44+, CD62L-) from spleen and cLNs are shown. (B) The percentages of ABCs (B220+, CD21-, CD23-) were quantified. ABCs
were gated and expression of (C) T-bet and (D) Tbet/CD11c are shown. Plots from one representative animal from each group is shown.
Horizontal lines represent mean and SEM (NS, non-significant, *p < 0.05, **p < 0.01, ****p < 0.0001).
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studies were performed to assess BAFF levels in the sera of sham

and Imq-treated mice. We found that Imq-treated NOD.B10 mice

had elevated serum BAFF levels as compared to their sham-

treated counterparts (p = 0.049). While BAFF levels tended to be

higher in the BL/10 Imq-treated mice as compared to sham-

treated controls, this difference did not reach statistical

significance (p = 0.053) (Supplementary Figure 4E). Finally,

serum b2-microglobulin levels were assessed. We found that b2-
microglobulin was elevated in the sera of Imq-treated NOD.B10

mice as compared to sham-treated NOD.B10 controls (p = 0.02).

There was no difference between sham and Imq-treated BL/10

mice, or between Imq-treated BL/10 and NOD.B10 mice

(Supplementary Figure 4F).

We next assessed the splenic ABC populations in sham and

Imq-treated mice. The percentage of ABCs (B220+, CD21-,

CD23-) in sham and Imq-treated BL/10 animals was similar

(Figure 6B). In contrast, we observed a significant expansion of

ABCs derived from Imq-treated NOD.B10 mice as compared to

sham controls (p < 0.0001) (Figure 6B). We then assessed the

percentage of ABCs that expressed T-bet and CD11c, as these

markers are characteristic of ABCs, and identify distinct subsets

within this population. We found that T-bet expression was

significantly higher in ABCs derived from Imq-treated strains

than sham controls in both BL/10 and NOD.B10 animals (p =

0.008 and 0.02, respectively) (Figure 6C). However, there was no

difference in T-bet expression in ABCs derived from Imq-treated

NOD.B10 mice as compared to those from Imq-treated BL/10

mice (Figure 6C). Lastly, there were no significant differences in

the percentage of ABCs that expressed T-bet and CD11c

between Imq-treated strains and sham controls in both BL/10

and NOD.B10 animals (Figure 6D). Finally, we examined the

percentage of splenic monocytic cells (B220-, CD11c+) in each of

the treatment groups. We found no differences between the

percentage of CD11c+ cells in spleens derived from BL/10 mice

when we compared sham and Imq-treated mice. In addition, the

percentage of CD11c+ cells was similar between Imq-treated BL/

10 and NOD.B10 mice. When we examined the CD11c-

expressing monocytes in NOD.B10 mice, however, we found

that Imq-treated mice exhibited higher levels of this population

as compared to sham-treated counterparts (p = 0.007)

(Supplementary Figure 5). Thus, treatment of pSS mice with a

TLR7 agonist results in the expansion of activated/memory

CD4+ T cells, T-bet+ B cells, and CD11c+ monocytes.
4 Discussion

4.1 TLR7 signaling mediates local and
systemic pSS disease

Our study revealed that pre-disease stage pSS mice develop

accelerated local and systemic pSS manifestations in response to
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treatment with the TLR7 agonist Imq. Salivary and lacrimal

inflammation were increased as compared to sham-treated

NOD.B10 controls in response to Imq treatment, although the

area occupied by lymphocytes in exocrine tissue did not differ

between Imq-treated BL/10 and NOD.B10 mice (Figures 2A and

B). Salivary flow, however, was reduced in pSS mice treated with

Imq, while saliva production remained unchanged in healthy

controls following Imq administration (Figure 2C). In

agreement with the literature, these data suggest that salivary

hypofunction is not mediated exclusively by the presence of

lymphocytic infiltrates within salivary tissue, and other factors,

such as apoptosis and anti-muscarinic 3 receptor autoantibodies,

likely contribute to the dryness observed (48–51). This finding

also raises the intriguing possibility that TLR7 activation in the

parenchymal compartment could be a prime driver of the

salivary dysfunction observed in pSS mice, although further

studies in TLR7-deficient models are needed to establish

this conclusively.

In contrast to our findings in exocrine tissue, inflammation

was increased in the lungs and kidneys from pSS mice in

response to Imq treatment, and this was not observed in the

analogous BL/10 treatment group (Figure 3). Whether this

observation relates to intrinsic differences in the pulmonary

and renal microenvironments in NOD.B10 mice, and/or

whether this inflammation is driven primarily by TLR7-

mediated peripheral immune cell activation remains to

be determined.

The exocrine-specific and extraglandular disease

manifestations were similar when we compared the Imq-treated

NOD.B10 mice to NOD.B10 female mice at the clinical disease

stage that develop pSS spontaneously. Differences, however, were

observed in the antibody repertoire of Imq-treated mice as

compared to pSS mice as the clinical disease stage. Indeed, HEp2

staining of NOD.B10 Imq-treated mice revealed that their sera

displayed primarily a speckled pattern, while only aminority of the

serum samples derived from NOD.B10 mice at 6 months of age

exhibited a speckled pattern (4/15 animals) (7). In addition, IgM

titers were not increased in Imq-treated animals, while these are

elevated in NOD.B10 mice that developed disease spontaneously

(7, 39). Finally, cervical lymphadenopathy and splenomegaly were

observed in Imq-treated mice, while this is not characteristic of

NOD.B10 females that develop the disease spontaneously (7).

While we do not know the reason for these differences, we

suspect that in spontaneous disease many other factors besides

TLR7 activation contribute to disease development, as additional

MyD88-dependent and -independent signaling cascades are

implicated (6, 52–55). Thus, while TLR7 agonism recapitulates

many features of pSS disease that develop spontaneously in this

model, other inflammatory networks likely contribute to disease.

Table 1 provides a comparison of the findings in Imq-treated

NOD.B10 mice with those observed in NOD.B10 mice at the

clinical disease stage.
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4.2 TLR7 signaling cascades are
critical for the development and
expansion of ABCs

Activation of distinct B cell subsets by TLR7 ligands is integral to

autoimmunity, and elegant studies conducted over the past decade

have revealed an important role for ABCs inmouse models of lupus

pathogenesis (17, 56–59). Of direct relevance to the current study,

TLR7 is required for ABC expansion in the context of lupus (57, 58),

and B cells that express T-bet drive lupus-like disease in mice (56).

Importantly, following stimulation with a TLR7 agonist, ABCs

derived from healthy mice secrete heightened IgM and IgG (58).

Additionally, ABCs fromNZB/WF1 lupus mice produce high levels

of IgG autoantibodies as compared to other B cell subsets derived

from the same strain (58), and corroborative in vivo studies

demonstrate that depletion of the ABC subset leads to a reduction

in autoantibody titers (58). Subsequent work revealed that T-bet+ B

cells mediate autoantibody production in the context of lupus (56).

Significantly, ablation of T-bet+ B cells diminished germinal centers,

protected against kidneydamage, and reducedBandTcell activation

(56), demonstrating that ABCs play an essential role

in autoimmunity.
4.3 T-bet+ B cells are expanded in pSS
mice in response to TLR7 activation

We found high titers of total and autoreactive IgG in pSS mice

following TLR7 agonism (Figures 4, 5). This was accompanied by

dramatic expansionof splenicABCs (B220+,CD23-,CD21-, T-bet+B

cells) thatwas greater than that observed in shamcontrols andBL/10

Imq-treated animals (Figures 4A, 6B, C). Moreover, stimulation of

pre-disease pSS females with Imq resulted in elevated percentages of

B cells expressing TLR7 in cLNs (Figure 1C). Furthermore, the
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percentage of activated B cells that expressed TLR7 was expanded in

the spleens and cLNs of Imq-treated pSSmice as compared with the

BL/10 treatmentgroup thatalso received Imq(Figure1D).Activated/

memoryCD4+T cells were also increased in the cLNs of Imq-treated

mice (Figure 6A). It is interesting to speculate that this T cell

expansion may be driven by the elevated percentages of T-bet+ B

cells observed in pSS mice following treatment.

Evidence for ABC-driven T cell expansion in autoimmunity

is provided by data from a lupus model that exhibits excessive

ABC accumulation (60). In this model, the ABC subset induced

expansion and heightened proliferation of CD44+CD62L- T

effector memory cells as compared to the Fo B cell subset, and

this was mediated by the potent antigen presentation function

exhibited by ABCs (60). Altogether, this work suggests that

TLR7 activation in the B cell compartment is integral to pSS

disease progression, although further studies are needed to

determine whether TLR7-induced T-bet+ B cells are the prime

driver of disease in our model, or whether organ-specific TLR7

activation of stromal and parenchymal cells also mediates

pathology. Of note, these possibilities are not mutually

exclusive, as TLR7 signals in diverse tissue microenvironments

may activate distinct signaling networks that govern specific

disease manifestations.

Our work is relevant to the human disease, as B cells that share

both phenotypic and functional properties with murine ABCs are

dysregulated in human autoimmunity (59). Of particular

significance, CD19+, CD21-/lo B cells are expanded in patients with

pSS (61, 62). These cells are reminiscent of ABCs characterized in

mice, as they are enriched in reactivity to nuclear and cytoplasmic

autoantigens and they are responsive to TLR agonism (61, 62). In

addition, CD21lo B cells derived from patients with autoimmunity

can serve as antigen presenting cells, as these cells express high levels

of CD80, CD86 and HLA-DR (63–65). Recent work demonstrated

that CD21lo B cells consistently express high levels of T-bet and
TABLE 1 Comparison of Disease Manifestations between Imq-treated NOD.B10 mice and clinical disease stage NOD.B10 females.

Imq-induced Clinical disease (spontaneous)

Sialadenitis - SMG Yes Yes

Sialadenitis- Parotid Negligible Negligible

Hyposalivation Yes Yes

Dacryoadenitis Yes Yes

Nephritis Yes Yes

Pneumonitis Yes Yes

Elevated serum IgM No Yes

Elevated serum IgG Yes Yes

Autoantibodies Yes Yes

Splenomegaly Yes No

Cervical Lymphadenopathy Yes Minimal
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differentiate in response toTLRagonismorTcellhelp (66).While the

relevance of TLR signaling in the development and subsequent

activation of the CD21lo B cell subset requires further study, these

data suggest that autoreactive CD21lo B cells could be an important

mediator of T cell activation in human autoimmunity, including

pSS (66).
4.4 ABCs exhibit TLR7-driven sexual
dimorphism in lupus and this likely
contributes to the female disease
predilection in pSS

It is important to note that pSS is primarily seen in middle-aged

females, and the diagnosis in males is considerably more rare (1).

Although the underlying molecular mechanisms that govern this

strikingsexpredilectionarenotwell-understoodatpresent, emerging

data suggest that improper X-chromosome inactivation (XCI) and

subsequent gene dosage affects may account for the high disease

prevalence observed in women (67). Accordingly, TLR7 is expressed

on the X-chromosome and XCI escape in lymphocytes from SLE

patients is well documented, resulting in elevated TLR7 expression

(67).Recentwork inmice thatdevelopa lupus-likedisease found that

ABCs were preferentially expanded in females (68). In addition,

female-derived ABCs from this model showed an enhanced IFN-

genesignatureascompared toABCsderived frommalecounterparts.

Intriguingly, overexpression of TLR7 in males reversed the sex-bias

observed and resulted in heightened ABC-mediated pathology,

culminating in lung pathology and diminished overall survival

(68). While no studies to date have examined whether TLR7

expression and function are altered between males and females in

the context of pSS, additional work is needed to determine whether

ABCsarepreferentially expanded in females andwhether thismaybe

in response to TLR-medicated signaling, as this may represent a

previously unappreciated diseasemechanism that underlies the high

prevalence of disease observed in women.
4.5 Ro and La may serve as endogenous
TLR7 ligands in pSS

Currently, the etiology of pSS is poorly understood and early

disease events are not clearly defined. Therefore, it is of critical

importance to understand how TLR7 becomes activated in the

context of pSS. MRL/lpr lupus mice that lack TLR7 exhibit disease

amelioration and diminished antibodies against RNA-associated

antigens (69). Corroborative studies in a lupus mouse model

revealed that increasing TLR7 gene dosage augments production of

autoantibodies directed against RNA (70). These findings are

relevant to human disease, as most patients with pSS and SLE

display autoantibodies to Ro (SSA) and La (SSB) (71, 72). Both Ro

and La are ribonuclear proteins that form complexeswith RNA (73).

It is hypothesized that the RNA in these complexes serves as an
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endogenous adjuvant to activate TLR7-expressing B cells and drive

plasma cell differentiation. This may explain, at least in part, the

extremelyhigh titers of these autoantibodies observed in SLEpatients

(74, 75). It is interesting to note thatNOD.B10mice treatedwith Imq

demonstrated enrichment of IgG autoantibodies directed against

RNA-associated antibodies, such as Ro, La, U1-snRNP 68/70 kDa,

U1-snRNP-C, U-snRNP-B/B, and SmD1 (Figure 5). Thus, it is

possible that TLR7 activation of B cells may occur through Ro and

La-mediated activation of B cells in the context of human disease,

although further studies are needed to identify clinically-relevant

sources of TLR7 activation in pSS patients.
5 Conclusion

In conclusion,TLR7 agonismaccelerates both local and systemic

disease manifestations in a mouse model of pSS. This work has

important therapeutic relevance, as targeting of TLR7-dependent

signaling networks may be efficacious in reducing B cell activation

and tissue-specific inflammation that is characteristic of disease.
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SUPPLEMENTARY FIGURE 1

Parotid gland tissue from both BL/10 and NOD.B10 mice exhibits negligible

inflammation following Imq administration. Parotid tissues were harvested
from sham (n = 10) or Imq-treated female mice (n = 9) and from sham (n =

6) or Imq-treated age and sex-matched controls (n = 6). One representative
photomicrograph is shown from each group. Lymphocytic infiltration was

quantified using ImageJ. White arrows represent salivary gland ducts.
Horizontal lines represent themean and SEM (NS = non-significant).

SUPPLEMENTARY FIGURE 2

Autoantigen arrays reveal enrichment of specific autoantibodies in sham-

treated NOD.B10 mice as compared to BL/10 sham-treated controls. Sera
wereharvested fromNOD.B10 (n=9)orBL/10shamcontrols (n=6)bycardiac

puncture following euthanasia. Autoantigen arrayswere performed for (A) IgM
and (B) IgG.Autoantibodies thatwereenriched inNOD.B10animals are shown.

SUPPLEMENTARY FIGURE 3

The percentage of CD8+ T cells are decreased in spleens and cLNs of

Imq-treated mice. Spleens and cLNs of sham (n = 9) or Imq-treated
NOD.B10 mice (n = 7) and from sham (n = 6) or Imq-treated age and sex-

matched controls (n = 6) were harvested and flow cytometry was
performed. The percentage of splenic and cLN (A and C) CD4+ and (B
and D) CD8+ cells are shown. The percentages of activated/memory T

cells (CD8+, CD44+, CD62L-) from (E) spleen and (F) cLNs are shown. (NS,
non-significant, *p < 0.05, **p < 0.01, ***p < 0.001).

SUPPLEMENTARY FIGURE 4

Marginal zoneBcells arediminished inNOD.B10mice followingTLR7agonism.
Spleens and cLNs of sham (n = 9) or Imq-treated NOD.B10 mice (n = 7) and

from sham (n = 6) or Imq-treated age and sex-matched controls (n = 6) were

harvested and flow cytometry was performed. The percentage of (A) total
splenic B cells (B220+), (B) follicular B cells (B220+, CD23+, CD21lo/-) and (C)
marginal zoneBcells (B220+,CD23-,CD21+) are shown. (D)Thepercentageof
B cells in the cLNs of BL/10 and NOD.B10 sham and imq-treated mice are

shown. Sera were harvested and (E) BAFF levels were assessed in C57BL/10
sham and Imq-treated (n = 6 each) and NOD.B10 sham and Imq-treated

animals (n = 10 each) following euthanasia. (F) Serum b2-microglobulin levels

were assessed in C57BL/10 sham and Imq-treated (n = 6 each) and NOD.B10
sham and Imq-treated mice (n = 9 each) following euthanasia (NS, non-

significant, *p < 0.05, ***p < 0.001).

SUPPLEMENTARY FIGURE 5

The percentages of CD11c+ monocytes (B220-, CD11c+) were quantified.

Histogram plots from one representative animal from each group are shown.

Horizontal lines represent mean and SEM (NS, non-significant, **p < 0.01).
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