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Introduction: Rheumatoid arthritis (RA), which affects nearly 1% of the world’s

population, is a debilitating autoimmune disease. Bone erosion caused by

periarticular osteopenia and synovial pannus formation is the most

destructive pathological changes of RA, also leads to joint deformity and loss

of function,and ultimately affects the quality of life of patients. Osteoclasts

(OCs) are the only known bone resorption cells and their abnormal

differentiation and production play an important role in the occurrence and

development of RA bone destruction; this remains the main culprit behind RA.

Method: Based on the latest published literature and research progress at

home and abroad, this paper reviews the abnormal regulation mechanism of

OC generation and differentiation in RA and the possible targeted therapy.

Result:OC-mediated bone destruction is achieved through the regulation of a

variety of cytokines and cell-to-cell interactions, including gene transcription,

epigenetics and environmental factors. At present, most methods for the

treatment of RA are based on the regulation of inflammation, the inhibition

of bone injury and joint deformities remains unexplored.

Discussion: This article will review the mechanism of abnormal differentiation

of OC in RA, and summarise the current treatment oftargeting cytokines in the

process of OC generation and differentiation to reduce bone destruction in

patients with RA, which isexpected to become a valuable treatment choice to

inhibit bone destruction in RA.
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Differentiation and function of OCs
under physiological condition

OCs are derived frommonocytes in the monocyte-macrophage

lineage (1) and can phagocytise foreign particles, produce cytokines

and act as antigen-presenting cells (2). The identification criteria

demonstrated by Ziegler-Heitbrock et al. are considered the most

appropriate current classification (3). This criterion classifies

human monocytes into three subpopulations: classical monocyte

(CD14++CD16−), intermediate monocyte (CD14++CD16+), and

non-classical monocyte (CD14+CD16++). Komano et al. (4)

believed that classical monocyte subsets (CD14++CD16 -) are

circulating OC precursors (OCP) that can differentiate into OCs.

OC production is a multi-step process. In the early stage,

hematopoietic stem cells (HSC) proliferate in the macrophage

line; in the middle stage, CTR and tartrate-resistant acid

phosphatase (TRAP) enter and express OCP; and late OCP fuse

and become mature multinucleated cells. Then OCs began to play

the role of osteolysis (5). OCs differentiation mainly depends on

macrophage colony stimulating factor (M-CSF) and nuclear factor

kB receptor activator ligand (RANKL) signals, which mediate all

epigenetic and transcriptional changes of OCs (6). Local

environmental factors also contribute to establishing tissue-

specific transcriptional profiles in monocyte subsets (7, 8).

Mature OCs are a 20-100tzm in diameter, containing 2-20

nuclei, cytoplasm rich in mitochondria, lysosomes, ribosomes,

Golgi bodies and other organelles, pseudopodia and processes of

irregular cells, is the only cell in the body with the ability to
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dissolve bone tissue (9). The integrin (AVb3-integrin) and actin

microfilament (actin) expressed on OCs interact with extracellular

MMP, which makes the cells adhere closely to the bone surface,

and OCs begin to adsorb (10). After the completion of the

adsorption process, the plasma membrane and cytoskeleton of

OCs were reorganised. During the recombination process, the

plasma membrane of OCs was divided into four different regions:

basal region, fold margin, sealing area and functional secretory

region (11, 12). In order to increase the efficiency of bone

resorption, the cell membrane facing the bone surface is folded

to form a larger bone resorption space-fold margin. The

formation of a wrinkle margin enables it to widely seal the bone

surface and improve the efficiency of bone resorption. In the fold

margin, OCs open Cl- channels (H+Cl-exchange transporters)

and secretes vacuolar H+-ATP enzymes, which acidify the

extracellular space, making the pH of the lacunar

microenvironment close to 4-6. This acidic environment can

dissolve calcium from bone, loosen minerals in the bone matrix,

and create an optimal environment for creatine kinase (CK) to

enter the lacunar hydrolysed organic matrix(such as bone type I

collagen) (13). Concurrently, the fold margin secretes protons and

various bone resorption enzymes such as TRAP, MMPs and

cathepsin K (CtsK). The inorganic components of bone are

degraded by H+, Cl- and TRAP, while the organic components

are degraded by various enzymes such as CtsK and MMP-9 (14).

The fold is maintained by a sealed area regulated by avb3-
integrin, which promotes the directed secretion of enzymes

from the outer space of cells to this region (15) (Figure 1).
FIGURE 1

Mechanistic differentiation and function of OC under physiological conditions. OCs are the only osteolytic cells in vivo. It dissolves bone matrix
in four steps. The first step is OC adhesion. The integrin and actin microfilaments expressed by OCs allows the cells to closely adhere to the
bone surface and form a special cytoskeleton. The second step is OC polarisation, and the OC plasma membrane and cytoskeleton are
recombined. The plasma membrane of OCs is divided into four different regions: basal region, wrinkle edge, sealing region and functional
secretory region. The third step is degradation of bone matrix. H-ATPase transports H+ to the cavity, allowing the pH of the cavity
microenvironment to near a pH of 4-6. This acidic environment loosens the minerals in the bone matrix, and the wrinkle edge also secretes
protons and various bone resorption enzymes to degrade organic matter. The fourth step is the removal of degraded products. The degraded
bone matrix products are transported from the fold edge to the functional secretory region through endocytosis, and then
released extracellularly.
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Pathogenic mechanisms of OCs in
bone destruction in RA

In 1998, Gravallese et al. (16) used immunohistochemistry

and molecular techniques to find that OCPs gathered at the

junction of synovial pannus, which proved that OCs played a key

role in the process of RA bone erosion. RA bone destruction is

the pathological result of the interaction between bone and

immunity. The interaction between cells and inflammatory

factors leads to changes in joint microenvironment and affects

the differentiation of OCs.

Now it has been found that a large number of pro-

inflammatory cytokines affect OC. The cytokines that promote

the differentiation or activation of OC are IL-1, IL-6, IL-8, IL-11,

IL-17, TNF- a, Th17 cells and so on. The cytokines that inhibit

the differentiation or activation of OC are IL-4, IL-10, IL-13, IL-

18, IFN- g, IFN- b, IL-7, IL-12, IL-23. IL-6 and TGF- b have dual

effects, and their net effects depend on the developmental stage

of OC (17).

These cytokines mediate the regulation of bone destruction

by OC through multiple signal pathways, mainly RANK/

RANKL/OPG signal pathway (18). When RANK binds to

RANKL, the tumor necrosis factor receptor related factor

(TRAF) family is recruited and activates downstream signaling

pathways, including NF- kappa B, MAPKs and AP-1 (19), which

eventually activate the nuclear factor of activated T cell C1

(NFATc1), which is the main transcription factor of OC

differentiation. RANKL regulates the activation of NFATcl and

promotes the differentiation of OC through two signal pathways:

NF- k B/AP-1/c-fos and calcium signal pathway (20).

Osteoprotegerin (OPG) is a decoy receptor that competes with

RANKL to down-regulate the differentiation and production of

OC with binding RANK. Wnt signaling pathway up-regulates

the expression of OPG and plays an anti-OC role, while TNF- a
or RANKL regulates the expression of c-Fos and NFAT-c

through CREB phosphorylation to induce osteoclast

differentiation (21).

Deeply understands the differentiation and formation

process of OC and the mechanism of bone resorption, and

reduces the conditions for promoting OC activation, which can

provide new ideas for the treatment of early RA, prevent

disability and reduce mortality in RA patients.
Regulation of differentiation and
generation of OCs in RA

The maintenance of normal bone mass is the result of the

joint action of osteoblasts(OBs) and OCs. Bone formation

promoted by OBs is balanced with bone resorption caused by

OCs so that bone mass can be maintained in a relatively stable

state. The imbalance between the two is the main cause of
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systemic bone loss and joint local bone destruction in patients

with RA.

The abnormal differentiation of OCs will have a significant

impact on the progress of bone destruction in RA. This process

is strictly regulated by genes and epigenetic determinants, which

will play an important role in both transcription and post-

transcription. In addition, the in vitro environment is also a

key factor that can not be ignored in the development and

progression of RA. We will discuss these factors that affect OCs

differentiation as follows.
Differentiation regulation of OCs

Macrophage-stimulating factor
M-CSF is an essential cytokine that promotes the

differentiation and maturation of OCPs and induces OC

formation by binding to the cell surface receptor—C-FMS

(22). M-CSF induces the expression of dendritic cells specific

transmembrane protein (DC-STMAP) and nuclear factor of

activated T cells 1(NFATc1), which then leads to the fusion of

OCPs in vitro bone marrow-derived cells, resulting in the

formation of multinucleated giant cells (23). In addition, M-

CSF can induce the expression of RANK in bone marrow cells,

which can interact with RANKL and induce the differentiation

of OCs (24). M-CSF plays a dual role in OCs genesis. It can

promote or inhibit OC differentiation, depending on the type

and pathway of OCPs. In inflammatory arthritis, there is a

different group of OCPs, which can respond to a variety of pro-

inflammatory cytokines to compensate for the impact of the loss

of the CSF-1 signal pathway on OC differentiation (25, 26).

Toll-like receptors
Toll-like receptors (TLR) are important innate immune

receptors. Some studies have shown that the expression of

TLR in joints of patients with RA is increased. TLR3 and

TLR4 were highly expressed in the early stage of RA (27), and

TLR2 was highly expressed in cartilage and bone erosion

sites (28).

OCs can also express TLRs, and its expression pattern varies

with the stage of OCs. OCPs express TLR1-TLR9, but in the

process of their differentiation into mature OCs, only TLR2 and

TLR4 are mainly expressed (29). It is suggested that these two

TLR play an important role in OC genesis. Lu et al. (30) have

shown that patchoulol can inhibit OC activity and bone

resorption by regulating the expression of TLR4.

In the clinical model of RA, the positive effects of TLR2,4,5

and 7 have been confirmed. Intra-articular injection of a TLR2

or TLR4 ligand can induce joint inflammation and chronic

destructive arthritis (31, 32). Local injection of TLR5 ligands

can enhance joint inflammation and bone destruction in the

collagen-induced arthritis (CIA) model (33). Moreover, in the

CIA arthritis model, the absence of TLR7 reduced joint
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inflammation and arthritis-induced bone loss (34, 35). Kim et al.

(36) studied the effect of TLR7 on RANKL expression and OC

generation and found that TLR7 and RANKL co-located in RA-

FLS, TLR7 can directly regulate OC differentiation, and

stimulate synovial fibroblasts (FLS) to produce RANKL. This

study provides the first evidence that TLR7 pathway is involved

in RA bone destruction. Further exploration of the specific

mechanisms of other TLR involvement in OCs is needed.

Tyrosine kinase 3
Tyrosine kinase 3 (Tyro3TK) is a member of the receptor

tyrosine kinase family involved in immune homeostasis (37). It

can be expressed on the cell membrane of monocytes/

macrophages, dendritic cells, natural killer (NK) cells and

nerve cells (38). In 1998, Nakamura et al. (39) first found that

Tyro3TK can be expressed in multinucleated OCs. When it

binds to a mature ligand–Gas6, the bone resorption activity of

mature OCs is enhanced, while Tyro3TK does not affect the

differentiation of OCs and bone marrow cells. Katagiri et al. (40)

also found that Tyro3TK can be detected in mature OCs. Gas6 is

widely expressed in osteocytes and stimulates the function of

OCs (41). Ruiz-Heiland (42) showed that in an arthritis model,

Tyro3TK deficient mice showed increased bone mass and

impaired OC differentiation, indicating that Tyro3TK was

involved in the differentiation and functional maturation of OCs.

Komano et al. (4) believed that CD14+CD16- monocytes are

the main precursors of RA-OCs. The expression of Tyro3TK is

enriched in CD14+CD16-monocytes and up-regulated in RA

patients, and is positively correlated with disease manifestations

such as IgM level, tenderness joint count and disease activity

score (43). Gas6 is the ligand of Tyro3TK, and the combination

of the two can regulate the clearance of apoptotic cells, cytokine

production, cell proliferation, thrombosis and hematopoiesis

(44). Gas6 is expressed in synovial tissue and cell fluid in RA

and plays a role in the survival of RA synovial endothelial cells

(45). The evaluation of Gas6 in synovial tissue and synovial fluid

of RA found that Gas6 can promote synovial proliferation of RA

and is related to bone destruction of RA (46). Gas6 can promote

the OC formation of CD14+ CD16−monocytes while disrupting

the interaction between Gas6 and Tyro3TK. The number of OCs

differentiated from CD14+ CD16− monocytes decreased

significantly with a dose-dependent anti-Tyro3TK antibody

(43). Unlike Tyro3TK, two other members of the TAM family,

Ax1 and Mer, play a protective role in RA. Mer reduces the

release of pro-inflammatory molecules such as tumour necrosis

factor (TNF) and IL-6 by binding to Gas6 and induces anti-

inflammatory mediators such as IL-10 (47). In vitro studies have

confirmed that anti-TNF drugs can inhibit pro-inflammatory

cytokines, up-regulate IL-10, activate the positive feedback

mechanism involving the Gas6/Mer axis, and limit the

inflammatory cascade reaction (48). Concurrently, activated T

cells enhance the inhibitory ability of Treg through Axl/Gas6
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and enhance the anti-inflammatory ability of Gas6 again (49).

When joint inflammation decreases, OC generation

also decreases.

These results suggest that the up-regulation of Tyro3TK

expression plays a key role in OC genesis and bone destruction

in inflammatory arthritis. However, the detailed signal

mechanism of Tyro3TK on RA-CD14+CD16- still needs

further research.

ACPA
Epidemiological evidence shows that bone loss is closely

associated with positive anti-citrullinated protein antibody

(ACPA) in patients with RA (50–52). Higher titers of ACPA

are associated with systemic bone loss, suggesting that ACPA

may lead to bone loss either directly or indirectly by increased

systemic inflammation. Similar to macrophages, OCPs express

FCgR (53–55), in which FcgRI, FCgRIIB and FCgRIIIA are

significantly up-regulated during OC formation in vitro (54).

In the mouse model of inflammatory arthritis, the specific

deletion of OCs FcgRIV resulted in abnormal OC formation

and osteoprotective effects in inflammatory joints, and activation

of FcgR with cross-linked antibodies could promote OC

differentiation of mouse bone marrow cells (55), suggesting

that FcgR has a regulatory effect on OC activity and bone

resorption.In addition, low Fc sialylation of ACPA contributes

to maintaining the OC phenotype.

It is well known that IL-8 (56) is the key medium for ACPA-

induced OC activation. Krishnamurthy et al. (57) showed that

serum and joint-derived ACPA can promote OC generation by

affecting the secretion of IL-8 by OCs themselves.

The emergence of autoantibodies is a unique characterization

of autoimmune diseases such as rheumatoid arthritis. The

evidence that ACPA is related to osteoclast differentiation

provides sufficient evidence for bone immunology. In addition

to ACPA, people can also extensively explore the effects and

specific mechanisms of other autoimmune antibodies on

osteoclasts. I think this can start from clinical research.The

emergence of autoantibodies is a unique characterisation of

autoimmune diseases such as RA, and the evidence that ACPA

is associated with OC differentiation provides sufficient evidence

for osteoimmunology. In addition to ACPA, clinical research can

extensively explore the effects of other autoimmune antibodies on

OCs and the specific mechanism of action.

B cell
B cells bind to soluble APRY produced by TNF superfamily

B cell activating factor (BAFF) (also known as BLyS) and

peripheral blood mononuclear cells (PBMC) to promote B cell

proliferation. Autoreactive B cells differentiate into plasma cells,

producing RF and ACPA, which aggravate synovitis by forming

immune complexes and activating complements, especially in

the early stages of RA (58, 59). Fcg RIIB is an important
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regulator of B cells, and its deletion will lead to the induction of

many autoantibodies (60), thus promoting the formation of

OCs. B cells also produce TNF-a.
The role of RANKL expressed by lymphocytes in various

types of bone injury has not been elucidated. In the bone marrow

of arthritic mice, Komatsu et al. (61) found that the number of

plasma cells expressing RANKL increased significantly, and the

cells had the ability to induce OC formation in vitro. The genetic

ablation of RANKL in B lineage cells can reduce periarticular

bone loss in autoimmune arthritis mice. Specific to RA, it was

recently shown that CD27+IgD-switched memory B-cells

produce RANKL in quantities exceeding that produced by T-

cells upon stimulation, and synovial RA B cells spontaneously

produce RANKL and promote greater osteoclastogenesis than B

cells from healthy controls (62).

T cell
Bone damage caused by immune system abnormalities has

been a challenging problem for a long time. The main cells

involved in the pathological progression of RA are CD4+T cells,

which are related to subsequent bone destruction (63), but which

kind of CD4+T cells induce OC generation and the mechanism

are not fully understood.

CD4+T cells can differentiate into Th1, Th2, Th17 and Treg

subsets (64). RANKL is expressed in activated T cells, which can

directly act on OCPs to induce OC differentiation. The

interaction of inducible costimulatory molecules (ICOS)

expressed by activated T cells with ICOS ligand (B7h or

CD275) expressed by OC-like cells (MDOCs) derived from

monocytes can block their differentiation into OCs. This

interaction down-regulates the expression of TRAP, NFATc1

and OSCAR during the maturation of MDOCs to OCs (65).

Among them, Th1 and Th2 cells inhibit the occurrence of

OCs mainly through the action of IFN- g and IL-4 on progenitor

cells (66). Previous studies have shown that both IL-12 and IL-

18, which drive Th1 differentiation, inhibit OC generation

through IFN- g or GM-CSF (67), while IL-10 released by Th2

cells also negatively regulates OC generation (68), which further

supports the negative effects of Th1 and Th2 cells on

OC formation.

Th17 cells are a new subgroup of CD4+T cells, which mainly

secrete cytokines such as IL-17A, IL-17F and IL-21, and

overexpress transcription factors retinoic acid-related orphan

nuclear receptors (RORg) and ROR a, which play an important

role in autoimmune diseases. Satok et al. (66) found that Th17

cells promote OC generation by producing IL-17. On the one

hand, IL-17 indirectly promotes OC generation by inducing

RANKL expression through the IL-23-IL-17 axis. Conversely,

IL-17 releases a large number of inflammatory cytokines, such as

TNF-a and IL-1 (69, 70), by recruiting and activating immune

cells. These inflammatory cytokines promote the expression of

RANKL in cells related to OC generation and activate OCPs in
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cooperation with RANKL signalling pathway to affect OC

generation. Th17 cells are called OC generation-related Th

subsets, not only because Th17 cells have a positive effect on

OC genesis in vitro but also because they shift joint

microenvironment balance in a direction conducive to OC

differentiation in vivo . Th17 cells stimulate RANKL

expression, RANKL interacts well with CD14+ monocytes, and

CD14+ monocytes expressed CCR6 (71) (the surface marker of

Th17 cells). This suggests that Th17 cells play a key role in OC

differentiation. Th17 cells can also mediate synovial

neovascularisation, leading to bone erosion (72).

Treg cells exert an immune effect by secreting IL-10 and

TGF- b to maintain lymphocyte homeostasis and tolerance and

reduce the production of inflammatory cytokines and antibody

secretion. Th17 cells and Treg cells coordinate in vivo (73).

When the number of Th17 cells increases, hyperfunction, the

number of Treg cells decreases, low function, resulting in an

imbalance of Th17/Treg, synovitis, joint destruction, bone

erosion and other manifestations, aggravating the development

of the course of RA.

Macrophages
Myeloid cells play an important role in synovial

inflammation, and the abundance of synovial macrophages is

related to the degree of joint erosion (74). Firstly, macrophages

are important cells producing cytokines in the joints of patients

with RA, the main sources of TNF-a and IL-6, as well as other

cytokines and chemokines involved in the disease process, such

as IL-1b, IL-8 and chemokine C motif ligand 2 (CCL-2) (75).

Secondly: circulating monocytes and resident macrophages are

the precursors of OCs. These monocytes are continuously

supplied to the inflammatory synovium and differentiate into

OCs in RA.

According to the expression of surface molecules,

macrophages are divided into pro-inflammatory (M1) and

anti- inflammatory (M2) phenotypes (76) . Synovial

macrophages from patients with RA have M1 phenotype,

highly express proteins such as PHD3, CCR2, MMP-12 and

TNF-a (77). In RA, high activation of macrophages increases the

expression of TLR2, TLR3, TLR4 and TLR7, causes NF-kB to

activate and inhibit the expression of RANK, attenuates the

transmission of RANKL and CSF-1 signaling pathways (78) and

promotes synovitis and cartilage destruction by producing

enzymes, cytokine and other inflammatory factors.

Contrastingly, activated macrophages significantly increase the

level of synuclein A (activin A) encoded by INHBA gene, which

mediated M1 polarization. Polarized M1 macrophages secrete

many pro-inflammatory cytokine (IFN-g, TNF-a, IL-1 and IL-

6), chemoknockoutines (CCL5, CXCL-1 and CXCL-10) and

various matrix lyases, which in turn activate fibroblasts and

Ocs. Furthermore, this helps recruit neutrophils, monocytes,

and lymphocytes, and triggers a series of inflammatory reactions
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that accelerate inflammation and lead to destruction of articular

cartilage (79, 80).

Further, macrophage autophagy also plays an important role

in the pathogenesis of RA, the expression of autophagy signal

pathway members (ATG7 and Beclin-1) in RA-Ocs is up-

regulated, and myeloid cell-specific Atg7 deletion occurs not

only in Ocs, but also in monocytes (81); autophagy of monocyte-

derived macrophages in RA joints may also be involved, thus

helping enhance the bone resorption activity.

Fibroblasts
Fibroblasts (FLS) are the core cell in the pathogenesis of RA,

and their tumour-like abnormal proliferation is the main cause of

synovial hyperplasia (82). High levels of pro-inflammatory

cytokine, chemokines and matrix metalloproteinases (MMP)

secreted by FLS during the disease to mediate inflammation, bone

erosion, absorption, and cartilage degradation, and finally lead to
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the destruction of bones and joints. One key factor in transforming

FLS into an invasive RA-FLS type is IL-17. IL-17 can directly act on

synovial fibroblasts to stimulate the release of MMP to decompose

cartilage. Concurrently, IL-17 cooperates with IL-1 and TNF-a to

induce the secretion of pro-inflammatory cytokine and chemokines,

affect the metabolic pathway of monocytes and synovial fibroblasts,

promote synovial cells to have an inflammatory response, and

directly assist FLS-mediated RA progression (46). Conversely,

RANKL expressed by synovial fibroblasts is mainly responsible

for the formation of OC and bone erosion in inflammatory arthritis

(83). It binds to the receptor (RANK) on the surface of activated

OCs and initiates the IKK/NIK pathway through TRAF2, 5 and 6

proteins, leading to the activation of downstream NF-kB, MAPK,

NFATc1 and Src signal cascades (84). Activation of these

transcription factors can stimulate the expression of TRAP, CtsK

and MMP-9 genes in the nucleus, promoting OC generation and

bone resorption (Figure 2).
FIGURE 2

Differentiation regulation of osteoclasts. OC differentiation is a multi-step process, in which cytokines and various cell interactions affect the
differentiation of OC from the mononuclear to the terminal state. Among them, autoantibodies directly act on OCs (and their precursors) or
cooperate with T and B cells to form a vicious circle. Toll-like receptors (TLR) and Tyro3TK on the surface of OCPs bind to their specific ligands
to affect OC differentiation. M1 macrophages secrete many pro-inflammatory cytokines, chemokines and various matrix lyases to activate OCs
and aggravate the inflammatory reaction. FLS is the key cell in RA bone destruction. Various pro-inflammatory factors allow it to express RANKL
in large quantities. It binds to RANK on the surface of macrophages and OCs and promotes the maturation of OCs through NF- kB
signal cascade.
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Generation regulation of OCs

DNA methylation
DNAmethylation affects the differentiation of OCs and bone

resorption. Nishikawa et al . (85) found that DNA

methyltransferase (DNMT) 3a promotes OC differentiation

and bone resorption by inhibiting interferon regulatory factor-

8(IRF8), a negative regulatory factor associated with OC

differentiation, DNMT3a inhibits IRF8 by increasing the

methylation of IRF8 distal regulatory elements and increase

the concentration of S-Adenosylmethionine (SAM) to promote

DNA methylation.

Moreover, DNMT3a and DNMT3b interact with PU.1, an

important OC transcription factor, and form complexes through

DNA methylation to regulate the target gene of PU.1 (86). The

expression of RANKL and osteoprotegerin (OPG), the key

factors regulating OC, is closely related to the methylation of

its promoter region. After demethylation treatment, mice can

significantly increase the expression of RANKL and OPG, thus

affecting the production of OCs (87).

Histone acetylation
The N-terminal of histone can undergo various covalent

mod ifica t i ons , such a s ace t y la t i on , me thy l a t i on ,

phosphorylation, and ubiquitin (88). Histone acetylation

usually promotes gene transcription, while deacetylation

inhibits gene transcription. Kim et al. (89) found that RANKL

can promote the acetylation of NFATc1 in OCs through

acetyltransferase (HAT), and then promote its expression and

protein stability, while HADc5 overexpression reduces the

acetylation of NFATc1, and the use of HDAc inhibitor sodium

butyrate can promote the acetylation of NFATc1, and the

subsequent differentiation of OCs. Yasui et al. (86) used ChIP

sequencing technology to prove that the histone precursor H3

lysine 4 (H3K4me3) exists in the NFATc1 gene of OCPs, but

significantly decreased in mature OCs. Jumonji domain-

containing protein3(JMJD3), an H3K27 demethylase, inhibits

OC differentiation induced by RANKL by inhibiting H3K27

methylation in the promoter region of NFATc1.

microRNA
MicroRNA is a 19-22 BP non-coding RNA that can regulate

gene expression after transcription (90). In the process of

differentiation from OCP to mature OCs, the expression of 44

kinds of miRNA increased more than twice (91).

Among them, miR-218, miR-503 and miR-125 inhibited the

differentiation of OCs. During the differentiation of BMMs and

RAW264.7 cells into OCs induced by RANKL, the expression of

miR-218 decreased significantly, and the overexpression of miR-

218 significantly inhibited the differentiation of OCs (92).

Through bioinformatics analysis, Chen et al. (93) found that

RANK is the direct target of miR503. The binding of miR-503-
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5p to the 3’-UTR region of RNAK mRNA inhibits the

translat ion of RANK prote in , thus inhibi t ing OC

differentiation. Guo et al. (94) showed that miR-125a down-

regulated the expression of TRAF6, and then significantly

dec r ea s ed the expre s s i on o f NFATc1 to inh ib i t

OC differentiation.

However, miR-214, miR-31a and miR-223 promote the

differentiation of OCs. Zhao et al. (95) found that miR-214

significantly increased the expression of miR-214 during the

differentiation of BMMs into OCs induced by M-CSF and

RANKL by regulating the PTEN/P13k/Akt signal pathway,

which promoted the differentiation of OCs. The expression of

miR-31 is reportedly significantly increased in OC

differentiation induced by RANKL, and OC differentiation is

significantly inhibited after antagonising the function of miR-31

(96) MiR-223 is an important regulator of myeloid cell

differentiation, which is significantly up-regulated in

neutrophils and macrophages (97) and participates in OC

generation. As an important regulator of OC differentiation,

IKK- a is the proven target gene of miR-223 (98), contributing

to RA development. The up-regulation of miR-223 expression

suppresses the expression of OC target nuclear factor 1A (NF-

1A) (3) and affects the generation of OC. According to the study

conducted by Li. et al. (99), which compared with the OA group,

the expression of miR-223 in the synovium of RA patients and

CIA mice increased. A single intraperitoneal administration of

miR-223T lentiviral vector decreased arthritis and histological

score and miR-223 expression and inhibited OC generation and

bone erosion in the joints of CIA mice.
Glycosylation
Glycosylation regulates the localization, function and activity of

proteins in tissues and cells, and affects a variety of important life

activities, such as cell recognition, differentiation, signal

transduction, immune response and so on (100). Protein

glycosylation can be divided into different modification types,

among which N-glycosylation and O-GlcNAc glycosylation are

the two main modification types. O-GlcNAc glycosylation can

regulate inflammation, and its dynamic changes are necessary for

osteoclast genesis (101, 102). Li-Yi (103) found that in the early

stage of OC, increasing O-GlcNacylation can promote OC

differentiation through oxidative phosphorylation and intercellular

fusion, while it will be down-regulated in mature stage. TNF-a can

also promote the dynamic regulation of O-GlcN acylation to

increase osteoclast formation in inflammatory arthritis.Ttargeted

drugs or gene inhibition of O-GlcNAc transferase (OGT) or O-

GlcNAcase (OGA) could prevent osteoclast differentiation and

improve bone loss in the early and late stage of differentiation,

respectively. O-GlcNacylation derived from hexosamine

biosynthesis pathway is very important for osteoclast

differentiation mediated by RANKL (104). Both N-

acetylglucosamine (GlcNAc) and glucosamine can inhibit
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osteoclast differentiation through the Modulation of Glycosylation

Including O-GlcNAcylation (105). We already know that antibody

glycosylation inhibits the differentiation and maturation of

osteoclasts (54). The Fc segment of IgG can be glycosylated by

different sugar segments (106), and the increase of IgG glycosylation

can alleviate the symptoms and progress of RA (107). Estrogen can

protect joints from arthritis by increasing immunoglobulin

glycosylat ion and inhibi t ing osteoc las t act ivat ion

(108).Phytoestrogens can bind to estrogen receptor (ER) and

induce estrogen-like activity (109), which negatively regulates the

differentiation of RAW264.7 cells into osteoclasts (110). Ning et al.

found that phytoestrogens can protect mice from CIA by increasing

immunoglobulin glycosylation, reducing inflammation, inhibiting

NFATc1/c-Fos and reducing osteoclast activity (111).At present,

glycosylation is the focus of scientific research. Any minor

modification of glycosylation may affect the location and stability

of cell surface receptors and their sensitivity to signal molecules, and

affect the function of osteoclasts. The regulation of its effect on

osteoclast formation and differentiation should be further explored.

Ubiquitination
Ubiquitination modifications are one of the main pathways of

protein degradation. Ubiquitinylated and deubiquitinylated

enzymes ensure the stability and proper function of most cellular

proteins. The ubiquitin-proteasome system plays an important role

in the regulation of bone reconstruction, and ubiquitin-specific

proteases (USPs) are a major component of this system (112).

USP26 stabilizes b-catenin to impairs the osteoclastic differentiation

of bone myelomonocytes (BMMs) by stabilizing inhibitors of NF-

kBa (IkBa) (113).Conditional knockdown of USP34 in bone

marrow-derived macrophages (BMMS) or osteoclasts, USP34

inhibits NF-kB signaling by deubiquitinating and stabilizing the

NF-kB inhibitor alpha (IkBa),leading to enhanced osteoclast

function and reduced bone mass (114). Cylindromatosis (CYLD),

a USP, reduces ubiquitination levels of TRAF6 protein and inhibits

the RANK signalling pathway, which is essential for osteoclast

differentiation (115). In addition to this, Protein Tyrosine

Phosphatase Receptor Type JPTPRJ reduced the ubiquitination

and degradation of NFATc1, a key osteoclast transcription factor,

thereby inhibiting OC maturation (116). (+)-Vitisin A inhibits

osteoclast differentiation by blocking TRAF6 ubiquitination and

TRAF6-TAK1 formation to inhibit NFATc1 activation (117).

Jiahong et al. (118) also showed that catalpol upregulates the

activity of phosphatase and tensin homologues by decreasing

their ubiquitination, which in turn inhibits RANKL-induced NF-

kB and AKT signalling pathways, leading to inhibition of osteoclast

activity in vivo.

NFATc1,c-Fos, and MITF
NFATc1 is the main regulator of OC generation, which can

induce the expression of OC maturation-specific genes such as

Trap, CTR, integrinb3 and CtsK (86, 119, 120). The activation of
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NFATc1 is realised by RANKL through calcium signal

transduction. In the final stage of OC differentiation, NFATc1,

together with Fos and Jun proteins, can induce the expression of

OC-specific genes, such as DC-STAMP, Trap, CTR, CtsK and

integrinb3, as well as PU.1 and microphthalmia transcription

factors (MITF) (121, 122).

MITF regulates the development and activity of several cell

lineages, including OCs. The isoform MITF-E, which is

significantly upregulated in developing OCs, is induced by

RANKL and is critically important for OC genesis (123).

Moreover, MITF-E has more recently been shown to regulate

OC genesis by modulating the activity of NFATc1 (124). MITF is

activated downstream of p38 MAP kinase, which is activated due

to RANKL signalling. MITF is crucial to the expression of genes

encoding the OC-specific proteins Trap and CtsK.
CREB
Calcium (Ca2+) signalling is essential for various cellular

responses and higher biological functions. Ca2+/calmodulin

dependent kinases (CaMKs) and the phosphatase calcineurin

activate distinct downstream pathways that are mediated by the

transcription factors cAMP response element (CRE)-binding

protein (CREB) and nuclear factor of activated T cells

(NFAT), respectively (125).

CREB and NFATc1 co-induced the expression of specific

genes in differentiated OCs. Through the biphasic regulation of

osteoclastic bone resorption, the CaMK-CREB pathway

enhances the induction of NFATc1 on the one hand, and the

expression of NFATc1 is induced on the other hand, which

promotes the regulation of NFATc1-dependent genes (126).

When extracellular RANKL binds to RANK on the surface of

OCs, it triggers an increase in intracellular Ca2+ concentration

([Ca2+] I), which stimulates a series of Ca2+/calmodulin-

binding proteins (CaMKs and Cacineurin), such as CaMKs

and Calcineurin (CN). CaMKIV is mainly involved in the

phosphorylation of CREB and induces the expression of c-Fos.

C-Fos plays an indispensable role in inducing NFATc1 (120).

NFAT c 1 i s a c t i v a t e d b y c a l c i n e u r i n -me d i a t e d

dephosphorylation and translocated to the nucleus to induce

osteoclast-specific gene expression. Recent evidence suggests

that CREB is phosphorylated through the MAPK signal

pathway (127).

Puerariae radix, the dried root of Pueraria lobate Ohwi, can

significantly inhibit the activation of cAMP response element

binding protein (CREB) and the induction of peroxisome

proliferator-activated receptor g coactivator 1 b (PGC1 b),
thus inhibiting the differentiation and formation of OCs,

decrease the bone resorption activity of OCs and down-

regulate the expression of OC differentiation marker genes

(128). BCAP promotes OC differentiation by regulating the

p38-dependent CREB signalling pathway (21). Wang Lufei

et al. (129) found for the first time that Dopamine can trigger
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the D2-like receptors D2R/cAMP/PKA/CREB pathway to

inhibit OC differentiation. CAMP/PKA is thought to

negatively regulate OC generation through phosphorylation

and inactivation of NFATC1 and crosstalk with Wnt or Ca2

+/CaMK signals (130, 131).

Pu.1
Pu.1 knockout mice have defects in both macrophage and

OC differentiation, making PU.1 one of the earliest markers of

OC lineage (132). PU.1 is a transcription factor that affects OC

generation by cooperating with IRF8 or NFATc1 (121) to

establish specific types of enhancers in OCPs and mature OCs.

Carey HA et al. (122) determined that EOMES is a cofactor that

regulates the expression of the NFATc1 site and affects the

differentiation of OCs by interacting with PU.1 and MITF.

Nicotinamide phosphoribosyltransferase
NAMPT is a key rate-limiting enzyme in the nicotinamide

adenine dinucleotide (NAD) biosynthesis pathway (133) and

plays an important role in NAD synthesis, apoptosis and

inflammation (134). The disorder of NAMPT is associated

with RA. In the mouse model of CIA, Busso et al. (135) found

that the NAMPT inhibitor FK866 can effectively reduce the

severity of arthritis and disease progression. In Ly6Chigh

monocytes, selective knockout of siRNA of NAMPT also

inhibited the progress of CIA (136). LI et al. (119)

systematically confirmed that Nampt is a genetic risk factor

and potential therapeutic target for RA in CIA mice and cell

models. In the CIA mouse model, Nampt deficient mice showed

inflammatory bone destruction and a decreased OC generation

ability of primary BMMs and RAW264.7 cells with NAMPT

deficiency. This study proved that NAMPT is an important

epigenetic regulator of OC generation in RA.

silence information regulator 1
Sirtuin1 (SIRT1), a member of the Sirtuin protein family, is

an enzyme responsible for the deacetylation of proteins

regulated by cells. SIRT1 is a NAD-dependent enzyme that

uses NAD substrates to remove acetyl groups from proteins. It

is in the nucleus and can also act on the cytoplasmic target (137).

Sirt1 can deacetylate the lysine at position 26 of histone H1, 9 of

H3 and 16 of H4, and mainly regulates NF-kB, HIFl a, and
Notch in the cytoplasm.

Sirt1 regulates the expression of NF-kB by maintaining the

state of OCP deacetylation (138), thus regulating the generation

of OCs. In the CIA rat model, Sirt1 reduces the transcriptional

activity of NF-kB through deacetylation of p65 and p300 (139),

inhibits the synthesis and secretion of inflammatory factors

mediated by inhibiting activation of NF-kB signal pathway,

and alleviates symptoms of arthritis. Edwards et al. (140)

found that in OC-specific Sirt1 knockout mice, the bone

volume decreased, the acetylation level of primary OCs
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increased, and OCPs formed more TRAP+ cells than the

primary bone marrow cells of control mice. In the absence of

Sirt1, excessive NF-kB signal activation leads to increased OC

generation, which decreases bone mass. The inhibition of the

NF-kB signal pathway can reverse the decrease of bone mass,

indicating that Sirt1 can maintain normal bone formation by

inhibiting the NF-kB signal pathway. These studies proved that

NAMPT is an important epigenetic regulator of OC generation

in RA.

Hah et al. (141) showed that Sirt1-deficient macrophages

increased the polarisation of M1 through hyperacetylation,

caused over-activation of the NF-kB pathway, and increased

the production of pro-inflammatory cytokine. The deletion of

Sirt1 leads to the formation of multinucleated TRAP+ cells

(OC), which aggravates the occurrence and development of

RA. The macrophages of Sirt1 transgenic mice showed

increased polarisation of M2 macrophages and decreased

polarisation of M1 phenotypic macrophages, accompanied by

an increase in anti-inflammatory factors and a decrease in pro-

inflammatory factors. Therefore, Sirt1 inhibits RA inflammation

and indirectly reduces OC generation by regulating the

proportion of M1/M2 polarisation of macrophages to promote

bone remodelling. This study shows that SIRT1 plays a

protective role in RA.
Küppel-like factors2
Küppel-like factors (KLF) are a family of DNA-binding zinc

finger proteins that can be used as transcriptional activators or

repressors. Previous studies have found that KLF2 is key in

promoting vascular integrity , pulmonary function,

cardiovascular development and atherosclerotic protective

properties (142–144).

In terms of OCs, KLF2 weakens OC generation through several

complementary mechanisms. On the one hand, KLF2 inhibits the

activity of NF-kB through direct interaction with epigenetic

regulators p300 and PCAF, which are important coactivators of

directed transcription of NF-kB (145, 146). However, in RA, the

deletion of KLF2 decreased the overall expression of MMP-9 and

inflammatory cytokine (147). The knockout of KLF2 significantly

increased the enrichment of active histone markers H3K9Ac and

H4K8Ac, and the enrichment of histone acetylase transfer (HAT

enzyme) in MMP9 gene enrichment sites P300 and PCAF (148),

resulting in increased OC generation and more aggressive

disease progression.

In mBSA and IL-1-induced arthritis mouse models, KLF2

regulates monocyte differentiation and function, and monocytes

derived from the bone marrow of KLF2 hemizygotes mice are

more likely to differentiate into OCs than cells obtained from

wild-type(WT) mice in vitro (149). The number of TRAP-

stained cells in the KLF2+/-population was significantly higher

than that in theWT population, and the expression levels of OC-

specific proteins such as MMP-9, NFATc1, and vATPase in the
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bone marrow cells of RA mice induced by K/BxN serum were

also higher than those in the WT population’s cells (150).

Concurrently, the expression level of pro-inflammatory

molecules in serum was higher, and that of anti-inflammatory

cytokine was lower. These results suggest that KLF2 may play a

protective role in bone and surrounding tissue by reducing

inflammation of arthritic joints.

To sum up, KLF2 plays an important role in reducing

inflammation and inhibiting the differentiation and function of

OCs in RA, so it may be a target for OCs in treating RA.

Merlot
Yamakawa (151) and other researchers’ studies have found

that the newly discovered gene Merlot, which can encode highly

conserved but uncharacteristic proteins in vertebrates, is an

important regulator for terminating OC generation. Stimulated

by RANKL, Merlot significantly induced, inhibited the

differentiation of OCs, and induced their apoptosis.

Merlot knockout mice showed low bone mass due to the

increase in OCs number and bone resorption; Relative to the

WT cells, the formation of multinucleated OCs in Merlot

knockout RAW264.7 cells was faster, the mRNA expression of

OC-specific genes (Acp5, Mmp9, CtsK and Otcar) significantly

increased, and the life span of OCs was prolonged.

OCP overexpressing Merlot can not differentiate into mature

OCs, while deficiency of Merlot leads to excessive nucleation and

prolonged survival of OCs. Along with the continuous nuclear

localisation of NFATc1 and the decrease of glycogen synthase

kinase-3b (GSK3b) activity, Merlot regulates the lifespan of OCs

by inhibiting the differentiation of NFATc1-GSK3 axis and

promoting OCs apoptosis at the same time.

They also found that Merlot knockout inhibited caspase-3-

mediated apoptosis in OCs, and deletion of Merlot led to down-

regulation of apoptosis-promoting cascades, thereby promoting

OCs survival.

These results show that Merlot can terminate the function

related to OC genesis by activating the apoptosis pathway,

indicating that it plays an important role in regulating OC

lifespan. (Figure 3)
Environmental Factors

Aromatic hydrocarbon receptor (AhR) is a ligand-activated

transcription factor of the PAS family, which was initially associated

with the heterophytic metabolism of environmental pollutants.

However, recent studies have clarified the role of AhR in immune

regulation and bone remodelling (152). Tobacco smoke is a

recognised risk factor for bone destruction diseases, including RA,

which contains many environmental toxins, including polycyclic

aromatic hydrocarbons (PAH) such as benzopyrene (BaP) and

dioxins such as TCDD. BaP and TCDD are both mature AhR
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agonists (153). Low concentrations of BaP may promote OC

generation (154), while a high concentration of BaP may reduce

the transformation of the RAW264.7 cell line to OCs. Moreover,

AhR is related to RANKL-induced OC generation, in which

RANKL induces the expression of AhR-related genes Cyp1a1 and

Cyp1a2 (155). Therefore, increasing aromatic hydrocarbons in the

environment will increase the interaction between AhR and

RANKL in the active body, promote OC generation, and

aggravate bone destruction in RA (156).

Oral administration of tetraampuline (which can activate AhR

ubiquitin) in CIA rats reduced the phosphorylation of syk-positive

cells and the number of OCs and bone erosion in the epiphyseal

region of the proximal tibia by inhibiting the activation of NFATc1

(157). In addition, the AhR signal pathway can also regulate the NF-

kB, Wnt, and MAP kinase pathways, affect the function and

differentiation of OCs, and lead to changes in bone remodelling

(158–161). Donate et al. (162) used transcriptome analysis to show

that miRNA-132 was specifically induced in Th17 cells in the

presence of an AhR agonist or medium-rich in tobacco smoke,

and the induced miRNA-132 was encapsulated in the extracellular

vesicles produced by Th17 and increased OC generation by down-

regulating COX2 as a pro-inflammatory mediator. In the arthritis

model of mice with a miRNA-132 knockout, the number of OCs in

the joints decreased. Clinically, the level of miRNA-132 expressed by

T cells in patients with RA was higher than that in healthy controls,

indirectly affecting the inflammatory environment of OC generation.

Overall, these results indicate that tobacco smoke can

aggravate the differentiation of OCs in RA and promote the

progress of the disease.
Treatment of targeted osteoclast
in RA

In recent years, the treatment of RA has made great progress;

however, most RA patients are experiencing non-optimal

responses to the current treatment, especially those aimed at

bone injuries and joint deformities. Most RA treatments focus

on inhibiting the proliferation of abnormally activated immune

cells rather than directly targeting bone destruction. Even if the

inflammation is reduced, structural damage may continue to

develop, as immunosuppressive drugs target neither OCs nor

FLS, which expresses RANKL. The role of OCs in mediating

bone erosion of RA is direct and obvious, so the targeting study

of OCs is expected to produce an effective solution to bone

destruction in patients with RA.
Targeted KLF2

Currently, most drugs aim to reduce bone resorption or

promote bone formation but targeting KLF2 may lead to dual-
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functional therapeutic effects. In order to test the therapeutic

potential of KLF2, Rolph (148) used a pharmacological

compound histone deacetylase inhibitor(HDACi) to induce

KLF2 and found that the expression of KLF2 in myeloid cells

increased in vitro and in vivo. The induction of KLF2

significantly reduced the differentiation of OCs and decreased

MMP expression. However, the detailed signalling mechanism

of this cytokine in RA bone destruction needs to be

further studied.
Targeted Tyro3TK

In RA, it is particularly important to inhibit the invasiveness

of OCs. Tyro3TK was initially a therapeutic target for tumours

(163). Increasing studies have found that it also plays a key role

in autoimmune diseases (164, 165). Tyro3TK plays a unique role

in regulating the differentiation of CD14+CD16-monocytes into

OCs, while Tyro3TK has a more obvious inhibitory effect on

CD14+CD16- monocytes, which is one of the therapeutic targets

of bone destruction in RA (43).
Targeted Sirt1

Sirt1 has been shown to inhibit OC differentiation through

negative regulation of NF-kB and positive regulation of FOXO

transcription factor (43). Encouragingly, a recent randomised

placebo-controlled trial showed that resveratrol, a first-

generation Sirt agonist, increased bone mineral density and

markers of bone formation in obese men for 16 weeks (55).

Drugs targeting Sirt1 also show hope for treating other types of

bone diseases and can play a role in the treatment of RA.
Targeted RANKL

The important role of RANKL in RA-related bone lesions is

self-evident. Denosumab is a humanised anti-RANKL

monoclonal antibody, which competitively binds to RANK

and inhibits the role of RANKL, thus inhibiting OC

generation (166). Denosumab can effectively increase bone

mineral density and prevent osteoporosis in patients with RA

(167–169). In a multicentre, randomised, double-blind, parallel-

group, placebo-controlled clinical study conducted in Japan, it

was found that Denosumab inhibits the progression of joint

destruction, increases BMD, and is well tolerated in patients with

Ra taking csDMaRD (170).
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Targeted TNF-a

TNF-a inhibition therapy is used to reduce the

inflammation of RA (171). These treatments can reduce the

differentiation and activation of OCs by reducing the expression

of RANKL on B cells and the level of serum-soluble RANKL.

TNF-a plays an important role in the pathogenesis of RA.

On the one hand, TNF-a can induce TRAP-positive cells in the

absence of RANKL via the NF-kB pathway. On the other hand,

TNF-a induces RANK expression through OCP. In addition,

TNF-a and RANKL synergistically induce OC generation

through TRAF-3 signalling in a TRAF-6-independent

pathway. Importantly, TNF-a can indirectly regulate OCs

through various stimuli of stromal cells. It was found that the

number of OCP in blood and the ability of monocytes to

differentiate into OCP in RA patients decreased after the use

of TNF-a antagonist and effectively prevented the decrease of

bone mineral density in the hip and lumbar vertebrae, which had

a good effect on active RA patients with reduced bone mass

(172, 173).

Iguratimod is a small molecular drug shown to have a

significant osteoprotective effect on patients with RA. The

inhibitory effect of Iguratimod is achieved by inhibiting

RANKL and TNF-a pathway (174). Iguratimod also inhibited

TNF-a-induced OC generation in vitro and reduced the

expression of genes related to OC generation by disrupting the

late nuclear transfer of NF-kB, thus reducing OC generation in

RA patients (175). These results suggest that Iguratimod can be a

unique choice for treating RA, especially in preventing bone loss.
Conclusion

OCs are the most direct factor mediating bone destruction in

RA. An in-depth understanding of their activation mechanism

and predictive indexes can provide an effective basis for

preventing joint deformities, early diagnosis of bone

destruction and improving the quality of life of patients with

RA. The excessive activation of OCs is the result of multiple

factors. Under the stimulation of epigenetic disorders and

transcriptional regulators, DNA methylation, histone

acetylation, and other processes promote the expression of

RANKL and the production of OCs.In recent years,

discoveries about OCs functionality have been growing, such

as the discovery of the gene Merlot, which promotes OC

apoptosis. The up-regulation of Tyro3TK promotes OC

generation, and KLF2 inhibits OC differentiation in RA, which

provides new evidence for understanding the mechanism of RA-
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related bone destruction. However, these mechanisms and trials

require further validation. Understanding the progress of these

regulatory mechanisms will help us better understand the

pathogenesis of RA and develop new diagnostic, therapeutic

and prognostic strategies.
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Given the clinical characteristics of RA, we have summarised

the targeted therapy for OCs through different internal pathways,

but the internal mechanism of many aspects remains elusive. We

believe that combining targeted OCs and anti-inflammatory agents

are promising for better clinical outcomes.
FIGURE 3

Generation regulation of OCs. When RANK binds to RANKL, on the one hand, RANK recruits TRAF6, activates NF- kB, JNK,p38,c-fos and AP-1;
on the other hand, RANK increases the activity of intracellular calcium and activates calcium regulatory neuroenzymes through the Btk/Tec
pathway, which promotes the production of phospholipase C (PLC) to mediate the release of intracellular calcium, regulating the activity of
CREB and affecting the transcription of various transcription factors.NFATc1 is the main transcription factor in OC differentiation, inducing OC-
specific target genes in the nucleus.The activation of NFATc1 is induced by the above two pathways, thus promoting the formation of OC.
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