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In or out of control: Modulating
regulatory T cell homeostasis
and function with immune
checkpoint pathways

Maha Abdeladhim, Jodi L. Karnell and Sadiye Amcaoglu Rieder*

Department of Research, Horizon Therapeutics, Rockville, MD, United States
Regulatory T cells (Tregs) are the master regulators of immunity and they have

been implicated in different disease states such as infection, autoimmunity and

cancer. Since their discovery, many studies have focused on understanding

Treg development, differentiation, and function. While there are many players

in the generation and function of truly suppressive Tregs, the role of checkpoint

pathways in these processes have been studied extensively. In this paper, we

systematically review the role of different checkpoint pathways in Treg

homeostasis and function. We describe how co-stimulatory and co-

inhibitory pathways modulate Treg homeostasis and function and highlight

data from mouse and human studies. Multiple checkpoint pathways are being

targeted in cancer and autoimmunity; therefore, we share insights from the

clinic and discuss the effect of experimental and approved therapeutics on

Treg biology.
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Introduction

The immune system employs multiple players and mechanisms to protect the host

from infections, autoimmunity, and cancer. Innate and adaptive arms of the immune

system collaborate to maintain homeostasis and to protect the host from foreign antigens

while maintaining the distinction between foreign and self (1). One integral lymphoid

population in the adaptive immune system is the T cell and broadly there are two major

populations—effector T cells (Teffs, including helper, cytotoxic, memory and gd subsets)
and regulatory T cells (Tregs). While Teffs are necessary to mount an effective immune

response against foreign antigens, Tregs are essential for maintaining tolerance to self (2).

Like all T cells, Tregs are developed and trained in the thymus (3). T cells with high

affinity to self-antigens are deleted during negative selection while cells with intermediate
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affinity to self-antigens develop into Tregs. Due to imperfections

of the negative selection process, Teffs with high affinity TCRs

for self-antigens are sometimes released into the periphery (4).

One of the main functions of Tregs is to control these self-

reactive cells and maintain peripheral tolerance (5).

Natural Tregs (nTregs) emerge from the thymus, and they

express themaster transcription factor Foxp3 (forkhead box P3) (6).

The most studied Treg population is CD4+; however there have

been reports of CD8+ Tregs in the recent years (7, 8). In addition,

there is a suppressive T cell population named Tr1 cells that are

CD4+ Foxp3- and these cells express the co-inhibitory marker

LAG3, CD49b and the inhibitory cytokine IL-10 (9). Tregs can also

be induced from the naïve T effector cell populations (iTregs) and

these cells have shown to be important in tissues such as the gut

(10). Like Teffs, Tregs are heterogenous and different

subpopulations exist—naïve/resting, central memory, effector

memory and effector Tregs (11). The subpopulations are defined

by differential expression of surface receptors such as CCR7,

CD45RA, CD45RO and CD27 expression in humans; and

CD62L and CD44 expression in mice (12, 13). Additionally,

specific chemokine receptors and adhesion molecules are

expressed, especially in tissue-directed and tissue-resident Tregs
Frontiers in Immunology 02
(14). For example, CCR4 is important for migration to skin and

CCR9 is needed for homing to intestine (15, 16). Furthermore,

memory Tregs can be divided into Th1, Th17 and Th2 Tregs, and

these subpopulations emerge for two main reasons (17–19).

Firstly, Tregs may differentiate into T helper-like phenotypes in

order to adapt to the microenvironment, and better control

Teff immune responses. Secondly, in certain inflammatory

settings, Tregs lose their suppressive capabilities, and secrete

pro-inflammatory cytokines (17–19). Figure 1 summarizes

some of these different subtypes of human Tregs and their

associated markers.

Tregs exert their suppressive role in different ways including

cell-cell contact, secretion of inhibitory cytokines, cytolysis,

metabolic disruption, and modulation of DC maturation.

Tregs can suppress the immune system in an antigen-specific

way but also through infectious tolerance mechanisms (20). A

well balanced Treg function is key for a healthy immune system.

Defects in Treg homeostasis and function leads to autoimmunity

and chronic inflammation while increased number and function

of Tregs can aid in the establishment and spread of cancer (21).

Tregs can be activated through various axes, including antigen

recognition, cytokines and in recent years checkpoint molecules
FIGURE 1

Different subsets of human Tregs in the lymph nodes, tissues, and sites of inflammation. Tregs emerge from the thymus and migrate into
secondary lymphoid organs. Naïve and central memory Tregs reside in the lymph nodes while effector memory and effector Tregs can be found
in the tissues and sites of inflammation. (Created by BioRender.com).
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have been widely studied as important pathways which can

regulate Treg development and function (22, 23).

Activation and regulation of T cells including Tregs require

dual signals. The first signal (referred to as signal 1) is delivered

when the T cell receptor (TCR) recognizes antigen in the context of

Major Histocompatibility complex (MHC) and antigen on the

antigen presenting cell (APC). The second signal (referred to as

signal 2) is engaged when CD28—the major co-stimulatory

molecule engages CD80 and CD86 on the APC (further

discussed in detail below). Without either of the two signals, T

cells and Tregs cannot be activated (24). Notably, the initiation and

activation of T cells are further regulated by other checkpoint

pathways. The immune response is fundamentally shaped and

modulated by co-stimulatory and co-inhibitory receptors and

their corresponding ligands and the balance between pro and

anti-inflammatory signaling is maintained during homeostasis

(25). In tumorigenic environments, cancer cells recruit Tregs,

induce T cell tolerance and/or anergy, and stimulate inhibitory

immune checkpoints (26). Inversely, in autoimmune settings,

inflammatory molecules and cytokines activate stimulatory

checkpoint pathways. Stimulatory checkpoint molecules are

composed of two major families; CD28 superfamily composed of

CD28 and ICOS; and Tumor Necrosis Factor receptor superfamily

containing CD40, OX40, GITR, CD137 and CD27 (25, 27).

Inhibitory checkpoint molecules are composed of a much larger

number of described molecules such as CTLA-4, PD-1, TIGIT,

LAG3, TIM3, LILRB4, VISTA, KIR, 2B4 and many others (28)

(Figure 2). Deeper understanding of Tregs and different immune
Frontiers in Immunology 03
checkpoint pathways shaped the strong interest in targeting them as

potential therapeutics in autoimmunity, transplantation, chronic

allergic and inflammatory diseases (29, 30). Moreover, the finding

that Tregs are present at tumor sites also raised the importance of

targeting them to promote anti-tumor immunity (31). Therefore, all

fields converged to the same objective to selectively manipulate

Tregs to inhibit or promote their function in disease. While there is

rich literature on the role of immune checkpoint pathways in

modulating Treg homeostasis and function, there remains some

controversies and outstanding questions. Comprehensive

understanding of the impact of co-stimulatory and co-inhibitory

pathways on Treg modulation will empower next generation

therapeutics such as biologics, small molecules and Chimeric

Antigen Receptor (CAR) cell therapy approaches. In this review,

we discuss the biological impact of different checkpoints pathways,

provide perspective from mouse and human studies, and share

some insights about the modulation of these pathways in the clinic.
The role of co-stimulatory pathways
in Treg homeostasis and function

CD28

CD28 is (44kDa, type I transmembrane protein) expressed on

the surface of the majority of naïve CD4 and CD8 T cells as a

glycosylated, disulfide-linked homodimer, and consists of a single

extracellular Ig-V-like domain. CD28 was first characterized by a
FIGURE 2

Immune checkpoint receptors expressed by Tregs. Various immune checkpoint receptors deliver unique signals to Tregs following engagement
with their ligands expressed on APC and/or cells in tissue or diseased cells in different disease environments. The figure represents the most
described co-stimulatory (left) and co-inhibitory checkpoints. (Created with BioRender.com).
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monoclonal antibody generated by John Hansen and Paul Martin

in 1980 (32). They demonstrated that CD28 is a differentiation

antigen expressed on thymocytes and majority of mature T cells.

Cloning and expression of CD28 unveiled that each CD28

monomer contains 134 extracellular amino acids with a single

transmembrane domain and a short cytoplasmic tail with no

enzymatic activity. Each of the four exons contained in the CD28

gene defines a functional domain of the molecule (33, 34). CD28

binds both ligands CD80 (B7 or B7-1) and CD86 (B7-2).

Additionally, CD28 can bind ICOS (35). Furthermore, cytotoxic

T lymphocyte-associated protein-4 (CTLA-4) can oppose CD28,

competes for binding the same ligands on APCs and induces

CD28 downregulation via endocytosis (36). CD28 can generate a

costimulatory signal (signal 2) once the TCR is engaged but is

unable to activate T cells independently. In the absence of TCR

stimulation, CD28 binds to CD80 monovalently and this weak

interaction doesn’t generate a strong signal. However, in the

presence of TCR activation, the homodimer form of CD28

binds to CD80 bivalently. Upon co-ligation, CD28 helps amplify

the TCR signal in T cells. CD28 engagement on T cells induce the

formation of distinct molecular patterns. It also induces

cytoskeletal rearrangements and formation of an immunological

synapse (37). CD28 is constitutively expressed in 80% of CD4 and

50% of CD8 T cells in human while all mouse T cells express

CD28. Loss of CD28 expression is observed mainly in the CD8 T

cells and was reported in human during aging and autoimmune

disease (38). However, its expression is never downregulated in

mice (39). The co-stimulatory function of CD28 has been utilized

as a therapeutic factor in immunotherapy in oncology, especially

in Chimeric Antigen Receptor (CAR) cell therapies and biologics

(40, 41). However, it has also been an intricate balance to fully

unleash the activating potential of CD28, since overstimulation

can lead to cytokine storm and toxicity. Some of these CD28

activating therapies are discussed later in the review.

Like all other T cells, co-stimulatory signals are required for

Tregs to become fully functional. Early studies have yielded

conflicting results on the role of CD28 signaling in Tregs. This

first became apparent in mice with the observation that

spontaneous diabetes is exacerbated and the number of

CD4+CD25+ Tregs is decreased in both CD28-deficient and

B7-1/B7-2-deficient NOD mice (42). Tai et al. unveiled the

important role of CD28 co-stimulation in thymic Treg

differentiation. They reported that CD28 knock out mice had

fewer Tregs in the thymus and these cells were unable to suppress

the proliferative response of T cells in vitro (43). Likewise, Liang

et al., showed that CD4+CD25- cells can be converted into Tregs

in vivo through a B7-dependent pathway in a thymic independent

manner. Later using CD28 knock out T cells, Guo et al. attributed

this thymic independent peripheral Treg generation process to

CD28 rather than CTLA-4 ligation of B7 both in vitro and in vivo

(44–47). The role of CD28 in Treg function was further confirmed

by Zhang et al. They developed CD28-deficient Treg mice in

which CD28 is deleted under control of the FOXP3 promoter.
Frontiers in Immunology 04
While Treg numbers were preserved in these mice, these cells had

lower levels of CTLA-4, PD-1 and CCR6 and they developed a

systemic autoimmune condition affecting mainly the liver and the

skin. This result was consistent with loss of suppressive function in

CD28-deficient Tregs and failed to maintain immune surveillance

in vivo (48). Other studies confirmed the stipulation of CD28 for

in vitro Treg generation, as enriched Treg populations can only

maintain their Treg phenotype and suppressive activity when co-

stimulated with anti-CD28, even when expanded in the presence

of rapamycin (49). To further assess the role of CD28 in Treg

maturation and function, Zhang et al. performed a detailed

analysis of manifestation of skin disease in CD28 Treg deficient

mice. They demonstrated that CD28 activation is essential for

optimal maturation of CD44loCD62Lhi central Tregs (cTregs or

naïve Tregs in the secondary lymphoid organs) into

CD44hiCD62Llo effector Tregs (eTregs) and induction of CCR6

in the latter cells. While CD28-deficient Tregs had normal

function when injected directly to the skin, they were unable to

home to inflamed skin due to the downregulation of CCR6 which

is required for tissue homing (25).

Hombach et al. highlighted the role of CD28 co-stimulation in

human Treg cells by comparing the activation requirement of

resting human CD4+CD25+ Tregs to CD4+CD25- T cells. They

demonstrated that the stimulatory conditions that induce T cell

proliferation are not sufficient to induce Treg proliferation since

Tregs require a combination of an intense TCR signaling with a

very strong CD28 co-stimulation. Despite high levels of CD25

expression in Tregs, high concentrations of IL-2 could not

substitute CD28 signaling (50). With the expansion of

immunotherapy and the use of Treg as living therapies for

autoimmune conditions, there has been great interest in

generating high quality Tregs. He et al. demonstrated that a single

CD28 stimulation of FACS sorted nTregs induces proliferation,

high levels of Foxp3 expression, reduces pro-inflammatory cytokine

production potential, preserves the TSDR demethylation and

maintains high suppressive capacity (51).

CD28 engagement activates several cytosolic signaling

pathways. Using CD28 transgenic mice, several groups

uncovered different signaling pathways of CD28 that are

distinct in Tregs and T cells. Tai et al. proved the important

role of the PYAP motif within the cytoplasmic domain of CD28

that require an intact Lck-binding motif. This CD28 cytosolic

tail interaction with Lck is required both for efficient Treg

generation and for IL-2 production. Similarly, CD28 activation

in CD4+CD25- T cells lead to STAT3 Tyr705 phosphorylation in

an Lck-dependent manner to drive Foxp3 expression (52). Vang

et al. demonstrated that CD28 drives Treg differentiation in the

thymus via the PYAP motif through a subsequent activation of

the proto-oncogene c-Rel and Nuclear factor kappa B (NFkB).

Engagement of c-Rel induces high-level expression of the IL-2R

complex on Treg progenitors which allow Tregs to respond to

IL-2 (53). (Figure 3). Other studies pointed the role of

Phosphoinositide 3-kinase (PI3K) pathway in Foxp3
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transcription induction. Scotta et al. demonstrated that CD28

signals independent from TCR, results in PI3K/AKT pathway

activation and this is sufficient to induce the transcription of

FOXP3 in a small proportion of primary CD4+CD25- T cells

committed to express Foxp3 (54). CD28 ligation was also

sufficient to activate PI3K target protein kinase B (PKB; c-

AKT) and inactivate phosphorylation of PKB target glycogen

synthase kinase-3 (GSK-3) (55). These results were

complemented using CD28 superagonist in FACS sorted Tregs

in the presence or absence of PI3K-inhibitor or mTOR-inhibitor.

The Treg activation in the presence of exogenous rhIL-2 induced

an increase in Foxp3 expression and a decrease in inflammatory

cytokine production that was dependent on distal mTOR and

proximal PI3K signaling (51). Collectively, these results suggest a

key role for CD28 co-stimulation in promoting Treg function.
ICOS (CD278)

ICOS (55-60kDa) is a disulfide-linked homodimeric T-cell

surface glycoprotein. First identified in humans two decades ago,

ICOS is the third member of the CD28 co-stimulatory family

that is expressed on different populations of activated T cells

comprising CD8+ cytotoxic T lymphocytes (CTL), CD4+ (Th1,
Frontiers in Immunology 05
Th2, Th17 and Tfh) and CD4+Foxp3+ Tregs (56). TCR

engagement and/or CD28 co-stimulatory signaling induce

increased expression of ICOS on CD4 and CD8 T cells. ICOS

engagement by ICOS ligand (ICOSL) induces a wide range of

cytokines and increases Treg suppressive function. Thus, distinct

expression pattern of ICOSL can regulate ICOS ligation (57, 58).

During homeostasis, ICOS is constitutively expressed in

approximately 20% of Foxp3+ Tregs, with the majority of

ICOS+ Treg being CXCR3+ (Th1-like Tregs) or CXCR3-

CCR6+CCR10- (Th17-like Tregs) (59). Despite substantial

homology with the other family members, co-stimulatory

CD28 and co-inhibitory CTLA-4, ICOS cannot bind the same

receptor due to the lack of MYPPY motif (60). However, it binds

its unique ligand (ICOSL/B7-H2) constitutively expressed on B

cells, macrophages, DCs, and somatic cells (61, 62). ICOS can be

induced by TNF-alpha on various non-lymphoid cells including

endothelial cells (63), lung epithelial cells (64), mesenchymal

stem cells (65), fibroblasts (66) and tumor cells (67). Likewise,

ICOS is highly expressed on tonsillar T cells. These latter cells

are imperative for germinal center formation and B-lymphocyte

maturation (56). The crosslinking of ICOS and ICOSL has

stimulating activities, promoting an anti-tumor response by

Th1, CTL and T follicular helper (Tfh) and a pro-tumor

response mediated by Tregs and Th2 cells in the tumor
FIGURE 3

Immune Co-stimulatory signaling pathways specific to Tregs. Immune co-stimulatory checkpoints signaling are described in different cell types
but only some are detailed in Tregs. The figure represents the most studied pathways. (Created with BioRender.com).
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microenvironment. On the other hand, ICOS engagement by its

ligand is essential for the generation, function and maintenance

of Tfh cells that help germinal center formation and auto-

antibody production in autoimmunity (25, 58, 68). In contrast

to the CD28 pathway, ICOS co-stimulation results in inefficient

IL-2 production by activated T cells. Nevertheless, other

cytokines including IFN-g, IL-4, IL-10 and IL-21 are

frequently more efficiently produced (69, 70). Mechanistic

studies by Chen et al., proved that ICOS signal plays a key

role in regulating suppressive function and survival of Tregs. In

vitro activation of CD3 and ICOS favor the interaction between

nuclear factor of activated T cells (NFAT) and Foxp3 leading to

upregulation of Foxp3 downstream regulatory genes. ICOS

promoted anti-apoptotic activity through PI3K-AKT pathway

increasing Treg survival and function (71–73).

ICOS engagement leads to the recruitment of both p50a for

AKT activity (72, 74) and p85a (75) regulatory subunits of PI3K,

in parallel to the recruitment of the p110d catalytic subunit.

Recently, the recruitment of the p85a subunit was linked to the

differentiation of Tfh cells (72). Contrarily to CD28, ICOS

induces a more robust PI3K signaling and a less robust MAPK

signaling with a specific recruitment of TBK1 (58). Using an

ICOS YF mice model that are incapable of activating PI3K

signaling, O’Brien et al. demonstrated that PI3K-independent

signaling downstream of ICOS plays a crucial role in Treg

stability in the context of chronic inflammation (76).

Activation of PI3K increases calcium mobilization triggered by

the TCR. ICOS ligation induces a stronger AKT activation than

CD28 engagement. The entire cytoplasmic domain of ICOS is

necessary for its co-stimulation and calcium mobilization. This

co-stimulatory function depends on the unique transmembrane

domain (TMD) of ICOS, responsible for promoting association

with the tyrosine kinase Lck. Transmembrane domain-enabled

Lck association is essential for p85 recruitment to ICOS and

consequent PI3K activation. Lck triggers both the bystander and

co-stimulatory signaling activity of ICOS. Replacement of ICOS

transmembrane domain, while keeping the cytoplasmic domain

intact, fails to support Tfh development of germinal center

formation in vivo. When the ICOS transmembrane domain

was transplanted onto a CAR, it boosts interactions between T

cells and antigen-presenting target cells (77). Therefore, the third

generation of CAR T cell therapy comprising the ICOS in a

transmembrane signaling demonstrated a superior efficacy and

an increased persistence in vivo (78).

Abrogation of the ICOS pathway in NOD mice exacerbated

the T1D disease pointing to the important role of this pathway in

tolerance. In this model, ICOS expression discriminated Foxp3-

T cells from Foxp3+ Tregs and specifically designated a subset of

intra-islet Tregs with amplified potential to expand, produce IL-

10 and mediate suppressive function both in vitro and in vivo.

Blockade or genetic deficiency of ICOS abrogated Treg mediated

protection from T1D and exacerbated the disease in BDC2.5-

NOD mice (79). There is a strong core of evidence that ICOS+
Frontiers in Immunology 06
Treg are more sensitive to IL-2 than their ICOS- counterparts. In

a colitis model, ICOS deficiency resulted in an increased

induction of IL-10 in CD4 T cells but reduced accumulation of

Foxp3+ cells in large intestine. ICOS- Treg displayed increased

methylation of Foxp3 conserved non-coding sequence 2 (CNS2)

and preferentially downregulated Foxp3, which renders these

cells unable of reverting the gut inflammation (80). In a model of

hypersensitivity to 2,4-dinitrofluorobenzene, Vocanson et al.

demonstrated the Hapten-specific Tregs expanding in response

to their cognate antigen in vivo are mainly ICOS+ Treg, and by

using reporter mice they demonstrated that these cells were

derived from the expansion of natural Treg and were dependent

on innate cells such as DCs (81). In Toxoplasma and

Mycobacterium tuberculosis models, they described an

expansion of Teffs and a loss of Treg frequency in the brain

and lung of ICOS deficient mice respectively (76, 82).

In human melanoma patients treated with high dose IL-2

therapy, the ICOS+ Treg population was the most expanded and

the most proliferative lymphocyte population in the blood.

Melanoma patients with enhanced expansion of ICOS+ Treg

in blood following treatment had unfavorable clinical outcomes

than patients with fewer ICOS+ Tregs (83). For instance, ICOShi

Tregs had superior immunosuppressive capacity compared to

ICOSlo Treg isolated from melanoma patients. These ICOShi

Tregs were also able to induce suppressive IL-10 producing Tr1

cells from CD4+T cells (61). Similarly, a high infiltration of

ICOS+ Treg in hepatocellular carcinoma indicated a worse

prognosis (84). Moreover, in the tumor microenvironment,

Tregs express increased levels of ICOS and Foxp3 and secrete

higher levels of IL-10 and TGF-b (59). There is a clear

understanding of the exacerbating role of ICOS+ Tregs in the

disease in the immune-oncology field; however on the flip side,

data are controversial in autoimmunity. In active SLE patients

the ratio of ICOS+ Tregs to ICOS+ T responder CD4+ cells is

significantly reduced and ICOS- Treg reduction is observed (85).

Whereas in RA patients, ICOS+ Tregs were increased compared

to normal controls, and such an increase was accentuated in

patients with inactive RA compared to patients with active RA.

Additionally for the patients with active RA the expression of

suppressive cytokines (IL-10, TGF-b and IL-35) decreased while,

expression of IL-17 increased compared with inactive RA,

suggesting that ICOS+ Tregs may play an inflammatory and

inhibitory function in a context-dependent manner (77).
4-1BB or TNFRSF9 (CD137)

TNFRSF9 also known as 4-1BB or CD137 is an inducible

member of the tumor necrosis factor receptor (TNFR) family

that plays the role of a co-stimulatory receptor. It was first

discovered in 1989 on activated T lymphocytes (86, 87). It is

expressed on activated CD4 and CD8 T cells but also on NK

cells, B cells, neutrophils, dendritic cells, eosinophils, mast cells
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(88–91), endothelial cells, and some tumor cells (92–94). Tregs

also expresses CD137 and its expression increases after

activation (95–98). Whereas, its only known TNF-related

ligand, 4-1BBL, is expressed by activated APCs (99, 100).

When 4-1BB engagement by 4-1BBL is coupled with a strong

TCR signaling, it provides co-stimulatory signals to T cells even

in the absence of CD28 signaling. It enhances IL-2 and IFN-

g production by Teffs and CTLs, respectively. Although,

CD4 and CD8 T cells are both stimulated with 4-1BB in vitro,

4-1BBL/4-1BB crosslinking preferentially activates CD8 T cells

(91, 101). There is also support that 4-1BB signaling in

conventional T cells drives an excessive production of IL-2

responsible for escaping the Treg suppressive effect (102).

Zheng et al., demonstrated that engagement of 4-1BB on

thymic Tregs induces their proliferation both in vitro and in

vivo while maintaining their suppressive ability despite the

absence of detectable IL-2 indicating this pathway doesn’t

involve IL-2 production (103). Similarly, data from Elpek et al.

support the use of 4-1BBL as a means of proliferating Tregs in

vivo (104). Likewise, 4-1BB is also able to downregulate the

functions of Th cells, either by anergizing them or by enhancing

the generation of Tregs (105–107). On the contrary,

Akhmetzyanova et al. showed that 4-1BB stimulation

converted Foxp3+ Tregs into cytotoxic killer cells that were

able to contribute to antigen specific tumor rejection in

vivo (108).

In a type 1 diabetes model, targeting 4-1BB with a

monoclonal antibody suppressed the disease in NOD mice

when the treatment is initiated before the development of

auto-reactive T cells and is dependent on Treg induction

(109). In a colitis model administration of anti-4-1BB

agonistic antibody led to the reduction of incidence and

severity of colitis. This effect was linked to a reduction of IL-2

expression by Th1 cells and an increase in Tregs (110, 111).

Similarly, in an Experimental Autoimmune Encephalomyelitis

(EAE) and Imiquimod-induced psoriasis-like dermatitis models,

4-1BB agonist was able to reduce disease by modulating Th17

versus Treg balance (112, 113). The generation of iTregs in the

gut was attributed to the expression of retinal dehydrogenase

(RALDH) by DC, an enzyme that promotes retinoic acid that

aids differentiation of iTregs in the intestinal mucosa (114, 115).

Another mechanism by which Treg engagement of CD137 tunes

down Teff activation is by transferring and internalizing the

CD137-CD137L complex formed between Tregs and APCs to

Tregs via trygocytosis and depriving APC from their CD137L

stimulating ability (107). As many of the members of the tumor

necrosis factor superfamily (TNFRSF), 4-1BB ligation recruits

TRAF adapter proteins, particularly that result in increased

NFkB and MAP-kinase signaling (67, 116–119).

Despite the controversial function of 4-1BB in Tregs,

agonistic anti-CD137 mAbs are being tested as therapies for

cancer and autoimmune diseases. While, their mechanisms of

action are different in different disease settings, they remain not
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needs to be further investigated (120). Tregs with low 4-1BB

expression was associated with enhanced overall survival in non-

small cell lung cancer, confirming the role of 4-1BB in

promoting suppressive function in tumor microenvironment

(121). Also, using a genome-wide RNA-Seq analysis of

multiple human cancer types and purified Tregs, Freeman

et al. demonstrated that 4-1BB had an increased selectivity for

human tumor Tregs (122). In autoimmunity, data support the

role of 4-1BB in promoting Tregs (27). Altogether, 4-1BB can

affect the biology of Treg cells and drive the crosstalk with other

immunomodulatory cells.
GITR or TNFRSF18 (CD357)

Glucocorticoid-induced tumor necrosis factor (TNF) receptor

(GITR) is a member of the TNF receptor (TNFR) superfamily.

GITR is a 228-amino acids type I transmembrane protein

distinguished by three cysteine pseudorepeats in the extracellular

domain. It was described for the first time in 1997 by Nocentini in

DEX-treated murine T cell lines (123). GITR is constitutively

expressed on CD25+CD4+ Tregs (97, 124). After activation, its

expression is upregulated on all T cell subsets (125). GITR is also

detected on various myeloid cells; which include monocytes,

macrophages, DCs and MDSCs (126, 127). GITR is engaged by

its unique ligand (GITRL) that is expressed on activated APCs and

endothelial cells (128–130). GITR and GITRL expression is

reported on numerous cell types and is not limited to

hematopoietic cells. A moderate expression is observed on

keratinocytes and osteoclast precursors, and elevated expression

on endothelial cells stimulated with type I IFN (128). GITR

engagement with GITRL rescues T cells from anti-CD3 induced

apoptosis, preserves their activation, proliferation and cytokine

production (131, 132). GITR has a distinctive role for CD8+ and

CD4+ T cells. GITR signaling induces the expression of CD137 on

CD8 memory T cells, it could also lower the threshold for CD28

signaling on CD8 T cells (133, 134). While, on Tregs, GITR is a

critical receptor in the differentiation of thymic Tregs (tTregs), and

expansion of both tTregs and peripheral Tregs (pTregs) (135, 136).

GITR signaling is mediated by recruitment of TRAF2 and TRAF5

that induce NF-kB, resulting in the upregulation of Bcl-Xi, an anti-

apoptotic protein on activated CD8 T cell (137). GITR engagement

by GITRL induces IL-9 production by a subest of Th cells in a

TRAF6 and NF-kB dependent manner, yielding enhanced tumor-

specific CTLs response (138). However, in the context of Treg,

GITR induces a TRAF4 mediated induction of NF-kB (139). To

sum it up, Ephrem et al., demonstrated that the effect of GITR

signaling is complex and depend on the activation state of the Tregs

and Teffs as well as the physiologic environment of the host (140).

Mouse studies showed that GITR signaling abrogates the

suppressive function of Tregs both in vitro and in vivo (97, 141).

In contrast to data obtained in mice, however, the engagement of
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GITR by huGITRL did not abrogate Treg suppression and

promoted their expansion (142–144). In mouse tumor models,

treatment with anti-mouse GITR agonistic Ab, did not affect GITR

expression in Tregs among Tumor Infiltrating Lymphocytes (TILs)

that remained high. Nonetheless, non-Treg CD4 and CD8 TILs

exhibited high GITR expression as well. Interestingly, the GITR

expression on CD8 and CD4 TILs corroborated the anti-tumor

effects of GITR treatment (145). In a mouse melanoma model

GITR signaling destabilized Treg by reducing Foxp3 expression in

intratumoral Tregs but not in circulating one which improved anti-

tumor immunity (146). Similarly, targeting GITR in a glioblastoma

model using an agonistic antibody promoted CD4 Treg

differentiation into CD4 Teffs, alleviated Treg-mediated

suppression of anti-tumor immune response, and induced potent

anti-tumor effector cells (147). Recent evidence from murine

tumor models suggests that anti-GITR antibodies selectively

reprogrammed Tumor infiltrating-Tregs (TI-Tregs). These

antibodies caused downregulation of Foxp3, Helios and IL-10,

while increased the levels of IFN-g production from TI-Tregs.

GITR targeting antibodies play a crucial role via in regulating

Helios expression, as anti-GITR treatment phenocopies Helios

genetic deletion in Tregs. Similar observation was made in the

context of Myasthenia Gravis model where GITR directly regulated

Helios expression in Tregs (148, 149).

On the flip side, blockade of GITR and GITRL interaction in

autoimmunity alleviates disease severity. In NOD mice, an

agonistic treatment with GITR accelerated disease onset

significantly. The activity was not attributed to a decline in

Tregs but rather an activation of diabetogenic T cells. The role of

Tregs was confirmed when a similar observation was made is

CD28-/- NOD mice which lack Tregs. Likewise, agonistic

treatment with anti-GITR (DTA-1) during the induction

phase of EAE significantly enhanced the level of clinical

severity (150, 151). In contrast, blockade of GITR with a

neutralizing antibody led to a significant protection from

diabetes even at late-stage disease (151). Comparison of cells

from GITR-/- to GITR +/+ showed that GITR-/- Tregs are more

suppressive in vitro and GITR-/- mice are less susceptible to

developing RA in a CIA disease model (152).
OX40 (TNFRSF4, CD134)

OX40 (also called CD134 and TNFRSF4) is another co-

stimulatory receptor of the TNFRSF of an approximately 50kD

which is a type 1 transmembrane glycoprotein first described in

1987 (153, 154). OX-40 is a well-known Tcell activation marker. It

is induced in activated CD4 and CD8 T cells, as well as in

neutrophils, NK and NKTs (155, 156). OX40 is a late

costimulatory receptor. Artificial engagement by OX40L induces

proliferation, cytokine production, and T cell survival. This effect is

partly induced by the expression of antiapoptotic molecules of the

Bcl-2 family including Bcl-xL, Bcl-2 and Bfl-1 as well as survivin
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(157). However, it does not interfere with priming naïve T cells, as

OX40-deficient T cells show normal differentiation to Teffs via TCR

signaling but are not able to remain alive (158, 159). OX40 is also

considered as a key marker of Tfh cells that can promote their

generation and maintenance. OX40 synergizes with ICOS to

maximize Tfh responses and formation and maintenance of

germinal centers (160). In mouse Tregs, OX40 is constitutively

expressed and the OX40 ligand (OX40L or CD252) is broadly

expressed on activated APCs, including DCs, B cells, and

macrophages, as well as non-hematopoietic cells, comprising

endothelial cells and smooth muscle cells (161). Some studies

show that when OX40 is engaged on Tregs, it not only inhibits

their function and generation but can additionally, impede the

generation, differentiation, and suppressive function of IL-10-

producing CD4 type 1 Tregs significantly (162, 163). Peloso et al.

demonstrated that engaging OX40 on Tregs by an OX40 agonist

does not intrinsically impair their function but rather enhances their

inflammatory cytokines production such as IFN-g, TNF-a and

Granzyme B (164). In a different study by Piconese et al., they

showed that mast cells counteracted the Treg function by ligating

the OX40, and together with IL-6 production they induced a

differentiation toward Th17 (165). On the other hand, OX40L

expression on ILC2s induced tissue-restricted T cell co-stimulation

that was crucial for Th2 and Treg responses in the lung and adipose

tissue. Additionally, the IL-33 administration resulted in an organ

specific expression of OX40L on ILC2 with a concomitant

expansion of Tregs (166).

In T cells, OX40 activates both PI3K and NF-kB pathways by

forming a signalosome containing TRAF2, IKKa, IKKb, PI3k and

AKT (157). However, in Treg precursors, OX40 co-stimulatory

activates BATF3 and BATF that induce the production of a closed

chromatin to repress Foxp3 expression in Sirt1/7-dependent

manner. Additionally, OX40 can also activate PI3K-AKT-mTOR

pathway and inhibit Foxp3 induction by phosphorylation and

nuclear exclusion of the transcription factor FoxO (46, 167). Much

of the signaling work for OX-40 has been done in Teffs and Tfh

cells, and further detailed studies for signaling in Tregs would

be beneficial.

Numerous tumor mouse models and preclinical studies

investigated OX40 agonistic signaling as an anti-tumor therapy

through TIL regulation. The anti-tumor effects of OX40 agonist

antibodies has been reported in several mouse models and

human preclinical studies (168). Considering the constitutive

expression of OX40 in Tregs, OX40 signaling dominantly affects

Tregs. However, OX40 stimulation has numerous effects that

lead to tumor elimination. OX40 engagement not only mediated

Treg inhibition that unleashed nearby DCs allowing the

induction of an adaptive immune response, but concomitantly

delivered a fitness signal to activated T cells (164, 165). In

autoimmunity, inhibition of OX40L ameliorated CIA disease

scores in mice even when the signal on OX40 activated cells is

intact (169). Contrarily, Griseri et al. demonstrated that OX40 is

indispensable for Tregs accumulation in the colon and it plays a
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crucial role in Treg mediated suppression of colitis. OX40

deficient Tregs underwent enhanced activation induced death

which corroborated the importance of OX40 in delivering the

survival signal after activation. This could be explained by the

importance of OX40 in Tregs that allows them to compete with

colitogenic Th1 OX40+ cells for interaction with OX40L in DC

(170). In a mouse model of pemphigus, Iriki et al. showed that

OX40+ Tregs played a essential role in constraining OX40

signaling in autoreactive T cells. Likewise, Tregs signaling

through OX40L on DCs suppressed the expression of OX40L

itself (171). In a GVHD model, blocking OX40 reduced

infiltration of human T cells to target organs. It also decreased

IL-21 and TNF producing T cells while promoting Treg

responses without compromising the cytolytic activity of CD8

T cells (172).

In active SLE patients, Treg dysfunction is mediated by

APCs in an OX40L-dependent manner. In active skin lesions,

Tregs and OX40L expression colocalized. Ligation of OX40 by

OX40L resulted in downregulation of Foxp3 in Tregs (173). The

data is conflicting regarding the effect of OX40 agonist on Tregs

with some studies demonstrating that OX40 blocks the

suppressive function of Tregs, while others showing enhanced

Treg proliferation (46, 164, 165). Many studies in the

autoimmunity setting demonstrated consistently that OX40

limits Treg function (169, 172–175). Altogether, these results

indicate that OX40 signaling may regulate Tregs in several ways,

depending on numerous factors, such as cytokines and other

stimulation conditions (70).
CD40L (CD154)

CD40L or CD154 is the ligand for CD40. It is a 33-39kD type

II membrane glycoprotein (176, 177). CD154 was first reported in

1992 by Lederman and colleagues (178). It was described as an

activation-induced surface T cell marker that is involved in

mediating contact-dependent Teff function. It engages CD40 on

B cells driving B cell activation, maturation, and germinal center

formation. But it is also essential for the final differentiation of

CD4 T cells and the selection of TCR clonotypes during a T-

dependent humoral immune response. Recent data demonstrated

that CD154 is critical for the selection of T-cell clones throughout

the negative selection exercise in the thymus (179). CD154

expression has been described in a variety of other cells,

including platelets, mast cells, macrophages, basophils, NK cells,

B lymphocytes, and non-haematopoietic cells (180). Increased

expression of CD154 on T cells has been reported in different

autoimmune patients (181, 182). Naïve Tregs express basal levels

of CD154 that are upregulated upon TCR-triggered activation

(183). Several studies demonstrated that expression of CD40 on

DCs is essential to induce T cell tolerance and Treg accumulation.
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This signaling in IL-10-differentiated DC-10 contributes

importantly to the expression of IL-10 potent activator and this

is a modulator of Treg activation and function (183–185). Other

studies pointed the important role of CD40-activated B cells in

inducing and expanding Tregs from naïve precursors (186, 187).

The abrogation of the CD40-CD40L interaction hinders the

homeostasis of thymic resident Tregs by changing the levels of

IL-2 but does not affect their precursor development (188). Nicole

et al. demonstrated that CD154+ nTreg could be efficiently

expanded by specific antigenic activation while preserving their

suppressive activity (189, 190). In a HIV chronic infection model,

soluble CD154 induced immunosuppression by expanding Tregs

(191). Similarly, CD40 upregulation on mature DCs increased the

Th17/Treg ratio in vitro during the pathogenesis of periodontitis

in young patients (192). The blockade of CD154 was able to

modulate this ratio and prolonged the survival of allogeneic

corneal grafts in mice (193). In an influenza model, Ballesteros-

Tato et al. showed that Teffs and Tregs compete for CD40 ligation

on DCs, and CD4+ T cells are only required for robust influenza

specific CD8 response when Tregs are present (194). Ferrer et al.

extensively studied the effect of CD154 blockade in extending graft

survival. They demonstrated that CD154 blockade reduced

antigen-specific CD4+ T-cell accumulation and promoted

migration of Foxp3+ Tregs to the graft. They also showed that

anti-CD154 promotes conversion of donor reactive CD4+ T cells

into CD25+ Foxp3+ induced Tregs (195). Using a DEREG mouse

model Lee et al. demonstrated that a short-term blockade of

CD154 could lead to Treg mediated immune tolerance in the

intrahepatic murine allogeneic islet transplantation model (196).

Animal studies are supported by clinical data where CD154

blockade in relapsing-remitting multiple sclerosis patient

demonstrated an increase of CD25+ T cells and anti-

inflammatory cytokines (197).
The role of co-inhibitory pathways
in Treg homeostasis and function

CTLA-4

Cytotoxic T lymphocyte antigen-4 (CTLA-4) or CD152, is a

critical regulator of T cell responses. It was first described by

Brunet et al. in 1987 in mice. It encodes 223 amino acid protein

and was classified as a member of the Ig superfamily (198).

Highly homologous to CD28, CTLA-4 binds to their shared

ligands, CD80 and CD86, with greater affinity thereby

preventing CD28 costimulation of T cells (199). Engagement

of CTLA-4 also initiates signaling events, including recruitment

of phosphatases and activation of ubiquitin ligases, which inhibit

T cell activation (200–202). Unlike CD28, CTLA-4 has rapid and

constitutive endocytosis process (203). While its expression is
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upregulated rapidly on conventional T cells following TCR

engagement (204), CTLA-4 is transcriptionally regulated by

Foxp3 (205) and therefore constitutively expressed on CD4+

Foxp3+ Tregs (206). Mice deficient in CTLA-4 develop lethal

multi-organ autoimmune disease driven by CD4+ T cells (207–

209). Disease also develops in mice with a Treg-specific

depletion of CTLA-4, suggesting CTLA-4 plays a critical role

in Treg biology (210). Evaluation of Tregs from these mice

demonstrated that Tregs develop and survive in the absence

CTLA-4 but are unable to suppress the activation of

conventional CD4+ T cells. The dysregulated T cell response

that developed when CTLA-4 was deficient on Tregs was

associated with ineffective downregulation of CD80 and CD86

on APCs (210). Biochemical analyses have demonstrated that an

interaction between CTLA-4 and the protein kinase C in Tregs is

required for reduced CD86 expression by APCs (211).

There are numerous in vivo animal models that support a

role for CTLA-4 in Treg function (212–214); however in vitro

systems have yielded conflicting findings. Some reports have

suggested that the suppressive capacity of human Tregs is largely

dependent on CTLA-4, with CTLA-4 blocking antibodies

reversing the inhibitory effect of Tregs on CD4+ CD25- T cell

proliferation (215). Further, depletion of CD25+ cells also

reduced the effect of CTLA-4 blocking antibodies on human T

cell proliferation, suggesting that the impact of anti-CTLA-4

antibodies is in part mediated through Tregs (216). However,

other in vitro studies revealed no impact of CTLA-4 blockade on

the suppressive capacity of human Tregs (217). This could reflect

variation in assay conditions as well as discrepancies between in

vitro assays and complex in vivo systems. Indeed, there are

reports that CTLA-4-deficient Tregs can retain functionality in

vitro yet be unable to control inflammation in vivo (214).

Additionally, conditional deletion of CTLA-4 in Tregs in adult

mice was associated with protection from autoimmunity (218).

Expression of the extracellular portion of CTLA-4 only by Tregs

was sufficient to suppress the proliferative response of

conventional T cells both in vitro and in vivo, while the

intracellular portion of the protein was required to maintain

TCR hypo-signaling in Tregs (219). Cumulatively, these data

suggest that CTLA-4 can contribute to the suppressive capacity

of Tregs, but its role may be context-dependent where the nature

of the stimulus or the presence of compensatory suppressive

mechanisms may influence the overall activity of Treg.
PD-1

Programmed death 1 (PD-1) or CD279 is also a member of

the Ig superfamily and is encoded by PDCD1 gene and

composed of 288 amino acid residues (220, 221). PD-1

contains an intracellular immunoreceptor tyrosine-based

inhibitory motif (ITIM) and serves as a central negative

regulator of immune responses (222). It is expressed on the
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surfaces of activated T-cells, B-cells, dendritic cells, monocytes

and natural killer cells (223–225). In 1989, Smith et al. described

the phenomena of apoptosis or programmed cell death that the

abnormal thymic T cells undergo in the thymus during cell

maturation (226). This observation led to the discovery of the

gene responsible for this programmed death by Honjo’s team in

1991 and elucidating its real function as a negative regulator of

the immune responses of T cells (227). PD-1 can bind two

ligands PD-L1 (228) and PD-L2 (229). PD-L1 is broadly

expressed in inflamed tissues (221), while expression of PD-L2

is restricted to APCs (229). PD-L2 has three-fold higher affinity

for PD-1 than PD-L1 (230). Mice deficient in PD-1

spontaneously develop autoimmunity, with the specific

manifestations linked to the genetic strain on the animal,

suggesting that in the absence of PD-1, the overall immune

response is not differentially skewed but rather unleashed

(231–234).

In addition to its broad expression pattern on a variety of

activated immune cell populations, PD-1 as well as its ligand PD-L1,

are expressed on the surface of Tregs. Using mice that selectively

lack PD-1 in Tregs, Tan et al. demonstrated an improvement of the

experimental autoimmune encephalomyelitis (EAE) and protection

from diabetes in nonobese diabetic (NOD) mice (235). PD-1

deficient Tregs display an activated phenotype and an enhanced

immunosuppressive function linked to a reduced signaling through

the PI3K–AKT pathway (235). Likewise, the presence of PD-1

expressing Tregs in the tumor microenvironment is a signature of

dysfunctional exhausted Tregs that have an increased IFN-g

secretion and are unable to suppress the anti-tumor immune

response (236). In the clinic, the use of PD-1 blockade led to an

augmented proliferation and suppressive function of tumor

infiltrating Tregs that resulted in a rapid cancer progression called

hyper-progressive disease in 10% of advanced gastric cancer

patients (237). Animal studies demonstrated that PD-1 signaling

blocks the AKT/mTOR pathway and promotes of Foxp3 and the

development of iTregs from naïve T cells (238). These observations

were confirmed in a human system, where PDL-1 expressing cells

were able to induce conversion of Th1 cells into Foxp3 expressing

Tregs capable of conferring protection in a GvHD and colitis model

(239, 240). Chronic stimulation leads to further upregulation of PD-

1 levels on Tregs where, in settings of viral infection, its expression is

critical for suppressing the anti-viral T cell response (241, 242).

Additional exploration of human PD-1+ Tregs, including single-cell

approaches, will be needed to better understand the consequence of

PD-1 expression on Tregs in settings of infection, cancer

and autoimmunity.

Tregs can directly inhibit Teff responses or can act on these

cells indirectly by regulating APCs. Human Tregs have been

shown to promote immune suppression by inducing

upregulation of PD-L1 on DCs, with PD-L1 blockade

reversing the Treg-induced suppressive activity of DCs (243).

The ability of Tregs to directly inhibit B cell responses also

involves the PD-1 pathway. Engagement of PD-1 on B cells by
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PD-L1/2 expressing Tregs directly inhibited activation,

proliferation and antibody production from self-reactive B

cells and promoted their apoptosis (244). Interestingly, the

levels of expression of PD-1 are important for regulating Treg

cell function as well. Performing a series of in vitro and in vivo

testing of PD-1 pathway blockade, Wong et al. demonstrated

that Tregs are functionally intact when the level of PD-1

expression is neither too high nor too low and that varied

degrees of expression or engagement of PD-1 can trigger

different immune responses (245).
TIGIT

T cell immunoglobulin with ITIM domain (TIGIT) also

designated as VSTM3, VSIG9 or WUCAM is a co-inhibitory

receptor that was first described in 2009 expressed by T cells

(246). Studies have confirmed its expression by other immune

cells including B cells, NK cells, ILCs and pDCs (247–252). Later,

studies demonstrated that TIGIT is highly expressed by Tregs (253–

256). TIGIT is composed of an extracellular immunoglobulin

variable domain, a type 1 transmembrane domain and

a cytoplasmic tail with two inhibitory motifs and ITIM

(immunoreceptor tyrosine-based inhibitory motif) and an ITT-

like motif (257). TIGIT has multiple ligands including CD155,

CD112, CD113, PVLR4 (258). However, TIGIT has the highest

binding affinity to CD155, preventing the association between

CD155 and the T cell costimulatory molecule CD226 (258, 259).

Binding to either of the two ligands CD155 or CD112 on APCs

prevents their maturation and confers a tolerogenic phenotype

(246). Studies in mice have demonstrated that TIGIT expression

serves as a marker for activated Tregs and Tregs expressing TIGIT

have been demonstrated to be more potent suppressors than TIGIT

negative Tregs (260). More specifically, TIGIT+ Tregs express

elevated levels of markers including CTLA-4, CD25 and GITR as

well as the transcription factor Foxp3. In addition, TIGIT+ Tregs

produced higher amounts of effector molecules including IL-10,

Fgl2 and granzyme B compared to TIGIT- Tregs. Ligation of TIGIT

with an agonistic antibody directly induced production of both IL-

10 and Fgl2 by Tregs in vitro and neutralization of Fgl2 in vitro

reversed the enhanced suppressive capacity of TIGIT+ Tregs,

demonstrating that Fgl2 is a key mechanism by which TIGIT

drives enhanced Treg suppression (260).

TIGIT is highly expressed on human thymic-derived Tregs

where its expression was associated with robust suppressive

activity (254). TIGIT expression in combination with

additional phenotypic markers can be used to define subsets of

human Tregs. Fuhrman et al, for example, demonstrate that

human Tregs which co-express both TIGIT and CD226 can

produce cytokines such as IL-10 and effector genes, where

TIGIT+ CD226- Tregs do not (254). Additionally, the

combination of TIGIT and FCRL5 identifies a population of

Helios+ Foxp3+ Tregs which do not produce pro-inflammatory
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cytokines and is highly enriched for suppressive activity (261).

These studies highlight the heterogeneity that exists within the

Treg lineage. Further evaluation of these specialized cell

populations in different disease states and tissue compartments

will be necessary to dissect the contribution of these various Treg

populations to overall immune control and aid in our ability to

better target these cell types for therapeutic benefit.

In vitro studies using natural ligand have provided insight into

the mechanism by which TIGIT engagement impacts Treg

signaling and function. TIGIT signaling leads to phosphorylation

and nuclear localization of FoxO1 and suppression of AKT activity,

ultimately preventing the reprogramming of human Tregs to pro-

inflammatory Th1 Tregs by repressing IFNg and T-bet expression

(262). Studies in both mouse and human also suggest that TIGIT

signaling may promote Treg stability. Agonism of TIGIT led to

reduced expression of TCF7, a factor known to antagonize Foxp3

(254, 263). Further, signaling through TIGIT reduced the

phosphorylation of both AKT and S6 and blocked the

downregulation of Foxp3 in T cells stimulated through the TCR,

supporting the idea that TIGIT plays a role in stabilizing the Treg

lineage (264).
LAG-3

Lymphocyte activation gene-3 (LAG-3) or CD223 is a 70kDa

transmembrane glycoprotein. It is a member of the

immunoglobulin superfamily and contains four extracellular

Ig-like domains (265). LAG-3 is a CD4 ancestral homolog

(265, 266). Similarly to CD4, LAG-3 binds MHC class II

(MHCII) (267), additionally it was described to bind other

receptors including fibrinogen-like protein 1 (FGL-1) (268),

alpha-synuclein fibrils (alpha-syn) (269), galectin-3 (Gal-3)

(270) and lymph node sinusoidal endothelial cell C-type lectin

(LSECtin) (271). LAG-3 is another co-inhibitory receptor whose

expression is transiently upregulated on effector cells following

activation and more persistently expressed by Tregs, including

thymic-derived Tregs, iTregs and Tr1 cells (272). While it is the

most studied on T cells and Tregs, LAG-3 can also be expressed

on unconventional T cells including gamma-delta T cells (273),

mucosal-associated invariant T cells (274), invariant NKT cells

(275), B cells (276, 277), plasmacytoid DC (278) and

neurons (279).

There is evidence that LAG-3 can contribute to the

regulatory capacity of Tregs through multiple mechanisms,

including both cell-intrinsic and -extrinsic pathways.

Antagonistic LAG-3 antibodies blunted the ability of both

natural and iTregs to suppress the proliferation of Teffs in

vitro and in vivo and ectopic expression of LAG-3 was

sufficient to confer regulatory properties to T cells (272).

Notably, the ability of ectopic LAG-3 to regulate T cell

responses required expression of full-length LAG-3, with

intracellular mutants not sufficient to confer suppressive
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activity. These data suggest that signaling through LAG-3 is

required for T cell-intrinsic regulation. The intracellular

pathways involved downstream of LAG-3 remain to be

elucidated. Identification and characterization of the key

signaling pathways regulated by LAG-3 will be critical for the

development of therapeutics aimed at targeting LAG-3 activity.

Additional studies demonstrate that LAG-3 can also

promote suppressive activity independently of its ability to

deliver signals to the Treg. In vitro murine Treg/DC co-culture

assays have shown that Tregs can inhibit antigen specific DC

maturation in a LAG-3/MHCII-dependent manner, as LAG-3

deficient Tregs lost the ability to suppress upregulation of CD86

on DCs (280). Transwell studies demonstrated that the capacity

of LAG-3 to block DC maturation was dependent on cell-cell

contact, did not require the intracellular signaling domain of

LAG-3 and involved a novel ITAM-mediated signaling event in

DCs that involved the recruitment of SHP-1 (280).

Cumulatively, these data highlight the potential for LAG-3 to

induce inhibition in a bidirectional manner.

LAG-3 also represents a critical marker of Tr1 cells, a

population of regulatory cells that produce high levels of IL-10

but do not express Foxp3 (281, 282). Forced expression of the

transcription factor Egr-2 induced naive CD4+ T cells to express

LAG-3 and IL-10 and to exhibit antigen-specific suppressive

activity, suggesting a role for Egr-2 in LAG-3 regulation and Tr1

development (283). Anti-LAG-3 antagonist antibody treatment

reversed the immunological tolerance induced by Tr1 cells in a

mouse model of pancreatic islet transplantation supporting a

role for LAG-3 in the activity of Tr1 cells, however, the precise

role of LAG-3 in Tr1 function remains to be determined (284).

Similarly, Jha et al., reported that blocking LAG-3 was associated

with increased susceptibility to mercury-induced autoimmunity,

and this response reduced Treg-mediated inhibition of DC

maturation (285). Zhang et al. demonstrated that NOD mice

lacking the cell surface expression of LAG-3 on Tregs exhibit

delayed onset of Type 1 diabetes, and this was ascribed to the

augmented Treg cell proliferation and activity (286). Altogether,

these data suggest the important role of LAG-3 in modulating

the Treg function and influencing the overall immune response

in different disease settings.
TIM-3

T cell immunoglobulin and mucin domain-containing

protein-3 (TIM-3) also known as HAVCR2 is a member of the

TIM family of immunoregulatory proteins. It was first described

in 2002 by Monney and colleagues (287). TIM-3 has multiple

ligands binding different epitopes on the TIM-3 extracellular V

domain (288). The ligands include Galectin 9 which is a C type

lectin (289), phosphatidylserine (PtdSer) (290), the glycoprotein
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CEACAM1 (291) and the alarmin high mobility group protein B1

(HMGB1) (292). TIM-3 has a unique feature because of the lack

of known inhibitory signaling motifs in its cytoplasmic tail (288).

It was originally described as a marker for exhausted effector T

cells or IFN-g producing CD4 and CD8 T cells (287, 288) but later

described on a variety of immune cell types including myeloid

cells (293), NK cells (294), mast cells (295) and Tregs (296).

Subsets of Tregs have been described to express TIM-3, including

some tissue resident Tregs. TIM-3 expressing Foxp3+ Tregs, in

fact, make up minor fraction of the total Treg pool in a naïve

mouse, but both the number and frequency of these cells increases

significantly in both lymphoid and graft tissue during an allograft

response (297). In vitro studies demonstrated that TIM-3

expression is upregulated on Tregs undergoing proliferation and

its expression marks Tregs with enhanced suppressive capacity

compared to TIM-3 negative Tregs. The enhanced suppressive

capacity of TIM-3+ Tregs was associated with increased

expression of CTLA-4, CD25 and IL-10 (297). Adoptive transfer

studies revealed that while these cells have potent suppressive

capacity, they did not prolong allograft survival as well as TIM-3

negative cells in vivo suggesting this represents a short-lived

population of Tregs (297).

Oncology studies in both mouse and human support these

observations, demonstrating an enrichment of TIM-3 expressing

Tregs within the tumor microenvironment, with few of these

cells observed in the blood or peripheral tissues (298, 299). In

this setting as well, TIM-3 expressing Tregs demonstrate

enhanced suppressive capacity and express higher levels of

suppressive effector molecules than TIM-3 negative Tregs. Co-

blockade of TIM-3 and PD-1 in preclinical tumor models was

associated with downregulation of molecules that support the

function of Tregs as well as an overall improvement in tumor

clearance. Given the co-administration of TIM-3 and PD-1

blockade in these studies and the direct potential impact of

these approaches on effector cells, additional studies are required

to more specifically tease apart the impact of the TIM-3 pathway

on Treg function.
LILRB4

Leukocyte immunoglobulin like receptor B4 (LILRB4, also

known as ILT3, LIR5, CD85K or HM18) is an ITIM-containing

member of the LILR family of proteins. It was identified in 1997

as the homolog for the mouse gp49B1 inhibitory receptor (300).

Several ligands have been reported to bind LILRB4 including

CD166 (301), ApoE (302) and CNTFR (303). LILRB4 is broadly

expressed across the myeloid lineage (including monocytes,

macrophages, and DCs) as well as on some plasma cells (304).

LILRB4 is highly expressed by tolerogenic DCs and thought to

contribute to Treg induction by these cells (305). Expression of
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LILRB4 either on the surface of APCs or in soluble form, can

engage with ligands expressed by activated T cells to drive T cell

anergy and activation of Tregs (306). LILRB4 and LILRB2

expressing DCs support the conversion of alloreactive

CD4+CD45RO+CD25+ T cells to Tregs (307). Some studies

suggest that subsets of Tregs can themselves express LILRB4

(308). LILRB4+ Treg shows attenuated T cell receptor mediated

signaling (308). LILRB4+ Tregs represent a small fraction of

Foxp3+ cells in healthy peripheral blood but were found to be

expanded in the circulation of allergic patients and in tumor

infiltrating immune cells in various tumor models (309). Mouse

studies demonstrate that the serine threonine kinase CK2

regulates the expression of LILRB4 in Tregs and highlights a

role for this Treg subset in the control of Th2-cell driven

inflammation. In the absence of CK2, LILRB4 expression was

elevated on Tregs and this was associated with impaired Treg

suppressive capacity and expansion of Th2-inducing dendritic

cell populations (308). The authors hypothesize that LILRB4

upregulation on Tregs may represent a transient mechanism by

which immune suppression is blocked when a productive

immune response is required. These studies suggest that

LILRB4 may play a complex role in Treg biology with the

potential to either promote the induction of Tregs or to

suppress Treg responses depending on the context and cell-

type in which the pathway is engaged. As differences exist

between murine and human LILRB4 both in terms of protein

structure and expression, it will be important to demonstrate

some of these mechanisms and explore the role of LILRB4+

Tregs in human assay systems or humanized mouse models.
Clinical insights: Learnings from
approved therapeutics and
molecules in the clinic

The importance of checkpoint pathways in modulating

different diseases have been highlighted with the presence of

multiple approved therapeutics and many more in the clinical

and pre-clinical development pipelines (85, 303, 310). Blocking

and activating approaches with different modalities for different

pathways have been pursued, and in 2018, James P. Allison and

Tasuku Honjo was awarded the Nobel Prize in Medicine for the

development of immune checkpoint blockade in cancer (311). In

instances in which conflicting data is existent, this may be due to

short-term versus long-term effects of treatment, different

dosing strategies, and different patient cohorts. It may be even

as simple as how the samples were collected, how the cells were

isolated and how the samples were stored. Tregs are specifically

sensitive to different storage conditions, and this can affect their

viability. Below, we will discuss insights on the effect of these

molecules on Treg biology.
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CD28 targeting therapeutics

Targeting CD28 with a superagonist antibody (TGN1412) in

a first in human trial was a tragic failure, since the administered

antibody induced a severe systemic inflammatory response and a

cytokine storm in healthy volunteers (312). To overcome these

adverse effects, this antibody was further engineered into TAB08

and tested clinically in healthy volunteers at very low doses and

showed induction of IL-10 release in the circulation which is a

signature of Treg activation. The positive results granted a phase

Ib trial in RA patients followed by a double blinded phase II

study to confirm the therapeutic effect in patients (313).

FR104 is a CD28 antagonist (a pegylated Fab antibody) and

is currently being tested in Ph2 trials. In non-human primates, it

has been demonstrated that this therapeutic is Treg sparring or

Treg stimulating, yet data from further clinical studies are

needed to confirm this finding (314). Acazicolcept (ALPN-

101) is yet another experimental therapeutic in the clinic being

tested by Alpine Immune Sciences in collaboration with Abbvie,

and it simultaneously blocks CD28 and ICOS co-stimulation.

Phase 1 healthy volunteer study demonstrated the safety,

tolerability and PK/PD properties of this therapeutic, and

currently being tested in a randomized, double-blind, placebo

controlled Ph2 trials for SLE (315). It will be important to track

the effect of ALP101 on Tregs among other things in these

studies. Recently, Alpine Immune Sciences terminated

enrollment in their NEON-2 study with Davoceticept (ALPN-

202, CD28 co-stimulator, PD-L1 and CTLA-4 blocker) and

pembroluzimab due to cardiogenic shock. It becomes more

evident with every additional study that the modulation of

immune cells (both effector and Treg) requires a sweet spot

for therapeutic efficacy and safety and more precision medicine

approaches will need to be utilized for future studies.
CTLA-4 Ig therapy

As discussed above, CTLA-4 is constitutively expressed on

Tregs and some of the suppressive capability of Tregs is mediated

by CTLA-4 expression. Abatacept (CTLA-4 Ig fusion protein,

Orencia™) was first approved in 2005 approved for Rheumatoid

Arthritis, then later for Juvenile Idiopathic Arthritis (2008) and

Psoriatic Arthritis (2017), Acute Graft versus Host Disease (2021)

and it is being tested in the clinic for many other indications such

as psoriasis, dermatomyositis, GvHD and others (316, 317). One

study investigated the effects of Abatacept in RA patients and

measured Treg numbers in the periphery at week 4 and 12 after

treatment. 45 total RA patients with active disease were studied—

30 received Abatacept and 15 received placebo treatment. The

study showed that while Treg numbers were diminished in the

periphery, the ex vivo functionality of Tregs were improved upon

Abatacept treatment (318). In another study in juvenile idiopathic
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arthritis, Abatacept (10mg/kg i.v.) was administered to 10 patients

(on day 0, 15 and 30 and monthly thereafter). Similarly in this

setting, the number of peripheral Tregs was reduced at day 90

compared to normal controls (319). Bonelli et al., demonstrated

that Abatacept treatment in RA patients increased proportions of

Tregs but inhibited their suppressive capacity. This study also

investigated the activation markers on Tregs such as CD69, CD71,

HLA-DR and showed that activationmarkers were reduced after 2

and 4 weeks of therapy. There was also a reduction in CD95 and

apoptosis mediated by this molecule (320). Diamanti et al.,

investigated the effect of Abatacept in anti-TNF therapy

refractory patients (20 moderate to severe patients) and

demonstrated that Treg frequency was not changed in the

periphery. In this report, Abatacept treatment (10mg/kg)

partially recovered the suppressive capability of Tregs after 6

months of treatment. One important point to note is that Tregs

were defined as CD4+CD25+ cells in this study which is not the

most robust way of identifying human Tregs (321). Szentpetery

et al., investigated Treg numbers in the synovium and the psoriatic

skin of 15 biologics-naïve psoriatic arthritis patients. Patients were

randomized to receive i.v. Abatacept (10mg/kg) or placebo

treatment. Treg (CD4+ Foxp3+) numbers in the synovium but

not in the psoriatic skin of the patients were diminished with

Abatacept treatment significantly improving clinical measures. It

was interesting to see that Abatacept treatment was efficacious for

joint-related outcomes but not for skin-related outcomes (322).

These data points are good examples of how these co-stimulatory

and co-inhibitory pathways can have tissue-specific effects. While

tumor biopsy tissue has been more readily accessible for analysis

of Treg modulation beyond the periphery, tissue data from

autoimmune settings has been scarce. With the emergence of

new technologies such as high dimensional immunofluorescence

and spatial transcriptomics, our scientific understanding of

tissue immunology and Treg function will deepen in the

upcoming years.

Belatacept (Nulojix™) has 4 times higher affinity for CD86 and

2 times higher affinity for CD80 and is the newer generation of

CTLA-4 blocker (323). In 2011, it was approved for prophylaxis of

organ rejection in adults (324). In a small cohort study, Grimbert

et al., studied the effect of Belatacept on mRNA levels of Foxp3 in

biopsies from renal transplants and demonstrated that the Foxp3

levels were reduced only in the graft. This did not correlate with

clinical efficacy since Belatacept treated patients had better

functionality of graft after 1 year (325).
CTLA-4 blockade

Anti-CTLA-4 blocking therapies have been approved and

used for oncology indications mainly because they are able to

remove the inhibitory breaks on effector cells. However, due to

their constitutive CTLA-4 expression, Tregs are also a direct

target of this therapy. Ipilimumab (Yervoy™), the first anti-
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CTLA-4 was first approved in 2011 and since then the

indications for this medicine has been expanding along with

combination therapy testing with other checkpoint inhibitors

(326). One study by Sharma et al., demonstrated that the levels

of Tregs were transiently increased 6 weeks after Ipilimumab

therapy but returned to baseline by 3 months and stayed

unchanged for 6 and 9 months in melanoma patients (10mg/

kg iv every 3 weeks) (327). To mirror these results, a different

study demonstrated the same outcome in melanoma patients

that Tregs were transiently increased at week 6 but returned to

normal after 3, 6 and 9 months and there was no difference in

relapsed and relapse-free groups (328). Zhou et al., studied

Ipilimumab treatment in patients with relapsed malignancy

following allogeneic hematopoietic stem cell transplantation

and demonstrated that the absolute counts of Tregs (CD4

+CD25highFoxp3+) did not change during the study period

(329). Kavanagh et al., studied a small cohort of progressive

metastatic hormone-refractory prostate cancer patients in a Ph1

study. The subjects were dosed with escalating dose of

Ipilimumab with a fixed dose of GM-CSF in a separate cohort.

3mg/kg anti-CTLA-4 only treatment resulted in increase of

CD4+ Foxp3+ frequency and that Tregs maintained their level

of both surface and intracellular reserves of CTLA-4 (330). One

proposed mechanism of action is depletion of CTLA-4hi cells,

especially Tregs by ADCC in the tumor microenvironment.

Specifically, some approaches are trying to generate second

generation of anti-CTLA-4 therapies with deeper Treg-

depleting capability such as with enhanced Fc binding. One

group demonstrated that Fc-enhanced CTLA-4 antibodies had

better efficacy in tumor bearing FcgR humanized mice due to

their Treg depleting capabilities (331). Another study by

Semmrich et al., generated proof of concept in mice that

intratumorally administered viral vectors containing anti-

CTLA-4 or anti-CTLA-4 in combination with GM-CSF was

better than systemic administration of anti-CTLA-4. A follow up

Ph1 study is ongoing with viral vector (anti-CTLA-4 and

GMCSF) administration in patients with metastatic or

advanced solid tumors (NCT04725331 (331)).

Tremelimumab is another anti-CTLA-4 fully human IgG2

antibody currently in development. There are multiple Phase 3

and Phase 2 studies ongoing worldwide (332). Comin-Anduix et al.,

studied the cell signaling events in PBMCs frommelanoma patients

that were treated with tremelimumab after TCR and cytokine

receptor stimulation. Looking at CD4, CD8 T cells and

monocytes, they demonstrated that pp38, pSTAT1 and pSTAT3

were increased, pLck, pERK1/2 and pSTAT5 levels were decreased

(333). In a very small Phase 1 study, the effect of local radiation and

tremelimumab treatment was studied in inoperable locally

recurrent or metastatic breast cancer patients. The data

demonstrated that one week post treatment, there was an

increase in ki-67+ proliferating Tregs in 5 out of 6 patients (334).

In a different study, Khan et al., demonstrated that Tremelimumab

treatment increased proliferation of Teffs, secretion of IL-2 and
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IFN-g however, did not change the proportion of Tregs while

reducing their suppressive capacity (335).
PD-1 and PD-L1 blockade

Nivolumab (Opdivo™) is a PD-1 antagonist and has been

approved by FDA for the treatment of several different cancer types

such as melanoma, non-small cell lung cancer, hepatocellular

carcinoma, cervical cancer and head and neck squamous cell

carcinoma (FDA: Hematology/oncology (cancer) approvals &

safety notifications. 2019). One study studied the effect of

Nivolumab in oral cavity squamous cell carcinoma in a Ph2

study with treatment on day 1, 14 and 28 (3mg/kg i.v.).

Peripheral blood samples were collected before Nivolumab

treatment and at the time of definitive oral resection. Progressive

patients on day 28 proceeded with surgery while the patients

improving received a fourth dose of Nivolumab on day 48. The

findings demonstrated that while anti-PD-1 had opposing effects on

CD4 (reduced) and CD8 (increased), it increased the proportion of

Foxp3+ expressing cells in the periphery (336). In a different study,

it was shown that treatment with Nivolumab pre-transplant of

HSCT resulted in increased IFNg+ effector cells and potential

rejection of the graft. Interestingly, posttransplant treatment of

these patients with cyclophosphamide increased Tregs (337). To

further build on this data set, Ikegawa et al., took a closer look into

Treg numbers and phenotype in an exploratory study pre- and

post-transplant with cyclophosphamide treatment. Their study

demonstrated that cyclophosphamide treatment helps with the

control of T effector cells and robust recovery of Tregs in the

presence of pre-treatment with Nivolumab (338).

Another PD-1 antagonist is Pembrolizumab (Keytruda™,

humanized IgG4k antibody) and its effects on different T cell

populations have been studied. In vitro, Toor et al., demonstrated

that treatment of PBMCs from primary cancer patients did not

change Treg related markers such as CTLA-4, CD15s, LAP and ki-

67. In this study, Pembrolizumab had the greatest reduction

effect on PD-1 expression in CD4+CD25- cells compared to

CD4+CD25+ T cells. As a follow up, the same group studied the

effect of Pembrolizumab on iTreg generation in vitro and showed

that pembrolizumab treatment inhibited iTreg generation and

rendered Tregs less suppressive, especially at higher ratios. This

was due to reduced IL-10 expression, mTOR and STAT1 activation

and subsequent MAPK inhibition (339).
Other immunomodulatory therapeutics

AMG557 (MEDI5872) is an anti-ICOSL antagonist and has

been tested in the clinic in SLE, Lupus arthritis, Sjogren’s

syndrome and Psoriasis. Single and multiple doses of AMG557
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were tested in 112 SLE patients, and it was shown to be safe and

tolerable with no change in the Treg frequency in the periphery

(340). In a human clinical trial, OX40 agonist expanded non-

Treg CD4 and CD8 T cells and upregulated OX40 expression on

TIL Tregs (341, 342). GSK has developed an anti-LAG3

depleting mAb (ADCC enhanced, afucosylated) and this

molecule has completed Ph1 testing in healthy volunteers and

patients with plaque psoriasis. Overall, there was a reduction in

LAG3+ cells; however no specific data on Tregs was reported.
Concluding remarks

In this review, we provided a summary of our understanding

of how immune checkpoints regulate Treg homeostasis and

function. While our understanding has gotten deeper over the

years, there is still much to explore. Some outstanding areas to

investigate include interplay between different immune

checkpoints and how they modulate Treg function, the role of

immune checkpoint pathways in Treg and other immune and

non-immune cell interactions, and the role of checkpoint

pathways in the non-immunological functions of Tregs such

as wound healing and repair. In conclusion, immune

checkpoints play fundamental roles in controlling Treg biology

and further evidence, especially from the clinic, will be necessary

in order to further our understanding and build the next

generation of therapeutics.
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