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While modern HIV therapy can effectively suppress viral replication, the

persistence of the latent reservoir posits the greatest hurdle to complete

cure. The “shock and kill” strategy is under investigation for HIV therapy,

aiming to reactivate latent HIV, and subsequently eliminate it through anti-

retroviral therapy and host immune function. However, thus far, studies have

yielded suboptimal results, stemming from a combination of ineffective latency

reversal and poor immune clearance. Concomitantly, studies have now

revealed the importance of the BCL-2 anti-apoptotic protein as a critical

mediator of infected cell survival, reservoir maintenance and immune

evasion in HIV. Furthermore, BCL-2 inhibitors are now recognized for their

anti-HIV effects in pre-clinical studies. This minireview aims to examine the

intersection of BCL-2 inhibition and current shock and kill efforts, hoping to

inform future studies which may ultimately yield a cure for HIV.
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Introduction

Modern combination anti-retroviral therapy (cART) is highly effective at suppressing

HIV viremia to levels below the limit of detection. However, infected individuals

continue to harbor integrated, transcriptionally silent proviral forms in a pool of

infected cells known as the latent reservoir (1). Studies have now highlighted the

dynamic nature of the reservoir, which can propagate even under the coverage of

cART through low level transcription and clonal expansion (2–4). Strategies to target the

latent reservoir aim to achieve either complete elimination of infected cells (a sterilizing

cure), or permanently prevent HIV transcription in these cells (a functional cure) (5).

The “Shock and Kill” HIV cure strategy centers around the former principle, aiming

to reactivate latent HIV, and subsequently eliminate it through anti-retroviral therapy

and host immune function (6). However, even in the setting of efficient viral reactivation,

numerous barriers have been identified which prevent host immunity from maximally

clearing HIV infected cells in-vivo including poor immune recognition, immune
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exhaustion, the effects of immune-modulatory cytokines, and

upregulation of prosurvival proteins (7–12).

Through a combination of mechanisms, these changes allow for

either infected cell survival, or compromised immune effector

function, or both. One such factor that has been recognized to

facilitate HIV persistence by both priming infected cells for survival,

and simultaneously antagonizing the host immune response, is the

BCL-2 pro-survival protein (13). This minireview aims to examine

the implications of this protein to HIV pathogenesis and to

therapeutic targeting for HIV “shock and kill” efforts.
The role of BCL-2 in HIV persistence

BCL-2 and its homologs are intracellular regulators of multiple

cellular processes, the most crucial of which is cell survival and

apoptosis. Prototypical members of the BCL-2 family are

characterized by the presence of four conserved homology

domains: BH1, BH2, BH3 and BH4 (14). At homeostasis, cell

apoptosis is controlled by the balance between BCL-2 (and other

anti-apoptotic homologs) and the pro-apoptotic homologs, with a

subset of proteins containing only the BH3 domain, serving as

modulators of this balance. The proposed mechanisms through

which these interactions occur have been reviewed extensively

elsewhere (15). The BCL-2 protein prevents cell death through

the stabilization of the mitochondrial membrane via the

sequestration of pro-apoptotic proteins which, canonically,

occupy a hydrophobic groove in the BH3 domain of anti-

apoptotic BCL-2 family members. The HIV life cycle is

dependent on host cell apoptosis to facilitate the release of viral

progeny, and various HIV proteins have been shown to modulate

the levels of BCL-2 family members to either promote or prevent

the death of infected cells. [Reviewed in detail in (13)]

Apoptosis is crucial to the HIV life cycle, and one of the

mechanisms through which HIV achieves infected cell apoptosis is

through the Casp8p41 pathway. Casp8p41 is a 41 kilodalton, BH3-

like protein that is generated due to the cleavage of host procaspase8

by HIV protease (16). Through the direct potentiation of the pro-

apoptotic BCL-2 family members BAK and BAX and subsequent

mitochondrial membrane depolarization, Casp8p41 results in host

cell apoptosis (17, 18). Clinically, it was observed that intracellular

Casp8p41 levels in HIV infected individuals correlated inversely

with CD4 T-cell counts (19), and that patients on suppressive ART

who demonstrated continuous production of Casp8p41 exhibited

an increased risk of CD4 losses (20).

Of particular importance was the recognition that latently

infected cells produced Casp8p41 upon reactivation, which was

observed to be bound by host BCL-2 and degraded by the

proteasome, antagonizing its pro-apoptotic phenotype, thereby

facilitating HIV survival (21, 22). The ability of BCL-2 to

abrogate Casp8p41 induced apoptosis led to the hypothesis

that BCL-2 contributed to the establishment of the

latent reservoir.
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Ex vivo studies have now verified that the cell subsets that

are classically described to harbor the latent HIV reservoir,

namely central memory T-cells, have been observed to express

higher levels of BCL-2 (21), and that BCL-2high cells have been

seen to occur more frequently in HIV infected individuals

compared to uninfected controls (9). Studies of simian

immuno deficiency (SIV) infection in ART suppressed

macaques revealed that CTLA+ PD1- Memory CD4 cells that

harbored significant quantities of replication competent provirus

demonstrated significantly higher BCL-2 expression compared

to other subsets (23). Most importantly, it has now been

recognized that the inducible HIV reservoir is preferentially

enriched in cells with higher expression of BCL-2 in-vivo (11).

HIV latency has been recapitulated through lentiviral

transfection of primary CD4 cells with a BCL-2 construct, in

an in-vitro model which allowed for sustained HIV replication,

and recapitulated changes seen during the natural course of HIV

infection, further illustrating the critical role of BCL-2 in HIV

latency (24–26).

Overall, the critical role of BCL-2 for HIV persistence and

latency is supported by a growing body of evidence (Figure 1).
The role of BCL-2 in immune
cell function

In-vivo, cell mediated, cytotoxic immune responses are

mediated by cytotoxic CD8 T-cells and Natural killer (NK) cells.

These cells achieve target cell apoptosis through either granule

mediated, or cytotoxic ligand mediated signalling. BCL-2 serves as a

key regulatory factor for both mechanisms (27–30). CD8 and NK

cells are crucial HIV control and dysregulated immune response is a

key factor leading to the persistence of the HIV reservoir (1). CD8

and NK cells respond to antigenic challenge through overlapping

mechanisms which ultimately result in target cell elimination. These

mechanisms include granule mediated cytotoxicity and pro-

apoptotic ligands such as FasL and TNF-related apoptosis

inducting ligand (TRAIL) (27, 31, 32). The intersection of the

aforementioned cytotoxic mechanisms utilized by effector cells, and

the anti-apoptotic BCL-2 protein, will be examined further below.

Perforin/Granzyme B is a key effector pathway that is

utilized by both CD8 T-cells and NK cells (27, 33, 34). Briefly,

following the recognition of a cognate antigen, effector cells

degranulate, leading to the release of Perforin and Granzyme B.

Perforin binds to the target cell wall and causes pore formation

in a manner that is postulated to be similar to bacterial

cytolysins, allowing for the intracellular delivery of granzyme

B (34). Granzyme B initiates the apoptotic singling cascade

either through direct activation of caspases, or through the

activation of BID. Activated BID subsequently activated the

pro-apoptotic BAX protein, which in turn leads to

mitochondrial membrane depolarization and efflux of

apoptotic mediators, ultimately leading to cell death.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1033609
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chandrasekar and Badley 10.3389/fimmu.2022.1033609
In vitro BCL-2 has been seen to antagonize granzyme

mediated cell death through the inhibition of downstream Bax

activation (35). Additionally, it was observed that BCL-2

strongly antagonized Perforin mediated Granzyme

translocation to the nucleus, leading to blunted cytotoxicity

(36). Overexpression of BCL-2 in mouse cell lines was seen to

inhibit granzyme mediated apoptosis in-vitro; however it was

observed that cytotoxic T-cells retained their apoptotic

functionality, likely through granzyme B independent

mechanisms (28). Overall, it has now been well established

that BCL-2 overexpression antagonizes apoptosis induced by

perforin and granzyme B.

Fas ligand (FasL) is a key effector molecule that is produced

by both CD8 and NK cells and has been widely studied in the

context of HIV infection and CD4 depletion (27, 33, 37–39).

FasL binds its cognate receptor, Fas, on the surface of target cells,

and recruits the “Fas associated death domain” (FADD) (40) to

activate the apoptotic pathway. Fas has been shown to elicit

apoptosis through Bid/Bax/Bak dependent and independent

pathways in lymphocytes (41). Fas signaling is also a crucial to
Frontiers in Immunology 03
chimeric antigen receptor T- cell (CAR-T) mediated clearance in

acute lymphoblastic leukemia (ALL) (42, 43).

The role of BCL-2 in preventing Fas mediated cell death is

controversial and multiple reports have suggested that FasL can

act in a BCL-2 independent fashion to induce cell death (44).

However, it has also been demonstrated that BCL-2

overexpression can prevent Fas mediated cell death in

lymphoid cell lines and in breast cancer (29, 45), and can

abrogate cytotoxic T-lymphocyte (CTL) responses in cells

overexpressing Fas receptor (46) suggesting that even though

Fas signalling can function independently of pro-apoptotic BCL-

2 family members, BCL-2 may play a role in blunting the

apoptotic effect of Fas (47). BCL-2 has also been shown to

downregulate the expression of FasL, through the disruption of

the nuclear translocation of nuclear factor of activated T-cells

(NFAT), via the inhibition of calcineurin, conferring drug

resistance to FasL dependent drugs (48).

TNF-related apoptosis inducting ligand (TRAIL) is another

key effector molecule that is essential for CD8 and NK function

(27, 32). Following the binding of TRAIL to its cognate receptor,
FIGURE 1

The role of BCL-2 in HIV persistence. Following HIV infection, a combination of host immune function and direct viral cytopathic effects, such
as those mediated through Casp8p41 cause the majority of cells to die. However, a subset of infected cells expresses higher levels of BCL-2,
allowing for apoptosis evasion and compromised immune function, ultimately allowing for the persistence of HIV infected cells.
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TRAIL Receptors 1 and 2, FADD is recruited to initiate

apoptotic signalling (49). Similar to Fas, TRAIL too has been

identified as a crucial regulator of CAR-T function in lymphoid

malignancy (42, 43). TRAIL mediated apoptosis has been

described to be directly inhibited by BCL-2 overexpression in

multiple cell lines, though similar to FasL, lymphoid cells

exhibited apoptosis through a BCL-2 independent pathway (30).

In terms of cell mediated cytotoxicity, upregulation of the BCL-

2 homologsMCL-2 and BCL-2A1 were recently described to inhibit

cytotoxic T-cell mediated clearance of melanoma cells (50). BCL-2

upregulation in CD8 effector cells in lymphoid malignancies has

been demonstrated to directly impair the ability of immune effectors

to degranulate efficiently, blunting the immune response. These

cells were seen to also co-express PD-1 and TIM-3, both of which

have been implicated in HIV immune escape (51–53). It has now

also been demonstrated that cytotoxic T cells exhibit impaired

clearance of target cells overexpressing BCL-2 (11).

Therefore, given the ability of BCL-2 to antagonize both

direct viral cytopathic effects and cytotoxicity mediated by

immune effector mechanisms, targeted therapy against BCL-2

has become a topic of growing importance in HIV shock and kill

studies. The intersection of these will be examined further below.
The “shock”: BCL-2 inhibitors and
HIV latency reversal

The first pillar of the “shock and kill” strategy is the

reactivation of the latent reservoir. Various classes of drugs,
Frontiers in Immunology 04
known as latency reversal agents (LRAs) are under investigation

for the reversal of HIV latency in-vivo. These include Histone

deacetylase (HDAC) inhibitors, Protein kinase C agonists,

second mitochondrial-derived activator of caspases (SMAC)

mimetics, Proteasome inhibitors, histone methyltransferase

(HMT) inhibitors, DNA methyltransferase inhibitors,

bromodomain inhibitors, Toll-like receptor (TLR) agonists and

cytokines such as IL-15 super-agonist (N-803) (54, 55).

The crucial role that BCL-2 plays in the persistence of

malignancy lead to the development of now clinically

approved BCL-2 inhibitors. Given our growing understanding

that BCL-2 is also a critical determinant of the HIV latent

reservoir, studies have aimed to assess the impact of BCL-2

inhibition on HIV dynamics. Thus far, it has been established

that selective BCL-2 inhibition can decrease the number of

virally infected cells, decrease the size of the inducible latent

reservoir, and restore the ability of HIV specific cytotoxic

lymphocytes to target latently infected cells following

reactivation (11, 21, 22, 56).

However, a suitable combination of an LRA and BCL-2

inhibitor that allows for maximal reactivation and selective

elimination of HIV is yet to be identified. The following text

aims to examine the effects of known latency reversal agents in

combination with BCL-2 inhibitors (Table 1).

PKC agonists such as bryostatin and prostratin are amongst

the most studied latency reversal agents. These drugs have

demonstrated latency reversal in-vitro, and in in-vivo models,

though have been disappointing in clinical settings (70, 71). A

recent study identified that treatment of CD4 cells with PKC
TABLE 1 Shock and kill agents and their interactions with BCL-2 and its inhibitors.

Therapeutic agent Role in shock and
kill

Intersection with BCL-2 and its inhibitors References

PKC Agonists Latency reversal BCL-2 Ser70 phosphorylation and activation.
Ser70 phosphorylation confers resistance to BCL-2 inhibitor therapy

(9, 57)

Proteasome inhibitors Latency reversal Synergistic activity in lymphoma and enhanced anti-HIV activity in-vitro with unacceptable
ex-vivo toxicity.

(58, 59)

HDAC inhibitors Latency reversal Synergistic at high doses and surprisingly antagonistic at lower doses in cutaneous T-Cell
lymphoma.

(60)

TLR9 agonists Latency reversal TLR-9 signaling causes upregulation of BCL-2 in primary CD4 T-cells.
Significantly reduced the cytotoxic potential of BCL-2 inhibition in hairy cell leukemia

(61)
(62)

SMAC Mimetics Latency reversal Synergistic activity with BCL-2 inhibitors in hepatocellular carcinoma (63, 64)

IL-15 super agonists Latency reversal IL-15 induces altered expression of BCL-2 homologs Bim and MCL-1.
N-803 demonstrated no observable anti-HIV effect in an in-vitro latency model

(58, 65)

BCL-2 monotherapy Infected cell cytotoxicity Selective elimination of HIV infected cells reduced reservoir size
Improved action of NK and CD8 cells in human malignancy
Improved efficacy of HIV specific CTLs in ex-vivo studies.

(7, 11, 21, 22, 56,
58)

(66, 67)
(11)

Immune checkpoint
blockade

Latency reversal
Improved immune

function

Improved anti-tumor CD8 activity with combination therapy in cancer (68)

CAR-T therapy Infected cell cytotoxicity Enhanced cytotoxic activity with combination therapy in cancer (69)
The above table aims to summarize known interactions of drugs being currently investigated for HIV cure, as part of “Shock and Kill” and the BCL-2 protein; and list known effects of
combinatorial therapies.
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agonists induced phosphorylation on the serine 70 (ser70)

residue of BCL-2, that was seen to inhibit the susceptibility of

infected cells to cytotoxic stimuli (9). It has been demonstrated

that the ser70 phosphorylation can directly inhibit the binding

and efficacy of BCL-2 antagonists such as Navitoclax, ABT-737

and Venetoclax (57). These findings suggest that treatment with

PKC agonists would likely not allow for maximal clearance of

HIV infected cells, necessitating the development of novel PKC

agonists which do not have the phosphorylating effect on BCL2.

Additionally, the inhibitory effect of the ser70 phosphorylation

on BCL-2 inhibitor activity would also likely preclude its clinical

efficacy in this specific combination.

Proteasome inhibitors are another class of drugs that have

shown latency reversal effect both in-vitro and in-vivo (22, 58,

72). The combination of the proteasome inhibitor Ixazomib with

venetoclax was shown to exhibit strong synergistic activity

against lymphoma cells (59). However, in HIV, the

combination of proteasome and BCL-2 inhibitors was recently

demonstrated to effectively target infected cells in cell line

models but was associated with significant toxicity in ex vivo

cells (58). A multi-center clinical trial is currently ongoing to

determine the safety and efficacy of this combination in patients

with multiple myeloma (Clinical trial number NCT03399539),

which may inform future efforts at repurposing this combination

in setting of HIV.

HDAC inhibitors such as Romidepsin, Vorinostat and

Panobinostat have now demonstrated measurable latency

reversal in the clinical setting (73–76). In ex vivo studies of

cutaneous T cell lymphoma, combination of BCL-2 and HDAC

inhibitors was seen to be synergistic at high doses, and

paradoxically antagonistic at low doses, suggesting that

regulated dosing and maintenance of drug levels may be

necessary to achieve good therapeutic efficacy with this

combination. Treatment with HDACi also has been shown to

lead to the upregulation of the pro-apoptotic BCL-2 family

proteins BCL2L11 and BMF (60).

The TLR 9 agonist MGN1703 has demonstrated in-vivo

latency reversal, while also resulting in immune activation, but

had no effect on the latent reservoir (77). TLR9 signaling has

previously been demonstrated to result in upregulated

expression of BCL-2 in primary activated CD4 cells (61), and

it stands to be determined if the absence of reservoir depletion in

trials of TLR9 agonists was as a result of BCL-2 upregulation.

Consequently, the combination of TLR9 agonism and BCL-2

inhibition may prove an effective combination to target

reactivated cells that are apoptosis resistant. However, a recent

study involving ex vivo peripheral blood mononuclear cells

(PBMCs) from patients with hairy cell leukemia (HCL)

revealed that the cytotoxic effects of venetoclax against HCL

cells was significantly reduced following TLR9 stimulation with

CpG (62).

SMACmimetics are another group of drugs that have shown

efficacy in in-vivo animal models (63). The combination of
Frontiers in Immunology 05
SMAC mimetics and BCL-2 inhibitors have shown synergistic

effect in hepatocellular carcinomas (64). This combination

therefore may represent a possible combination to target the

latent reservoir.

The IL-15 super-agonist N-803 was demonstrated to cause

latency reversal and reservoir depletion in SIV infected

macaques (78), and has recently demonstrated safety in a

phase I clinical trial (79). IL-15 has been noted to regulate T-

cell survival by altering the expression of Bim and MCL-1,

overall favoring a pro-survival phenotype (65). In line with

this observation, the combination of IL-15 and Venetoclax did

not result in any observable decline in the number of HIV

infected cells in an in-vitromodel of latency (58). Further studies

are required to assess if this combination would prove efficacious

in vivo.
The “kill”: BCL-2 inhibitors and
immune effector potentiation

Immune function is a critical determinant of HIV reservoir

size but varies widely, with the majority of infected individuals

succumbing to a combination of viral escape mutations and host

immune exhaustion, ultimately allowing for the persistence of

HIV infection (80–82). The second pillar of the “shock and kill”

strategy centers around the clearance of infected cells by

immune effector cells and anti-retroviral therapy.

As monotherapy BCL-2 inhibition has been shown to

independently result in the selective elimination of HIV

infected cells and decrease the size of the HIV reservoir in in-

vitro and ex-vivo studies (7, 11, 21, 22, 56, 58). BCL-2 inhibition

has been shown to improve the efficacy of both NK cells and

CTLs in human malignancies (66, 67). BCL-2 inhibition has now

demonstrated measurably improved clearance of infected cells

by CTLs in in-vitro and ex-vivo models of HIV (11), though

further studies are required to demonstrate similar results in in-

vivo settings.

Immune checkpoint blockade in HIV has demonstrated

improved HIV specific CD8 degranulation in vitro (83, 84).

Modest improvement in CD8 function has also been

demonstrated in vivoin vitro (85). In human malignancy, the

combination of immune checkpoint blockade and BCL-2

inhibition was seen to improve anti-tumor CD8 activity (68),

suggesting that this combinatorial approach may also help

improve anti-HIV immune function, though no studies have

examined this combination to date.

HIV specific chimeric antigen receptor (CAR) T cells have

demonstrated promise as a viable treatment option for HIV,

having demonstrated efficacy at clearing HIV in-vitro and in-

vivo, demonstrating the ability to traffic to lymphoid tissues and

reduce the viral reservoir (86–89). BCL-2 inhibition has been

demonstrated to improve the efficacy of CAR-Ts in the setting of

malignancy (69), suggesting that combinations in HIV may
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allow for superior clearance, however further investigations are

required to study this combination.
Conclusion

Successful Shock and kill therapy for HIV will ultimately

require a potent and effective combination of latency reversal

and immune function. Evidence thus far suggests that BCL-2 is a

critical determinant of HIV survival and persistence. BCL-2

inhibition allows for the selective elimination of HIV infected

cells, both as a monotherapy, and in combination with host

immune cells, suggesting that targeted BCL-2 inhibition may

lead to the potentiation of shock and kill treatment regimens,

and ultimately HIV cure.
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