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Bone morphogenetic proteins,
activins, and growth and
differentiation factors in tumor
immunology and
immunotherapy resistance
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Ethan Hsu, Tiffany Voss, Hampartsoum Barsoumian,
Lisa K. Duong, James W. Welsh and Maria Angelica Cortez*

Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston,
TX, United States
The TGF-b superfamily is a group of secreted polypeptides with key roles in

exerting and regulating a variety of physiologic effects, especially those related

to cell signaling, growth, development, and differentiation. Although its central

member, TGF-b, has been extensively reviewed, other members of the family—

namely bone morphogenetic proteins (BMPs), activins, and growth and

differentiation factors (GDFs)—have not been as thoroughly investigated.

Moreover, although the specific roles of TGF-b signaling in cancer

immunology and immunotherapy resistance have been extensively reported,

little is known of the roles of BMPs, activins, and GDFs in these domains. This

review focuses on how these superfamily members influence key immune cells

in cancer progression and resistance to treatment.

KEYWORDS
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Introduction

The human transforming growth factor-b (TGF-b) superfamily is an extensive group

of more than 33 polypeptides that regulate a multitude of vital developmental and

homeostatic processes (1, 2). Dysregulation of TGF-b signaling has been implicated in

several pathologic conditions, including cancer and autoimmune disorders (3–5).

Specifically in the context of cancer, many previous studies have aimed to elucidate

how the complex interplay between TGF-b signaling and key immune cells can either
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promote or inhibit a pro-proliferative phenotype (6–9). These

studies have broadly established that TGF-b has context-

dependent roles in mediating cancer immunity through

pleiotropic effects (10–12). This context dependence and high

variability in signaling have posed significant challenges for the

development of TGF-b antagonists as effective cancer treatments

(13, 14).

There are three known isoforms of TGF-b: TGF-b1, TGF-b2,
and TGF-b3 (15). The immunoregulatory roles of these central

members of the TGF-b superfamily have been extensively reviewed

in the context of cancer; however, much less is understood about the

roles of bone morphogenetic proteins (BMPs), activins, and growth

and differentiation factors (GDFs), which are other key TGF-b
superfamily members that immunologically affect cancer

progression. BMPs, activins, and GDFs are highly conserved

homo- or hetero-dimers with several morphologic similarities, but

they can each exert distinct and potent effects on both innate and

adaptive immune cells to modulate anti-tumor immunity (16–18).

BMPs, activins, and GDFs are also similar to TGF-b in their having

context-dependent effects on tumor progression; however, targeting

certain ligands from these superfamily members has proven to be a

viable treatment strategy in several cancer models (19–21). By

extension, the signaling pathways initiated via type I and type II

transmembrane receptors for BMP, activin, and GDF ligands also

share many similarities with the canonical TGF-b signal

transduction pathway. Studies have also demonstrated that either

knockdown or overexpression of some of these receptors may be a

promising treatment avenue for certain cancers (22, 23). Our group

recently found that BMPs can promote resistance to

immunotherapy by inhibiting the Th1 response in macrophages

and T cells in a model of acquired resistance to PD1 therapy (24).

Others have found that activins can promote immunosuppression

by promoting regulatory T cells (Tregs) in breast cancer (25).

In this Review, we explore the current understanding of how

certain BMPs, activins, and GDFs individually influence cancer

progression, tumorigenesis, and response to treatment. We further

elucidate the mechanisms by which BMPs, activins, and GDFs

regulate the activity of key innate and adaptive immune cells,

thereby influencing tumor immunity. Finally, we examine how

select BMPs, activins, and GDFs promote resistance to

immunotherapy, opening avenues for further research into

mechanisms of resistance as well as novel therapeutics.
BMPs, activins, and GDFs: Ligands

Bone morphogenetic proteins

BMPs are secreted growth factors with diverse functions in

regulating developmental processes such as ectopic bone

formation, embryogenesis, and neurogenesis (26–30). BMPs

are highly conserved and morphologically similar ligands, but

they are sub-categorized into at least four classes based on
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receptor specificity: BMP2/4, BMP5/6/7/8a/8b, BMP9/10, and

BMP12/13/14 (26, 31, 32). In cancer, the role of BMPs is highly

variable and context-dependent. For example, downregulation

of BMP3 correlated with colorectal tumor progression, and re-

introducing BMP3 in colorectal cancer cell lines significantly

contributed to growth suppression (33). On the other hand,

BMP2 has been found to stimulate the invasiveness of lung

cancer cell lines in vitro, as well as markedly enhance lung tumor

growth in vivo (34). Moreover, conflicting studies have

demonstrated that BMPs of a single type can have opposing

effects on tumor progression (16). For instance, one study

concluded that BMP4 strongly stimulates cell proliferation in

pituitary prolactinoma models through SMAD/estrogen

receptor crosstalk, implicating the involvement of downstream

BMP4 signaling in promoting prolactinoma progression (35). In

contrast, a separate study found that BMP4 inhibits breast

cancer metastases by reducing granulocyte colony-stimulating

factor expression and myeloid-derived suppressor cell activity

(36). Evidently, no clear association exists between BMP

signaling and tumorigenesis or metastases, but existing studies

corroborate the contextually variable roles of BMP in

cancer progression.

BMP7 is among the most widely investigated members of

the BMP subfamily with respect to cancer, and studies across

numerous cancer types have correlated BMP7 with poor

prognosis and metastasis (24, 37–41). Moreover, the role of

BMP7 in promoting resistance to various cancer therapies has

opened new avenues for cancer treatment on a molecular basis.

For instance, our group found that BMP7 promotes resistance to

anti-PD1 therapy by inhibiting MAPK14 expression and

inflammatory responses among macrophages and CD4+ T

cells (24). Knocking down or neutralizing BMP7 and re-

administering anti-PD1 therapy re-sensitized non-small cell

lung tumor models to immunotherapy, presenting a novel

treatment strategy for overcoming resistance to cancer

immunotherapies (24). In addition to BMP7, a separate study

also found that activation of the BMP2/4-BMPR signaling

pathway conferred resistance to epidermal growth factor

receptor tyrosine kinase inhibitors (EGFR-TKIs) in patients

with lung squamous cell carcinoma harboring mutations in

the EGFR gene (19). Combining EGFR-TKIs with inhibitors of

the BMP receptor signaling pathway was also found to overcome

resistance (19). Overall, BMPs are dynamic regulators of tumor

progression and present key targets for overcoming resistance to

cancer therapies in certain contexts.
Activins

Activins are homo-dimeric or hetero-dimeric proteins

consisting of two cross-linked b subunits (42). The three main

bioactive activin dimers include activin A (bAbA), B (bBbB) and
AB (bAbB) (17). Activins are generally involved in development
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and tissue homeostasis/repair, as evidenced by their roles in

wound healing and scar formation (42–45). Activin A is the

most widely studied member of the activin subfamily, although

its role in cancer progression is not completely understood.

Similar to BMPs, the role of activin A in tumor progression is

context-dependent, in that its overexpression or inhibition can

lead to increased proliferation based on cancer type (46–51).

Although the effects of activin A signaling on unregulated cell

growth are ambivalent, activin A has been found to

predominantly increase the migratory propensity of various

cells, promoting an invasive phenotype (52–54). Consequently,

activin A has been implicated as a key mediator of metastasis in

prostate and breast cancers, lung adenocarcinomas, and oral

squamous cell carcinomas (55–58). On the other hand, several

studies support the finding that activin A exerts anti-angiogenic

effects by inhibiting the proliferation of vascular endothelial cells

(59–61). Nevertheless, the competing pro-invasive effects of

activin A seem to prevail over its anti-angiogenic effects, as

melanoma cells overexpressing activin A still exhibited enhanced

migration (62).

Activin A is also being investigated as a potential target for

cancer therapy, although its paradoxical effects on tumor

progression and morphologic similarity to other members of

the TGF-b family have presented important challenges. For

instance, in a phase I study, STM 434, an ActR-IIB–based

ligand trap for activin A, resulted in stable disease in 53% of

all patients and 80% of patients with granulosa cell ovarian

cancer (20, 54). However, off-target interactions between STM

434 and BMP9 resulted in complications such as mucocutaneous

bleeding (20). More specific methods of targeting activin A

signaling (such as monoclonal antibodies and physiologic

binding proteins) have not been directly explored in cancer as

yet, but they have been investigated in muscular and other

genetic diseases (63, 64). Because activin A has been found to

promote cancer stemness and resistance to cancer therapies, it

remains a desirable yet relatively elusive target for several cancer

types (65–68).
Growth and differentiation factors

GDFs are highly related to BMPs in overall morphology, and

are in fact considered to be a part of the same cytokine lineage,

with some redundancy in nomenclature (69). Like BMPs, GDFs

also exist as dimeric proteins and regulate a variety of processes

related to development, especially in the skeletal, muscular, and

nervous systems (70–72). Most studies examining the role of

GDFs in cancer have centered on GDF15 because of its being

implicated in acute and chronic inflammatory diseases (73). In

breast cancer, GDF15 has been found to enhance tumor

proliferation and growth, potentially by increasing iron

retention (18, 74). Several other studies have found GDF15 to

contribute to the invasiveness and metastatic potential of breast
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cancer tumors through various signaling pathways, including

p38 MAPK phosphorylation and EGFR transactivation (18, 75–

78). Finally, GDF15 has been implicated in contributing to

angiogenesis and the stemness of breast cancer tumors, largely

through circuits that induce vascular endothelial growth factor

expression and tumor sphere formation (76, 79). These

pleiotropic effects of GDF15 in breast cancer (stimulating

proliferation/growth, invasion, metastasis, angiogenesis, and

stemness), are also applicable to other cancer types; indeed,

GDF15 has been observed to contribute to tumor progression

through one or more of these effects in gastric, pancreatic,

colorectal, prostate, and cervical cancer, among several others

(18, 21, 80–83). GDF15 has been established as a nexus for key

hallmarks of cancer across numerous cancer types, and future

work may entail exploring GDF15 signaling as a potential

therapeutic target.
BMPs and activins receptors

BMP type I and II receptors

BMPs and GDFs signal through type I and type II receptors,

both of which are serine-threonine kinase transmembrane

receptors (84). BMPs and GDFs have highly specific functions,

and homo- and hetero-dimers interact with combinations of

type I and type II receptor dimers to produce numerous possible

signaling complexes, leading to the activation of SMAD

transcription factors (69). Although BMPs have been found to

bind the type I receptor in the absence of the type II receptor, the

presence of both receptors as a heteromeric complex

significantly increases BMP binding affinity (84, 85). Three

type II BMP receptors have been identified thus far: BMPR-II,

ActR-II, and ActR-IIB; and four type I BMP receptors,

characterized as part of the BMPR-I group (ALK1, ALK2,

BMPR-IA/ALK3, BMPR-IB/ALK6) (86). Generally, BMP2 and

BMP4 bind to BMPR-IA and BMPR-IB (87), BMP6 and BMP7

bind strongly to ALK2 and weakly to BMPR-IB, and BMP9 and

BMP10 bind to ALK1 and ALK2 (88–90). GDF5 preferentially

binds to BMPR-IB, but not to other type I receptors

(91). However, different BMP dimers bind to different

heteromeric receptor complexes with varying affinity

depending on BMP type and receptor type (92–94). BMPR-II

is specific for BMPs, whereas ActR-II and ActR-IIB are shared by

activins, myostatin, and BMPs. These type II receptors seem to

bind most BMP ligands and affect the binding preferences of

BMPs to type I receptors (95). Although type I and type II

receptors differ in intracellular structure and signaling, these

receptors share a cysteine-rich extracellular domain that

facilitates binding to BMP dimers (96). Type II BMP receptors

are constitutively active and phosphorylate type I receptors,

which subsequently initiate intracellular signaling, primarily

through transphosphorylation of the receptor-regulated SMAD
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proteins (R-SMAD1, 5, and 8) (97). Activated R-SMADs can

form heteromeric complexes with a common mediator, such as

SMAD4, to regulate downstream transcriptional responses in

the nucleus (86) (Figure 1).

BMP receptors also have context-dependent roles in tumor

progression, with contrasting studies implicating BMP receptors

as either stimulators or suppressors of tumor growth and

metastasis. Mutations in genes encoding for ALK3 (BMPR-IA)

have been observed in some patients with juvenile polyposis

syndrome (84, 98, 99). BMPR-IA also inhibits squamocolumnar

and gastrointestinal junction zones in mice, which are epithelial

areas associated with enhanced oncogenesis (16, 100). However,

deletion of BMPR-IA has also been found to impair mammary

tumor formation and metastasis, suggesting that BMPR-IA may

stimulate tumor progression in breast cancer (16, 22). Similarly,

one study concluded that inhibition of BMPR-II expression

inhibited chondrosarcoma tumor growth by inducing

autophagy and apoptosis (101). In contrast, a separate study

found that disrupting BMPR-II in mammary tumors stimulated

tumor development and metastasis by promoting inflammation

and infiltration of myeloid-derived suppressor cells (102).

Various small-molecule inhibitors of BMP receptors have

presented as promising candidates for cancer therapy. For

instance, dorsomorphin and LDN-193189, inhibitors of the

type I BMP receptor ALK1, blocked cell migration and

improved cell killing in models of epithelial ovarian cancers

(103, 104). K02288, a small-molecule inhibitor that also targets

ALK1, was found to inhibit BMP9 signaling as a critical step
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towards suppressing tumor angiogenesis in models of diffuse

intrinsic pontine glioma (105). DMH1, another inhibitor of type

I BMP receptors, was also found to reduce lung cancer cell

proliferation, promote cell death, decrease invasion, and inhibit

tumor growth in human lung cancer xenograft models by

blocking BMP signaling (106). Collectively, BMP receptors are

promising targets for cancer therapy, and future work may entail

more thorough investigation of the mechanisms behind BMP

receptor inhibition in suppressing tumor growth.
Activin type I and II receptors

Activins, like BMPs, signal through transmembrane serine-

threonine kinase type I and type II receptors that form

heteromeric receptor complexes. The complexes requires two

type I receptors (ALK4, 5, or 7) and two type II receptors (ActR-

IIA or ActR-IIB) (107). The binding activity of these receptors is

also similar to that of BMP receptor complexes: the type II

receptor is primarily responsible for initial ligand binding and

activation of the type I receptor, which can then propagate

signaling through SMAD2 or SMAD3 (107). In activin signaling,

SMAD2 or SMAD3 can form a complex with SMAD4 and co-

localize to the nucleus, where the complex regulates various

transcriptional responses (108). Activin receptors can also bind

to ligands promiscuously. For instance, BMP10 binds to ActR-

IIA and ActR-IIB (109). GDF11 and myostatin have also been

shown to bind ALK4 and ALK5 (1, 108, 110). This functional
FIGURE 1

Canonical signaling pathway for three TGF-b superfamily members: bone morphogenetic proteins (BMPs), activins, and growth and
differentiation factors (GDFs). Ligand binding induces the formation of a heteromeric receptor complex, resulting in constitutively active type II
receptors transphosphorylating and activating type I receptors. The signal is transduced intracellularly via phosphorylated R-SMADs (such as R-
SMAD1/5/8 or R-SMAD2/3). R-SMADs form complexes with Co-SMADs (such as SMAD4), which collectively serve as transcription factors that
regulate target gene expression in the nucleus.
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redundancy in receptors across members of the TGF-b
superfamily has important implications for the development of

therapeutics, especially regarding potential off-target effects.

In cancer, the activity of activin receptors is largely context-

dependent. In models of lung adenocarcinoma, ALK4

expression was associated with reduced survival by promoting

resistance to platinum chemotherapy; inhibition of ALK4

improved response to chemotherapy and reduced

chemotherapy-induced nephrotoxicity (67). Inhibition of

ActR-IIB was found to reduce cancer-induced cachexia and

prolong survival (111). On the other hand, overexpression of

wild-type ALK4 was found to restore anti-proliferative effects of

activin in pituitary tumor cells (23). Similarly, transfection of the

prostate cancer cell line LNCaP with wild-type ALK5 restored

the tumor suppressive effects of TGF-b, whereas loss of ALK5
activity has been linked with advanced disease stage and poor 4-

year survival in patients with prostate cancer (112–114). In

contrast, TGF-bRI kinase inhibitor II, an ALK5 inhibitor, was

found to block the invasive phenotype of cancer cells in oral

squamous cell carcinoma models (112, 115). Numerous small-

molecule inhibitors of ALK4, 5, and 7 have also been shown to

attenuate tumor progression and invasion in various cancer

types, including osteosarcoma, breast cancer, glioblastoma, and

hepatocellular carcinoma (112, 116–121). Among the most

advanced targeting strategies deployed to interfere with TGF-b
superfamily signaling in cancer is coupling the small molecule

inhibitor galunisertib with anti-PD1 immunotherapy, which

resulted in complete regression in murine colon cancer models

(54, 122). However, whether galunisertib targets the activin A

receptor ActRIB, the TGF-b receptor TGFBRI, or both with

differential affinity remains unclear. Overall, targeting activin

receptors as a means of treating cancer has proven to be a viable

strategy based on outcomes from several clinical studies, but as is

true for BMP receptors, a deeper understanding of the

mechanism behind activin receptor inhibition can further

expand therapeutic avenues that use this approach.
Interactions of BMPs, activins, and
GDFs with the innate immune
system in cancer

Bone morphogenetic proteins

In the context of oncology, BMPs have a role in cancer

development, progression, and immune regulation. They can

modulate dendritic cells (DCs) that express type-I receptors

(BMPR-IA and ALK2) and BMPR-II receptors (123). BMPs are

also involved in macrophage and natural killer (NK) cell

activity (Figure 2).

BMPs promote tumor progression in breast cancer and

promote metastasis to the bone (124). Overexpression of
Frontiers in Immunology 05
BMP2, for example, correlated with poor survival outcomes in

ovarian cancer; BMP2 enhanced the migration and invasion of

ovarian cancer cells, suggesting that BMP signaling promotes

tumor progression and metastasis (125). In hepatocellular

carcinoma, expression of BMP4 and BMP7 was increased, but

advanced non-small cell lung cancer was associated with

increased BMP2 serum levels and correlated with poor

outcomes (104). BMPs are capable of inhibiting cancer cell

proliferation in a context-dependent manner; however, they

simultaneously promote cancer cell invasion. BMPs promote

tumor growth by inhibiting the function of DCs, which express

BMP ligands and receptors, driving M2-like macrophage

development, and upregulating PDL1 and PDL2; however, in a

paradoxical role, they can promote NK cell activity,

differentiation, and production of interferon (IFN) -g (12,

126, 127).

In acute lymphoblastic leukemia, DC differentiation was

altered into an aberrant phenotype displaying immune

suppressive functions (128). In addition to DCs, macrophage

differentiation was also affected so as to secrete and overexpress

BMP4, which induces DCs with immunosuppressive functions,

skews M1 macrophage polarization, and generates tumor

promoting M2-like macrophages (128). However, separate

studies have concluded that BMPs promote DC maturation

and enhance their production of interleukin (IL) -8 and tumor

necrosis factor (TNF) (123). BMP7 also influences macrophage

M1 polarization to M2 (129). Tumor cells secrete BMP7 and act

on macrophages in the tumor microenvironment and impair

pro-inflammatory responses (24). In the human acute

monocytic leukemia cell line THP-1, BMPR-II and BMP7

polarize monocytes to M2 macrophages (130). Tumor-

associated macrophages also were found to secrete BMP2 in

the tumor microenvironment in breast cancer, which led to poor

prognosis (131). BMP6 was also found to inhibit the growth of

macrophages and induce macrophages to produce IL-10,

thereby suppressing an anti-tumor immune response.

Paradoxically, BMP6 was also found to promote TNF

production by macrophages (132, 133). Thus although BMPs

generally suppress a variety of anti-tumor responses by innate

immune cells, the mechanisms by which BMPs regulate the

activities of these cells, often paradoxically, are not fully

understood and warrant further research.
Activins

Activin A, another member of the TGF-b superfamily of

growth and differentiation factors, has several physiologic roles.

It has both pro-inflammatory and anti-inflammatory properties,

and is essential in the apoptosis of tumor and immune cells,

wound healing, and cancer (134). In one study, activin A was

shown to impair NK cell proliferation and inhibit production of

granzyme B, which blunted tumor killing (135). When activin A
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binds to ALK4 on NK cells, SMAD2 and SMAD3 are

phosphorylated, suppressing IL-15–mediated NK cell

metabolism (135). Inhibiting activin A also has regulatory

effects on DCs at different times. Activin A induces the

directional migration of immature myeloid DCs (136).

However, when endogenous activin A was inhibited by

follistatin in vitro, CD40L stimulation upregulated the

expression of numerous cytokines (IL-6, IL-8, IL-10, IL12, and

TNF-a) by DCs and promoted the maturation of those cells

(137). Moreover, other studies have shown that activin A

enhances pro-inflammatory mediators (IL-1b, nitric oxide, and
prostanoids), increases phagocytic activity, and skews

macrophages to the pro-inflammatory macrophage phenotype

(M1) (138). Activin A was shown to inhibit M2 macrophage

genes consisting of C-maf proto-oncogene, insulin-like growth

factor 1, and plasminogen activator inhibitor 2. When activin A

was inhibited, M2 macrophage polarization increased (139).

Contrarily, other studies proposed that activin A had a more

suppressive role, and its secretion by TH2 cells promoted M2-

like macrophage polarization (140). The multipronged effects of

activin A on macrophage activity warrant further clarification of

its role in mediating signaling pathways.
Frontiers in Immunology 06
Growth and differentiation factors

GDF15 has served as a biomarker for cancer tumorigenesis,

prognosis, and progression (18). Its overexpression has been linked

with poorer outcomes in various types of cancer. GDF15 was

recently shown to have immune regulatory functions and has

potential for immunotherapy targeting strategies (141). GDF15

polarizes macrophages in the tumor microenvironment into an

immunosuppressive state by inhibiting TAK1 signaling to NF-kB

and blocking production of TNF and nitric oxide (142). When

GDF15 was depleted in vivo in a pancreatic cancer model with a

Ras-driven tumor, immune surveillance was restored and tumor

development was delayed, suggesting improved tumor control

(142). Another recent study showed that GDF15 suppresses the

maturation of DCs as well as their costimulatory molecules (CD83,

CD86, HLA-DR). GDF15 enhanced phagocytosis by reducing the

maturation of DCs. DCs treated with GDF15 secreted less IL-12

and more TGF-b1 inhibitory cytokine. Also, T-cell stimulation and

cytotoxic T cell (CTL) activation by DCs was inhibited with GDF15

(143). The roles of GDF15 in the context of NK cells are cancer is

not well understood; however, GDF15 has been linked with NK cell

dysfunction through TGF-bR1 (144).
B

C

A

FIGURE 2

Immunoregulatory effects of bone morphogenetic proteins (BMPs), activins, and growth and differentiation factors (GDFs) on key cells of the
innate and adaptive immune systems. (A) BMPs have largely pro-inflammatory effects in adaptive and innate immune responses, although their
immunoregulatory roles in cancer are context-dependent, especially with regard to signaling in natural killer (NK) cells, macrophages, and CD4+

T cells. (B) Activins have predominantly anti-inflammatory effects in adaptive and innate immune responses; however, like BMPs, their
immunoregulatory function in cancer is largely context-dependent, as evidenced by paradoxical signaling to macrophages and some dendritic
cells (DCs). (C) GDFs have broad immunosuppressive effects on both adaptive and innate immune responses, correlating with poor outcomes in
various cancer types. Red text indicates pro-tumorigenic effects; green, anti-tumorigenic effects. IFNg, interferon-g; IL, interleukin; iTreg, induced
regulatory T cell; NO, nitric oxide; TNF, tumor necrosis factor; Treg, regulatory T cell.
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Interactions of BMPs, activins, and
GDFs with the adaptive immune
system in cancer

Bone morphogenetic proteins

BMPs, activins, GDFs, and their receptors are expressed in

several arms of the immune system, and several studies have

elucidated the roles of these ligands in adaptive immunity (12).

Intra-thymic CD34+ cells express BMP receptors (BMPR-IA,

BMPR-IB, ActR-IA, BMPR-II), signal transduction molecules

(SMAD1, 5, 8 and 4), and produce BMP4. The role of BMPs on

T cells was first described in the ontogenesis of T lymphocytes and

thymic development, in which cells of the developing thymic

stroma secrete BMP2 and BMP4, and immature double-negative

(CD4–, CD8–) thymocytes express BMP receptors (145). BMP has

been found to be essential in early lymphocyte differentiation, as

inhibition of BMP (146) or the conditional deletion (147) of BMPR-

IA in early development results in reduced thymocyte populations

and a smaller thymus. Also, BMP4 mediates the epithelial-

mesenchymal interactions during thymic development and

parathyroid morphogenesis (148), and interacts with IL-7 in the

maintenance of the human thymic progenitor population (149).

Human naïve CD4+ T cells express transcripts for BMPR-IA,

ALK2, and T cell receptors (TCRs). Stimulation of those cells by IL-7

results in activation of the BMP pathway, with essential effects on

their homing receptor expression, survival, and homeostatic

proliferation (150). Inactivation of BMPR-IA in T cells impairs the

thymic and peripheral generation of Tregs, and BMPR-IA-deficient,

activated T cells increase IFN-g production. In vivo studies

demonstrated that conditional deletion of BMPR-IA in T cells

results in a more effective anti-tumor immune response, a higher

proportion of activated anti-tumor CD8+ cells, and fewer infiltrating

tumor-infiltrating Tregs (151). Contrasting evidence shows that

inhibiting BMP in vitro leads to reduced expression of IL-2Ra and

IL-2 secretion in CD4+ T cells (152, 153), yet BMP7-treated,

activated CD4+ T cells reduced their secretion of IL-2 (24). Such

opposing findings indicate that elucidating the role of BMP in

lymphocyte function is far from complete. Further, impairing

BMP signaling with dorsomorphin suppressed phosphorylated

SMADs 1/5/8 in peripheral CD4+ T cells. Dorsomorphin induced

cell cycle arrest in T cells at G1, suppressed Th17 cells, and promoted

the differentiation of Tregs. The inhibition of BMP also suppressed

IL-2 production in mouse CD4+ T cells, suggesting that BMP-

SMAD signaling physiologically regulates IL-2 transcription in

CD4+ T cells (153).
Activins

In an in vivo model of autoimmune encephalomyelitis, mice

receiving activin A showed a significant improvement in
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encephalomyelitis, with decreased numbers of IFN-g–, IL-17–,
and granulocyte-macrophage colony-stimulating factor–

producing CD4+ T cells, as well as an increase in IL-10-

producing cells. Activin A treatment also impaired Th17

pathogenicity via CD39 and CD73 ectonucleotidase

responses (154).

Activin A induces CXCR5 and PD1 expression and regulates

the differentiation of CD4+ follicular helper T cells (TFH),

functions of which include promoting survival, affinity

maturation, and class switch recombination of B cells in the

lymph node and the spleen. IL-2 has been shown to impair the

role of activin A in the SMAD2/3-dependent programming of

TFH (155).

In vitro irradiation of mouse and human breast cancer cells

leads to significant increases in activin A expression. In vivo,

radiation-induced activin A led to an increase in Tregs (25) and

an increase in TGF-b levels (156). Conversely, blocking activin A

and TGF-b reduced the levels of Tregs and promoted CD8+ T

cells proliferation and tumor control. Thus, targeting activin A

may have therapeutic relevance for minimizing the radiation-

induced Treg population (25). Activin A has inhibitory effects on

antigen-specific Th2 and Th1 responses via the induction of

Tregs. Blocking IL-10 and TGF-b1 reverses the inhibitory effects

of activin A (156). Activin A has also been shown to replicate the

function of TGF-b1, driving the generation of IL-21-producing

Th9 cells, which has implications for exacerbated allergic

conditions (157). Importantly, Activin A is an important

contributor to immune suppression and a regulator of

inflammation through the conversion of CD4+/CD25– T cells

into induced CD4+/CD25+/FoxP3+ T cells in synergy with TGF-

b1 (158).

GDF15 is a critical regulator of T-cell activity, and its role in

immune modulation has been elucidated in several studies.

Downregulation of GDF15 was found to improve T-cell

infiltration into transplantable glioblastoma, prolonging

survival and enhancing the immune response (159). GDF15

was also found to promote immunosuppression by enhancing

the generation of Tregs in hepatocellular carcinoma (141).

Specifically, GDF15 led to decreased proliferation of naïve

CD4+ T cells while effectively promoting their differentiation

into inducible Tregs. However, GDF15 has also been found to

stimulate tumor immunity, as its overexpression was correlated

with increased populations of activated CD8+ T cells in murine

models of prostate cancer (160).

The BMPR-IA signaling pathway regulates differentiation

and self-renewal in several stem-cell populations in the germinal

center. Mouse germinal-center B cells showed increased

expression of BMPR-IA, and the targeted deletion of BMPR-

IA impaired the germinal-center reaction and reduced

differentiation from plasmablasts to antibody-producing

plasma cells (161). One study identified that although human

germinal-center B cells express high levels of BMPRI and low

levels of BMPRII, naïve B cells show low levels of BMPRI and
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high levels of BMPRII (162). In the same study, BMP7 was

shown to negatively regulate the survival of germinal-center B

cells, and the truncated form of TGFb-R1 reversed that effect.

The exogenous exposure of both normal donor naïve CD27–

and memory CD27+ B cells to BMP2, 4, 6, and 7 was found to

prevent the CD40L/IL-21 stimulation of immunoglobulins (Ig)

M, IgG, and IgA, suggestive of a strong dysregulation of class

switch recombination and suppression of memory B cells (163).

Activin A has an inhibitory role in the generation of B-cell

lineages in the bone marrow, and researchers argue that activin

A may have a morphogen-like role during hematopoiesis (164).

Moreover, activin A produced by mesenchymal stromal cells was

found to negatively control B-cell lymphopoiesis, affecting B-cell

lineage production (165). Activin A has also shown effects on

class switch recombination in murine B cells, in that activin A

increased the secretion of IgA by mesenteric lymph-node B

lymphocytes independent of TGF-b (166).
Growth and differentiation factors

In vitro studies suggest that GDF5 may be involved in

signaling of the B-cell lineage; because GDF5 induced G1 cell-

cycle arrest in mouse B-cell hybridoma HS-72 cells; the ectopic

expression of SMAD6 and 7 reversed this effect via suppression

of p21 and dephosphorylation of the Rb protein. The

investigators argued that the potential inhibitory effect of

SMAD6 and 7 on GDF5 could mediate the fate of B-lineage

cells (167).
BMPs, activins, and GDFs in
resistance to immunotherapy

Our group looked at the effects of BMP7 in an anti-PD1

tumor model involving a variant of a murine lung cancer cell

line. We found that BMP7 contributed to immunotherapy

resistance by reducing proinflammatory signaling via

suppression of MAPK14 (24). Conversely, when BMP7 was

neutralized or knocked down, anti-PD1 non-small cell lung

cancer tumors were re-sensitized to immunotherapy (24).

Another group found that BMP2/4-BMPR-SMAD1/570S6K

activation promoted resistance to erlotinib, an EGFR-TKI, in

lung squamous cell carcinomas with EGFR mutations (19).

Activin A has also been shown to confer resistance to

immunotherapy in mammary carcinoma by promoting Tregs

(25). Secretion of activin A by radiation-induced breast cancer

cells contributed to an increase in Tregs, leading to increased

resistance to immunotherapy in a mouse model (25). Activin A

knock-ins in the low-activin-A-secreting breast cancer cell line

TSA were also shown to hinder abscopal anti-tumor immune

responses to radiation therapy in mice (25). Finally, to further
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assess how activin A influences immunotherapy resistance,

blockade of both activin A and TGF-b led to an increase in

survival rate and eliminated irradiated tumors in 57% of

irradiated mice (25). Another group found that activin A

secreted by melanoma inhibited CD8+ T cell immunity,

ultimately promoting tumor resistance (168). This resistance

to immunotherapy led to increased cachexia and tumor

angiogenesis and resulted in poorer prognosis (168). Activin A

secreted from melanoma cells also hindered proinflammatory

signaling of cytokines and chemokines and shifted the

composition of tumor immune infiltrates in the tumor

microenvironment from CTLs and NK to increased non-

regulatory cells such as CD4+ T cells, DCs, and monocytes.

Some evidence also exists to suggest that GDFs can promote

immunotherapy resistance. In one study of hepatocellular

carcinoma cells, GDF15 was found to increase Tregs mediated

by CD48, leading to immunosuppression. In contrast, GDF15

knockout in tumor cells inoculated in mice led to decreased

proportions of Tregs, reduced tumor growth, and prolonged

survival. These findings demonstrate that GDF15 can

contribute to immunotherapy resistance by promoting the

generation of Tregs. Consequently, GDF15 blockade resulted in

hepatocellular carcinoma clearance through an enhanced

antitumor immune response (141).

In summary, although the mechanisms underlying

resistance to immunotherapy remain unclear, BMPs, activins,

and GDFs seem to confer resistance to treatment in a context-

dependent manner (24, 25, 141). Little research has been

reported to date that addresses this process, and additional

research is needed to further elucidate immunotherapy

resistance. Understanding this phenomenon could lead to the

development of novel methods to combat resistance

to immunotherapy.
Clinical potential for targeting BMPs,
activins, and GDFs
in immunotherapy

Although research on targeting BMPs, activins, and/or GDFs

to improve responses to cancer immunotherapy is still in

nascent stages, early evidence affirms that these TGF-b
superfamily members are promising candidates on a clinical

basis. For instance, DMH1, a second-generation dorsomorphin

analog, is a highly selective inhibitor of Type I BMP receptors.

Mouse models of breast cancer treated with DMH1

demonstrated anti-metastatic function and significantly

increased infiltration of immune cells compared to controls

(102, 169). Consequently, these findings raised the exciting

prospect that targeting BMP could enhance the effectiveness of

immunotherapy based on the total number of myeloid and

CD45+ immune cells present within the tumor (170).
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Another study found that removing the BMPR1a gene in T-

cells at the double-positive stage resulted in lower levels of Tregs

and more IFNg-producing T-cell subpopulations. These findings
have important implications for potentially overcoming a major

obstacle to effective cancer immunotherapy: infiltration of

FoxP3+ Tregs that mediate immune tolerance (171). BMPR1a-
deficient mice also demonstrated slower growth rates of

melanoma tumors, bolstering the conclusion that removal of

Type I BMP receptors could enhance an immune response to

cancer (151). Additionally, we found that knockdown or

neutralization of BMP7 re-sensitized resistant tumors to anti-

PD1 immunotherapy in pre-clinical models (24). Altogether,

early success in inhibiting BMPs and/or their receptors across

these studies reinforce the clinical potential of targeting BMPs to

improve responses to immunotherapy in specific cancers.

A recent study also found that activin A expression is

positively correlated with anti-PD1 therapy resistance in

human melanoma patients based on a bioinformatics analysis

of available RNA-seq datasets. In the same study examining pre-

clinical melanoma models, expression of the activin A-encoding

gene, INHBA, was shown to reduce infiltration of cytotoxic T-

lymphocytes and natural killer cells across all models.

Additionally, activin A was responsible for reprogramming the

tumor microenvironment to interfere with proper activation of

cytotoxic T-lymphocytes and attenuated levels of IFNg in bulk

tumors. Notably, neutralization of endogenous activin A by a

soluble form of ActR-IIB sensitized melanoma grafts to

combined anti-PD1/anti-CTLA4 blockade, supporting the

clinical potential of targeting activin A to improve responses

to immunotherapy in melanoma (168).

GDF15 is also an emerging target for improving responses to

immunotherapy, particularly because it is a biomarker correlated

with immune-neglected “cold” tumors, which are significantly

less responsive to immune checkpoint blockade (159, 172, 173).

One study aiming to explore the immunologic role of GDF15 in

glioblastoma models revealed that GDF15 promotes the

expression of PD-L1 through activation of the SMAD2/3

signaling pathway. The results from this study suggest that

targeting the GDF15/PD-L1 pathway could be an effective

immunotherapy strategy to enhance anti-tumor immunity in

glioblastoma (174). In other models of cancer that respond

poorly to immunotherapy, such as hepatocellular carcinoma

(HCC), GDF15 is also an ideal target because it plays a central

role in the generation and activation of Tregs, thereby mediating

an immunosuppressive response (141). In mice models,

therapeutic blockade of GDF15 was found to achieve clearance

of HCC when coupled with anti-PD1 mAb treatment (141).

Early research continues to provide promising results for

targeting BMPs, activins, and GDFs to increase the effectiveness

of immunotherapy in treating certain cancers. The previously
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discussed studies support the immunosuppressive effects of

these TGF-b superfamily members and have used these effects

to inform the development of combined therapies that were

successful in bolstering anti-tumor immune responses.

However, further research is still required to investigate

additional parameters such as off-target effects, refractory

immunotherapy resistance, and cancer-specific/context-

dependent effects of inhibiting these superfamily members to

validate the clinical safety and efficacy of targeting them.
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