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Radiotherapy (RT) is a traditional therapeutic regime that focuses on ionizing

radiation, however, RT maintains largely palliative due to radioresistance.

Factors such as hypoxia, the radiosensitivity of immune cells, and cancer

stem cells (CSCs) all come into play in influencing the significant impact of

radioresistance in the irradiated tumor microenvironment (TME). Due to the

substantial advances in the treatment of malignant tumors, a promising

approach is the genetically modified T cells with chimeric antigen receptors

(CARs) to eliminate solid tumors. Moreover, CAR-T cells targeting CSC-related

markers would eliminate radioresistant solid tumors. But solid tumors that

support an immune deserted TME, are described as immunosuppressive and

typically fail to respond to CAR-T cell therapy. And RT could overcome these

immunosuppressive features; thus, growing evidence supports the

combination of RT with CAR-T cell therapy. In this review, we provide a deep

insight into the radioresistance mechanisms, advances, and barriers of CAR-T

cells in response to solid tumors within TME. Therefore, we focus on how the

combination strategy can be used to eliminate these barriers. Finally, we show

the challenges of this therapeutic partnership.
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1 Introduction

Radiotherapy is the localized cancer treatment of cancer patients through high-

energy radiation. The principle is to induce double-stranded DNA damage, single-strand

breaks, incomplete repairs, and chromosomal aberrations in cancer cells to accomplish

local tumor control and reduce the outcome of disease transmission (1). In addition to

the direct destruction of cancer cells, the effects of RT on the tumor microenvironment

are manifested in terms of responsiveness and immune sensitivity. On the one hand, RT-

induced tumor cell death leads to systemic antitumor effects by releasing pro-

inflammatory cytokines, chemokines, and tumor antigens, which in turn trigger the

potential for adaptive and innate immune responses (2, 3).
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On the other hand, radioresistance, a side effect of RT, is

med ia t ed by mul t ip l e mechan i sms in the tumor

microenvironment (TME) (4). TME has many limitations and

biochemical characteristics, such as acidic extracellular pH,

hypoxia, excessive glutathione, etc. It consists of four

components: (1) an immune component consisting of several

different immune cells, such as T cells, natural killer (NK) cells,

tumor-associated macrophages (TAMs), and dendritic cells

(DCs); (2) vascular component consisting of blood and

lymphatic endothelial cells. (3) the extracellular matrix (ECM)

fraction formed by complex collagen fibers and other

glycoproteins; and (4) the stromal fraction composed of

cancer-associated fibroblasts (CAFs) and mesenchymal stem

cells (MSCs) (5, 6). The sensitivity of various immune cells to

irreversible damage induced by RT, such as cell death and

chromosomal instability, is different. For example, regulatory

T cells (Tregs) are more resistant to radiation than any other T

cell population, while NK cells and B lymphocytes are the most

radiation-sensitive immune cells (7). Secretion of type I

interferons (IFN-1) may cause the upregulation of

programmed death-ligand 1 (PD-L1) in tumor and immune

cells. Upregulation of PD-L1 expression on tumor cells hinders

the anti-tumor function of activated T cells and NK cells. T cells

can also overexpress PDL-1 after radiation and help prevent

tumor cell recognition. Also, activated transforming growth

factor-b (TGF-b) suppresses the radiosensitivity of tumor cells

and enhances immunosuppression by reducing CD8+ T cell

toxicity, promoting Treg transformation, and inhibiting

NK cell proliferation. Concurrent radiation damage can

enhance pro-inflammatory responses after irradiation and

recruit CAFs. Activated CAFs may secrete TGF-b and matrix

metalloproteinases (MMPs), extracellular matrix modulators, to

promote conversion to radioresistant cancer stem cells (CSCs)

(8, 9). Radioresistance is the most crucial cause of radiotherapy

failure (Figure 1). Thus, ultimate tumor control may depend on

the balance of immunostimulatory and immunosuppressive

signals generated within the tumor.

In recent years, Chimeric antigen receptor (CAR)-T cell

therapy has been considered one of the most successful

approaches in tumor immunotherapy, particularly in treating

hematological tumors. The principle is to engineer synthetic

receptor CARs to redirect T cells to recognize and eradicate

tumor cells expressing specific target antigens independent of

the MHC receptor, which causes the activation of powerful T

cells and a more robust anti-tumor response in vivo (10). For

certain types of solid tumors, such as melanoma, CAR-T can

significantly improve survival conditions without interruption

and induce long-term durable remissions, meaning that some

patients with solid tumors can also derive lasting and stable

benefits from CAR-T cell therapy (11). However, the number of

patients with durable responses to solid tumors alone in the

clinic is only a minority. CAR-T cells still face many dilemmas in
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treating solid tumors. Therefore, there is an urgent need to

expand the beneficial range of immunotherapy and identify

appropriate patient choices. Low-dose RT can sensitize

antigen-negative tumor cells to CAR-T cells induced

elimination (12). Combining these two therapeutic modalities,

therefore, holds clinical therapeutic promise. Indeed,

combination therapy has produced exciting results for

radioresistant tumor cells in clinical and preclinical trials.

This paper reviews the mechanisms of tumor radioresistance

in irradiated TME. Here, we also summarize the role of CAR-T

cells in the solid tumor microenvironment and experimental

data on combination therapy, which provide a basis for further

exploration of combination therapies to improve the outcomes

of tumor radioresistance.
2 Mechanisms of radioresistance in
irradiated TME

In irradiated TME, there are dynamic interactions and

crosstalk between these components within TME. Changes in

these TME mediate various immunosuppressive mechanisms or

the development of immune suppressor cells to promote

tumor radioresistance.
2.1 Hypoxia-mediated radioresistance

The majority of solid tumors exhibit hyperoxygenation,

which results in areas of permanent or transient hypoxia being

developed. Cellular adaptation to these hypoxic conditions is

mediated through a family of hypoxia-inducible transcription

factors (HIFs) (13, 14), which can regulate various genes to

promote or maintain glycolytic metabolism (Figure 2A). Aerobic

glycolysis is the most critical metabolic feature in the Warburg

phenotype to promote survival and long-term maintenance for

tumor cells (15). This process, composed of genes involved in

glucose transporter 1 (GLUT1) and HIF-1, results in increased

intracellular glucose and glucose-6-phosphate levels. As glucose-

6-phosphate is the substrate of the pentose phosphate pathway,

it is in charge of the biological production of the antioxidant

NADPH, glutathione, high-speed ATP production, and the

accumulation of lactic acid (16, 17).

Heat shock protein (HSP) serves as a molecular chaperone

rapidly upregulated when exposed to harmful stimuli under

oxidative stress, contributing to the correct folding of proteins,

degradation, and removal of denatured proteins. It is well known

that the heat shock transcription factor 1 (HSF1) can confer

tumor cell radioresistance by upregulating HSP27, HSP70and

HSP90 protein levels, suppressing post-radiation cell apoptosis,

and correlates with poor prognosis in patients (18). HSP27 can
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FIGURE 2

The mechanisms of tumor radioresistance. (A) Tumor hypoxia is thought to be an important factor responsible for the radiation resistance of
solid tumors, as oxygenation is vital for the efficacy of RT. Hypoxia has a fundamental impact on the resistant phenotype of tumors by
upregulating various factors such as HIFs, glucose-regulated protein (GRP), heat shock transcription factor 1(HSF1), heat shock protein (HSP),
which result in the radioresistant hypoxic tumors. (B) Cancer stem cells (CSC) are highly plastic cell groups capable of acquiring different
phenotypes and cellular states, evading treatment, and enhancing their ability to grow tumors potently. After irradiation, tumor stem cell
plasticity is mainly controlled by TME hypoxic conditions and signaling, including nuclear factor-kB (NF-kB), transforming growth factor-b (TGF-
b), Notch, and Wnt. Meanwhile, epithelial-mesenchymal transition (EMT) plays an essential metabolic reprogramming role in this process,
allowing cancer cells to be dedifferentiated into CSCs to reach distant metastatic sites.
FIGURE 1

The role of radiotherapy(RT) on the tumor microenvironment (TME). Concerning cancer cells, RT can promote the generation of reactive
oxygen species (ROS), causing activated oncogenes and inactivated tumor suppressors. This process supports oncogenic metabolism, increases
tumor aggressiveness, and ultimately leads to recurrence and distant metastasis. In addition, RT triggers various changes in TME, such as
hypoxia and immune responses. For intense, TGF-b can influence cancer cells and CAFs, enhancing tumor immune escape and associated
activation of HIF-1 signaling. At the same time, vascular endothelial cells (ECs) are damaged, contributing to hypoxia and promoting the HIF-1
signaling, further stimulating the expression of vascular endothelial growth factor (VEGF) and CXCL12. Although RT activates anti-tumor immune
responses, this signaling is often inhibited by tumor escape mechanisms such as TAM, Treg, and the PD-1/PD-L1 signaling pathway, which is
relatively low radiosensitive compared to other lymphocyte subpopulations. Ultimately, these RT-induced changes in TME may contribute to the
poor therapeutic effect of RT on patients by facilitating exhaustion, angiogenesis, invasion, and radioresistance.
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inhibit apoptosis by blocking the activation of cytochrome c-

induced caspases during different stages. Indirectly inhibiting

cytochrome c release at the pre-mitochondrial level through its

action on a BH3-only member of the Bcl-2 family proteins (Bid),

reactive oxygen species (ROS), or filamentous (F-actin) and at

the post-mitochondrial level through the cytosolic cytochrome c

sequestration (19, 20). HSP70, the decisive negative regulator,

can prevent mitochondrial membrane permeability by blocking

Bax transport at the mitochondrial level. In contrast, at the post-

mitochondrial level, HSP70 accomplishes its task of blocking

apoptosis by interaction with Apaf-1 and AIF or by the

protection from caspase-3 cleavage of essential nuclear

proteins (21).

In addition, cell cycle status also determines tumor

radiosensitivity under hypoxic conditions. Other studies

demonstrated that tumor cells are more resistant to

radiotherapy in the cellular cycle’s late S and G0 phases, while

cells in the G2/M phase are more sensitive (22, 23). Zhu Y et al.

illustrated that if the same level of cell-killing effect is necessary,

the radiation dose of late S-phase cells is about 1.3-2.0 times that

of G1-phase cells (24). Knock-down of HSF1 by small interfering

RNAs transfecting colorectal cancer cells HCT116, the comet

assay results showed that lack of a functional HSF1 was unable to

arrest in the G2-phase of the cycle and reduced the capacity of

double-stranded DNA break repair after exposure to ionizing

radiation (25). Indeed, hypoxia-induced cell cycle arrest is

accompanied by a decreased activity of certain cyclin-

dependent kinase (CDK) complexes leading to inhibition of

cell cycle progression. CDK activity is regulated by CDK-cyclin

inhibitors such as p27Kip1 and p21waf1, and dysregulation of

CDK activity is a common characteristic of numerous cancers

(26). p27Kip1 is reported to function in the cell cycle at the

G1checkpoint when knockdown of HIF-1a expression resulted

in a significant reduction in the level of p27Kip1 as well as showed

a decrease and increase in the proportion of G1- and S-phase

cells, indicating the dependency of p27Kip1expression on HIF-1

(24). Similarly, there is positive interactive feedback of p21waf1

and HIF-1a, which induces glycolysis through upregulating

Glut1 and LDHA expression and increases the radioresistance

of GBM (27). Furthermore, hypoxia-induced radioresistant

prostate cancer cells (LNCaP and C4-2B cell lines) were due to

HIF-1a-mediated expression of b-catenin nuclear translocation,

which resulted in cell cycle alterations, reduced apoptosis, and

improved nonhomologous end joining in DNA break repair

after radiation (28).

Altogether, all this implies that hypoxia plays a critical role

in high radioresistance, which is granted by multiple

mechanisms like HIF-1-induced gene transcription,

reprogramming of energy metabolism, heat stress response,

and cell cycle changes.
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2.2 Generation of radioresistant
CSC-like cells

A primary element of radioresistance is the role of the CSCs

population in a tumor, which explains why tumor cells

metastasize and relapse (29, 30) (Figure 2B). CSCs are a

proportion of cancer cells within solid tumors with self-

renewal and tumor maintenance properties. Increasing

evidence proved that CSCs contribute to radioresistance

through multiple molecular mechanisms, including activation

of survival signaling pathways (TGF-b, Wnt, and PI3K/Akt/

mTOR, etc.) and the epithelial-mesenchymal transition(EMT)

process, which have a crosstalk circuit (31). In breast tumors, Liu

et al. documented that TGF-b1 expression was positively related

to macrophage abundance and responsible for EMT and CSC by

analyzing the TCGA database (32). Accumulating evidence has

demonstrated that RT-mediated EMT Can result in the

generation of CSCs generally radioresistance. Most tumor cells

are eradicated by the induction of apoptosis or mitotic death

after RT. However, a small population of non-stem cancer cells

(namely non-CSCs) can show the radioresistant features and

dedifferentiate and transform them into CSCs through RT-

mediated EMT. Newly generated CSCs from non-CSCs, in

conjunction with intrinsic CSCs, ultimately contribute to

tumor recurrence and metastasis (33, 34). For example,

exposure of non-CSCs to ionizing radiation, isolated from

hepatocellular carcinoma cell lines (HepG2 and Huh7),

demonstrated stem cell-like properties like more sphere

formation and stemness gene expression for radioresistance

(35). Furthermore, several reports to date have demonstrated

that CD133, CD44, CD44+/CD24- and CD34+/CD38- can serve

as specific surface markers for CSCs in different human tumors

(36, 37).

These results strongly indicate that CSCs are a promising

therapeutic target for resistance to RT.
2.3 Radioresistance of immune cells

As a double-edged weapon, RT may activate or inhibit the

TME immune response in various conditions. Inflammatory

signaling occurs after ionizing radiation by activating cell

survival pathways and stimulating the innate immune system

(Figure 3A). These include IL-1 and TNF inflammatory cytokine

signaling and recruitment of immune cells via endothelial cells

expressing intercellular adhesion molecule 1 (ICAM1), vascular

cell adhesion molecule 1 (VCAM1), and E-selectin (4).

Meanwhile, the generated cellular stress and death mediates

immunogenic cell death (ICD) by the generation of damage-
frontiersin.org
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associated molecular patterns (DAMPs) and their corresponding

pattern recognition receptors (PRRs) (38). ICD is thought to be

crucial in triggering a potent antitumor immune response, a

process that requires DAMPs signaling through various PRR

types, such as HSP90 or calretinin surface exposure leading to

CD91-mediated phagocytosis, which is expressed on diverse

innate immune cells; TLR2 and TLR4 activation by HGMB1

release, resulting in DC activation and increased production of

associated inflammatory cytokines; secretion of ATP activates

purinergic receptors P2Y2 and P2X7, which have extensive

immunostimulatory effects among DCs, NK cells, T cells, and

macrophages (39, 40). Eventually, inflammatory signaling is

increased, activating DCs and maturing them into potent

antigen-presenting cells APC.

Even though RT enables the immune system to act against

cancer cells through ICD, it may still be limited through changes

in the percentage of immune cells in the TME due to a relative

increase in radioresistant suppressor cell types such as Treg,

MDSCs, and TAM within the TME (41). It has been reported

that RT-induced inflammatory signaling usually triggers

counter-regulatory immunosuppressive mechanisms

(Figure 3B). The modulation is mainly through the alteration

of multiple cytokines signaling, including tumor necrosis factor

(TNF), interleukin-1b (IL-1b), interleukin-10 (IL-10), and

transforming growth factor beta (TGFb) (4, 42). For example,

T cell activation requires costimulatory signals achieved through
Frontiers in Immunology 05
interacting CD28 expression on T cells with CD80 and CD86

expression on APC. However, Treg can express high levels of

cytotoxic T lymphocyte antigen 4 (CTLA-4), with a greater

affinity for CD80 and CD86 compared to CD28, which

competitively provide ineffective costimulatory signals of T

cells, resulting in Treg-induced immune suppression (43).

In comparison to other T cell populations, Tregs

(CD4+CD25+ T cells) and immunosuppressive MDSCs are

more radioresistant. Shi et al. evaluated the impact of 10, 20,

or 30 Gy local irradiation in cervical cancer patients. They found

that the number of CD8+ T cells has dramatically reduced,

whereas not affecting Tregs. The accumulation of T cells after

ablative radiotherapy and exhaustion of CD8+ T cell infiltration

is an essential mechanism of radioresistance (44). Likewise,

MDSCs have demonstrated the accumulation in the TME and

inhibit CD4+ and CD8+ T cell activation. Studies have shown

that MDSC and TAM can express high levels of arginase-1 (Arg-

1), which reduces the pool of arginine for T-cell activation, and

they also sequester a cysteine that is essential for T-cell

proliferation, thereby restricting cysteine availability and

consequently disrupting the T-cell receptors (TCRs) by

generating ROS (45). Additionally, studies have reported PD-1

expression increases on T cells and PD-L1 on tumor cells after

RT, causing inactivation and depletion of CD8+ T cells,

inhibiting the antitumor immune response and developing

radiotherapy tolerance (46, 47).
FIGURE 3

Different immune effects on the irradiated tumor microenvironment. (A) The generated cellular stress and death mediate immunogenic cell
death (ICD) by the generation of damage-associated molecular patterns (DAMPs) and their corresponding pattern recognition receptors (PRRs).
ICD can trigger a series of antitumor immune responses. This process requires DAMPs signaling through various PRR types, activating DC, NK
cells, and CD8+ T cells and increased production of associated inflammatory cytokines. Eventually, inflammatory signaling is increased, starting
DCs and maturing them into potent antigen-presenting cells APC. (B) RT can produce a variety of chemokines that promote and antagonize
anti-tumor responses, e.g., T cells and M1 macrophages can be recruited via CXL10 and CCL5, respectively, to eliminate tumors. In contrast,
myeloid-derived suppressor cells (MDSC) can have immunosuppressive effects through radiation-induced recruitment of CCL12 expression. In
addition, small doses of radiation delivered during conventional fractionated radiation therapy are thought to contribute to the accumulation
and immunosuppressive effects of immunosuppressive cell types in the TME, such as myeloid-derived suppressor cells (MDSCs) and M2
macrophages to suppress antitumor immunity and PD-1/PD-L1 suppressor signaling to suppress antitumor immunity.
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3 CAR-T cell therapy

Chimeric antigen receptor T cells (CAR-T cells) have

achieved promising outcomes in patients with hematologic

malignancies However, it still has some challenges that need to

be resolved for solid tumors. We detail a series of considerations

for the improvement of the CAR-T cell approach in order to

make CAR-T cell therapy more widely available (Table 1).
3.1 Design of chimeric antigen receptors

CARs are modular synthetic receptors that can confer target

antigen specificity. For structure, it consists of four main

components: (i) the antigen-binding domains are derived from

a single-chain variable fragment (scFv), (ii) the hinge or spacer

region, (iii) the CD3z, CD8a, or CD28 transmembrane domain,

and (iv) one or more intracellular signaling domains (10). First-

generation CARs could initiate a cytotoxic antitumor response

in grafted T cells when T cells are activated. They can eradicate

tumor cells effectively through secreting granzyme and

expressing FasL, a tumor necrosis factor-related apoptosis-

inducing ligand (TRAIL). However, the CAR construct has

become increasingly more specific and sophisticated since our

knowledge of molecular biology and synthetic biology about T

cell activation and TME has improved. The second generation of

CARs only has two costimulatory molecules (CD28, CD137,

CD278, etc.) to activate the entire physiological T cell and

enhance proliferation. The third generation of CARs includes

CD3z and two costimulatory domains. Fourth-generation and

next-generation CAR-T cells, which can improve cytotoxicity

and modulate the immune system, consist of a nuclear factor of

activated T cells (NFAT) domain, a suicide gene, or signaling

domains from proinflammatory cytokines, like Interleukin-7

(IL-7) or IL-18, etc (56).
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3.2 Limitations of CAR-T cell therapy

Although the principle of CAR-T cells is to achieve tumor

lysis through direct interaction between T cells and tumor cell

surface-specific antigens, tumor heterogeneity is challenging for

CAR-T cells (57). In recent years, researchers have attempted to

develop a new generation of CAR-T cells in multiple ways to

overcome a wide range of TME inhibitors. The current

preclinical studies (Table 1) will be expected to provide

information about the efficacy and safety of CAR-T cell

therapy against solid tumors to overcome the barriers of TME.

3.2.1 CAR-T cell trafficking and infiltration
The effectiveness of CAR-T cell therapy in solid tumors is

significantly hampered by poor immune cell infiltration. The

vascular endothelium can be considered a dynamic cellular

organ and a barrier to CAR T-cell entry, which controls the

passage of nutrients, maintains blood flow, and regulates

leukocyte trafficking by controlling the chemokine and

cytokine composition of the TME (58). Thus, chemokines play

a vital role in tumor growth, remodeling, and T-cell trafficking to

tumors in TME. For example, chemokines such as CXCL1 and

CXCL12 are abundantly expressed and secreted by tumor cells

and stromal cells. Also expressed are receptors such as CCR1-4,

CCR9, and CX3CR1, which contribute to the entry of cancer

cells into the vasculature and help themmigrate and escape from

effector T cells (59).

Moreover, previous studies have shown that neuroblastoma

can secrete high levels of CCL2. The result in designing CAR-T

cells to co-express CCR2b (the major isoform of the CCL2

chemokine receptor) showed that T cells homed to CCL2-

expre ss ing neurob la s toma and mal ignant p leura l

mesothelioma xenografts, respectively (60). Similarly,

investigators firstly correlated CAR-T cells co-expressing

CCR2b/CCR4 exhibited tumor total clearance in vivo to their
TABLE 1 Safety strategies for overcoming the suppressive tumor microenvironment by CAR-T cells.

Tumor-associated antigens Overcoming strategy Reference

CD19 CAR-T cells expressing
an oxygen sensitive subdomain of HIF1a

Antonana-Vildosola et al. (5)

CAIX CAR-T cells Targeting hypoxia downstream signaling protein, CAIX Cui et al. (48)

CD19, HER2, AXL CAR-T cells expressing
an oxygen-dependent degradation domain (ODD)

Liao et al. (49)

Nectin4/FAP CAR-T cells targeting cancer-associated fibroblasts Zhou et al. (50)

avb3 integrin
ICAM-1
VCAM-1

CAR-T cells targeting the tumor vasculature Uddin et al. (51)
Vedvyas et al. (52)
Ma et al. (53)

B7-H4
VISTA
TIM4

CAR-T cells targeting tumor associated macrophages and myeloid suppressor cells MacGregor et al. (54)
Date et al. (55)
CD19, B-lymphocyte surface antigen; CAIX, carbonic anhydrase IX; HER2, human epidermal growth factor receptor 2; AXL, AXL receptor tyrosine kinase; Nectin4, human tumor cell
marker PVRL4; FAP, fibroblast activation protein; avb3 integrin, transmembrane cell adhesion receptor; ICAM-1, intercellular adhesion molecule-1; VCAM-1, vascular cellular adhesion
molecule-1; B7-H4, B7 family ligands 4; VISTA, V-domain Ig-containing suppressor of T cell activation; TIM4, T-cell immunoglobulin mucin protein 4.
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higher tumor tissue homing activity (61). Indeed, the production

of extracellular matrix (ECM) from tumor cells and cancer-

associated fibroblasts (CAFs) would restrict the entry of T cells

into the tumor, especially as high collagen density tumors

display infiltrating T cells at lower levels. In this regard, CAR-

T cells designed to express matrix-degrading enzymes, target

CAFs, or disrupt tumor vasculature have demonstrated

promising tumor infiltration of CAR-T cells (62, 63).

3.2.2 T cell inhibitory signals
It is widely known that there are multiple inhibitory signals

in the TME besides abundant immunosuppressive cells. PD-1, a

typical T cell checkpoint, is expressed on activated T cells and,

when bound by PD-1 ligand (PD-L1), inhibits the cytotoxicity of

CAR-T cells and induces non-responsiveness. Thus, CAR-T cells

must inhibit the PD-1/PD-L1 axis (64). Construction of CAR-T

cells blocking the PD-1/PD-L1 pathway by short-hair RNA gene

silencing technology (shRNA) for the treatment of lymphoma

(CD19 antigen-expressing) and prostate (PSCA antigen-

expressing) mice with subcutaneous xenografts showed

remarkably longer survival time and reduced tumor volumes

(65). Similarly, preclinical and clinical studies have shown that

CRISPR/Cas9 gene editing systems are knocking down the PD-1

gene in CAR-T cells or combining immune checkpoint blockade

with CAR-T cells can not only improve the ability of CAR-T

cells to expand and reduce exhaustion but also increase the

proportion of CD8+/CD4+ T cells in the TME (66, 67). In

general, the efficacy of CAR-T cells can be improved by

blocking antibodies, chimeric PD-1 switching molecules, or

dominant-negative receptors. However, PD-1-deficient CAR-T

cells are susceptible to CD8+ T cell exhaustion and lack long-

term persistence (68). Therefore, continued research and clinical

validation are needed in the future to fully understand the value

of PD-1 knockdown or disruption for clinical applications.

3.2.3 Hypoxic solid tumors
Hypoxia, the most prominent feature of TME, reduces the

CD8+ T cells proliferation and anti-tumor function, preventing

the development of anti-tumor immune responses. Recent

studies have shown that a novel strategy of integrating the HIF

structural domain to the intracellular domain of the CAR or

introducing the HRE region on the promoter of the construct

contributes to CAR hydroxylation and degradation in the

presence of oxygen (69). Kosti et al. used tumor hypoxia as a

physical cue for licensing CAR-T cell activation to establish

HypoxiCAR T cells (a dynamic on/off oxygen sensing safety

switch for CAR-T cells), which are safe and effective against solid

tumors (70). Another attractive approach includes targeting

antigens upregulated in hypoxic conditions (48) or restricting

CAR expression to better-oxygenated environments (69).

Contradictorily, others found that hypoxia enhanced the lytic

activity and function of CD8+ T cells through an increase in
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granzyme B (71). In conclusion, the results of these early

preclinical studies are essential for the future development of

novel CAR-T cell therapies for the treatment of solid tumors.

3.2.4 Safety of CAR-T cell
CAR-T cell therapy has achieved remarkable success in

hematologic malignancies. Still, there is a need to improve

safety and efficacy, overcome non-tumor toxicity, and optimize

CAR design to expand the application of CAR-T cells (72, 73).

As previously mentioned, the targeting structural domains of

CAR-T cells are mainly based on single-chain antibodies, and

peptide linkers are required between the heavy and light chain

variable regions (74). After CAR-T cell infusion, the host

immune system can mediate immune responses against such

linkers by forming neutralizing antibodies due to the

immunogenicity of the linkers. Recent studies have shown that

nanobody-based CAR-T cells have significant antitumor effects

(75). Nanosomes belong to the variable region of heavy chain

antibodies (HcAbs) and contain only the variable regions of

heavy chain and CH2 and CH3. Compared to mAb, which

requires six complementarity-determining regions (CDRs) to

bind antigens, nanobodies require only three CDRs with similar

affinity and specificity (76). And the risk of immunogenicity is

lower, making it safer than mAb derived from mice. Nanobodies

also tend to have an advantage over single-chain antibodies in

the context of humanization due to the more straightforward

humanization process of nanobodies (77). In addition, T-cell

failure may be associated with CAR aggregation on the CAR-T

surface triggering activation of effector cells and cytotoxic

signaling cascades. Nanobody-based CAR-T cells tend not to

have the limitations of CAR surface aggregation and target

antigen non-dependent effector cell activation (78).

Furthermore, other structural domains of the CARs can

significantly affect the proliferation of CAR-T cells, the

distribution of cytokines, and the side effects involving the

treatment, including CRS, neurological problems, and On-

Target-Off-Tumor Toxicity (79, 80). How to prevent these

complications effectively and reliably in the future will be one

of the critical factors of CAR-T cell therapy success.
4 Combination of radiotherapy with
CAR-T cell therapy

Radioresistant CSCs after standard radiotherapy are

probably among the significant causes of the recurrence of

metastatic disease. It has been reported that RT combined

with CAR-T cell therapy may be an effective strategy to

prevent tumor recurrence after acquired radioresistance.

Whether radioresistant tumor cells remain sensitive to CAR-T

cells is an important question.
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4.1 Preclinical and clinical data on RT
plus CAR-T cell therapy

Developed as a promising strategy for overcoming the TME

barriers, CAR-T cell therapy regimens likely hold applied value

in irradiated TME. many clinical trials are being carried out

(Table 2). In addition, Zhang et al. showed previously that

fractionated irradiation (FIR) could upregulate immune

checkpoint B7-H3 expression on bulk cells and radioresistant

prostate cancer stem cells (PCSCs) (85). When the FIR and B7-

H3 CAR-T cells were combined, they could target FIR-resistant

PCSCs in vivo, eliminate immune checkpoint function, and

mediate tumor cell lysis. Similarly, the switchable universal

chimeric antigen receptor (UniCAR) system has been reported

to mediate the secretion of relative proinflammatory cytokines

and enhance T cell proliferation when targeting high-level

radioresistant head and neck squamous cell carcinoma

(HNSCC) in vitro (86, 87). Also, it inhibited the radiation-

resistant cancer cells of immunodeficient mice in vivo. In GBM

or other treatment-resistant primary cancers, CAR-T cells

targeting CD133-positive tumor-initiating cells, a marker of

radioresistance in multiple aggressive cancers, demonstrated

superior efficacy (88). It is noteworthy that in radiation-

resistant patients, the combination therapy should have

immunostimulatory effects in addition to direct killing activity.

Previous combination therapy with RT and exosomes derived

from gd-T cells (gd-T-Exos) was shown to kill radiation-resistant

nasopharyngeal carcinoma stem cell-like cells (NPC-CSCs) and

maintain their cytotoxic i ty in immunosuppress ive

microenvironment (89).

Additionally, low-dose radiation-exposed tumors present

cells susceptible to TRAIL, a death-inducing ligand-mediated

by RNA sequencing analysis (90). Through the study of

pancreatic tumor cells in vitro, DeSelm et al. illustrated that
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TRAIL could be produced by CAR-T cells after binding to

antigen-positive tumor cells, and the clearance of antigen-

negative tumor cells has been previously exposed to a low dose

of local or systemic radiation. Whole-body irradiation of

complete lymphatic depletion is suggested to boost survival

and proliferation via upregulation of IL-7 and IL-15 of CAR-T

cells without competing with endogenous lymphocytes in the

mouse model (91). In addition to the blood-brain barrier, the

immunosuppression microenvironment is the main reason for

the radioresistance of glioblastoma (GBM). In other mouse

glioma models, CAR-T cells around the tumor site

accumulated significantly after local subtherapeutic

irradiation (12).

Overall, these studies successfully demonstrated that

radioresistant cancer cells could be eradicated by combining

CAR-T cells in a highly efficient and antigen-specific manner.
4.2 Challenges of CAR-T cells on
radioresistant tumor cells

The focus of the successful implementation of radiotherapy

combined with the CAR-T cell therapeutic approach is to

analyze the effect of CAR-T cells on radioresistant tumor cells.

On the one hand, radioresistance and tumor recurrence are

mainly associated with CSCs and are considered targets for novel

anticancer therapeutic agents (92). Identifying CSC-specific

antigens for CAR-T cell targeting is a big hurdle; (i) target

antigens should be expressed only on the surface of CSCs, not in

their cytoplasm; (ii) target antigens should be expressed only by

cancer cells, and particular CSC antigens should be selected to

prevent targeted, non-tumor toxicity; (iii) selection of CSCs

antigens expressed on common but tumor-specific antigens

expressed on various tumor types, as some CSCs populations
TABLE 2 Clinical studies of RT in combination with CAR-T cells (ClinicalTrials.gov).

Disease Study title Treatment Clinical trials.gov
identifier & phase

Diffuse large B-
cell lymphoma

CAR-T for R/R B-NHL Radiation:20 × 2.0 Gy
Drug: CD19/CD20/CD22
CAR- T

NCT03196830
Phase 1 (81)

Malignant
Gliomas

Combination of Immunization and Radiotherapy for Malignant Gliomas Radiation:3 × 2.0 Gy
Drug: CAR-T or
intracranial
immunoadjuvant

NCT03392545
Phase 1 (82)

Multiple
Myeloma

BCMA Targeted CAR T Cells With or Without Lenalidomide for the Treatment of Multiple
Myeloma

Radiation:5 × 4.0 Gy
Drug: EGFRt/BCMA-
41BBz CAR T cell

NCT03070327
Phase 1 (83)

Multiple
Myeloma

CART-BCMA Cells for Multiple Myeloma Radiation:8 × 3.0 Gy
Drug: BCMA CAR-T cell

NCT02546167
Phase 1 (84)

Multiple
Myeloma

Phase II Study of Salvage Radiation Treatment After B-cell Maturation Antigen Chimeric
Antigen Receptor T-cell Therapy for Relapsed Refractory Multiple Myeloma

Radiation:5 × 2.0 Gy
Drug: BCMA CAR-T cell

NCT05336383
Phase 2
(Recruiting)
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are characterized by a lack of cell surface expression of antigens

(93). For example, leukemic cancer stem cells are characterized

by CD34+CD38- (94).

On the other hand, RT may cause an increase in Treg

infiltration while increasing the enrichment of T cells into the

tumor, and Treg infiltration may grow dose-dependent. Treg

cells are more resistant to radiation than other T cell subsets,

which may also be a potential obstacle to a strategy of combining

RT with CAR-T cells (95). Furthermore, adenosine can be

transformed by tumor cells releasing ATP and the

ectoenzymes CD39 and CD73 after RT, resulting in increased

adenosine expression that can be a barrier to the antitumor

response of effector T cells with their surface A2a adenosine

receptors (A2aRs). CRISPR-Cas9-based gene editing or

engineered CAR-T cells to carry antagonist nanoparticles to

deplete A2aRs in CAR-T cells (96). These results suggested that

blocking adenosine signaling for adenosine-rich tumors

mediated by RT can provoke a more effective T cells response

in combination therapy.
4.3 Challenges of radiation dose
and fractionation

The average tissue volume in routine RT is usually

considerably more significant than the tumor volume itself due

to the absence of dose delivery techniques that restrict regular

tissue exposure in clinical practice. Therefore, applying

fractionated irradiation regimens is the only alternative for

providing high tumor doses (97). After specific doses and

fractionated irradiation, CD8+ T cells and NK cells with
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antitumor effects were eliminated, whereas Tregs and MDSCs

were left. A low dose of 2 Gy of radiation was reported to

stimulate nitric oxide synthase through tumor-associated

macrophages and generate an immunogenic environment. By

contrast, high doses of radiation more significant than 5 to 10 Gy

have been shown to promote severe vascular damage, limit the

infiltration of CD8+ T cells into the tumor, and increase the area

of hypoxia, which results in radioresistance (9). A 6 Gy

irradiation dose can upregulate endothelial nitric oxide

synthase (eNOS) expression and activity, which generates

tumor angiogenesis and results in radioresistant suppressor

cells recruitment, such as TAMs with the M2 phenotype,

MDSC, and Tregs (98). In addition, numerous studies have

proved that hypofractionated radiotherapy can medicate

immune-activated TME and improve the therapeutic effect. At

the same time, 7.5 Gy/fraction is recommended as the optimal

fractionation regimen to induce an anti-tumor response (99).

However, recent studies have shown that hypofractionated

radiotherapy promotes immunosuppressive TME and plays an

essential role in radioresistance and tumor recurrence (100).

Indeed, there is a delicate balance between TME suppression and

activation triggered by hypofractionated irradiation. The

immune response may vary at each stage of the radiotherapy

process depending on the dose, fractionation, tumor type, and

site irradiation.

5 Conclusions and
future perspectives

The successful CAR-T cell therapy for hematological

malignancies signals a new era of immunotherapy in treating
FIGURE 4

Summarized schematic. The advantages and challenges of radiotherapy and CAR-T cells (in red), as well as the benefits and problems to be
solved in combination therapy.
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malignant diseases. Still, this review has pointed out

emphatically that attaining effective clinical outcomes for

radioresistant patients will require detailed consideration of

this combination therapy. For example, according to the

description of Sim et al., in the case of patients receiving

CAR-T cell therapy, adequate local disease control before

CAR-T cell infusion could cause the lowest acute toxicity

(101). In addition to photons, proton irradiation has

emerged as an approach to increase CSC sensitivity from

various tumor cell lines (102). But, the optimal or proper

dose, the time of fractionation and radiation exposure, and

the time of CAR-T cell infusion are still unknown. Notably, a

clinical trial (NCT02546167) showed mild acute RT-related

toxicity in two patients treated with combination therapy

(103). Therefore, more extensive clinical studies must clarify

how RT affects CAR-T’s toxicity and efficacy through

immunological mechanisms. The current widely recognized

mechanism is that as CARs cause activation of MHC-

independent T cells, CAR-T cells can secrete cytokines in

response to RT may lead to an abscopal-like in endogenous

T cells; RT-mediated apoptosis of tumor cells results in

antigens release eventually presented through APCs, which

may stimulate the clonal expansion of CAR-T cells and

endogenous T cells.

Additionally, CAR-T cells are subject to a complex

immunosuppressive microenvironment in radioresistant

patients, which has hampered progress. Most tumor

treatments failed and relapsed due to individual immunity and

comorbidity conditions. Therefore, an integration of next-

generation sequencing technologies provides newer

opportunities to understand the dynamic antigen landscape

and other immune-related factors of tumor cells in the TME.

In terms of RT combination with CAR-T cell therapy, at least for

now, those are lofty goals that are far, far away (Figure 4).
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