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Lung cancer is currently the leading cause of cancer-related deaths worldwide.

Significant improvements in lung cancer therapeutics have relied on a better

understanding of lung cancer immunity and the development of novel

immunotherapies, as best exemplified by the introduction of PD-1/PD-L1-

based therapies. However, this improvement is limited to lung cancer patients

who respond to anti-PD-1 immunotherapy. Further improvements in

immunotherapy may benefit from a better understanding of innate immune

response mechanisms in the lung. Toll-like receptors (TLRs) are a key

component of the innate immune response and mediate the early

recognition of pathogen-associated molecular patterns (PAMPs) and

damage-associated molecular patterns (DAMPs). TLR signaling modulates the

tumor microenvironment from “cold” to “hot” leading to immune sensitization

of tumor cells to treatments and improved patient prognosis. In addition, TLR

signaling activates the adaptive immune response to improve the response to

cancer immunotherapy through the regulation of anti-tumor T cell activity.

This review will highlight recent progress in our understanding of the role of

TLRs in lung cancer immunity and immunotherapy.

KEYWORDS

Toll-like receptors, lung cancer, innate immunity, cancer immunity, immunotherapy,
immune checkpoint inhibitor
Introduction

Toll-like receptors (TLRs) recognize both pathogen-associated molecular patterns

(PAMPs) and endogenous damage-associated molecular patterns (DAMPs). Ample

evidence has demonstrated that TLRs play a critical role in cancer development and

treatment. TLR signaling activation not only triggers innate immune responses but also

regulates adaptive immunity responses. As such, TLRs and TLR signaling serve as targets for

monitoring cancer progression and the development of a new strategy for cancer treatment.
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Lung cancer has been the leading cause of cancer-related deaths

since the 1950s in men and the 1980s in women, surpassing breast

cancer (1). Conventional treatments including surgery,

chemotherapy, and radiation therapy have proven to be

insufficient for combating the steady increase in mortality rate,

especially when patients are diagnosed late, and cancer has invaded

other organs. This has led to increasing interest in

immunotherapies, particularly the use of immune checkpoint

inhibitors like programmed cell death protein (PD-1) and

cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) antibodies

(2). However, patients are often found to relapse with checkpoint

inhibitors or show resistance to antibody therapy entirely, thus the

initial success of immunotherapy is limited to a smaller group of

patients (3). Despite these challenges, the positive impact of

immunotherapies on lung cancer mortality outcomes provides

compelling evidence that targeting immune elements may be a

promising approach, especially as the underlying immunologic

mechanisms continue to be unraveled. This has promoted an

expansion of the field beyond targeting adaptive T cells in current

immunotherapies to include innate immunity components like

TLRs (4). This review will summarize the roles of TLRs in lung

cancer and their current utilization in recent studies, including the

use of TLR agonists alone or in combination with immune

checkpoint inhibitors, for lung cancer treatment.
Toll-like receptor synopsis

The host immune response relies on the actions of both

innate and adaptive immunity, but the importance of innate

immunity was not fully recognized until the discovery of TLRs

approximately 25 years ago (5). The innate immune response

recognizes pathogens upon invasion of the host through

receptors called pattern recognition receptors (PRRs). These

PRRs include Toll-like receptors (TLRs), NOD-like receptors

(NLRs), RIG-I-like receptors (RLRs), and cytosolic sensors for

DNA (6). These receptors recognize different molecular patterns

of pathogens known as pathogen-associated molecular patterns

(PAMPs) and also recognize endogenous danger signals known

as damage-associated molecular patterns (DAMPs) (7). PAMPs

can be expressed by pathogens or invasive microbes and DAMPs

are stress signals released by damaged cells. Amongst PRRs,

TLRs are the first identified and well-studied family of receptors

responsible for the initiation of the immune response through

the activation of macrophages, maturation of dendritic cells

(DCs), and recognition of host vs. non-host antigens that if

unchecked, can result in auto-immune disorders (8). TLRs are

mainly expressed on innate immune cells such as macrophages,

dendritic cells, natural killer cells, and neutrophils; they are also

expressed on T and B lymphocytes, epithelial cells, endothelial

cells, and fibroblasts (9). Based on their cellular localization,

TLRs can be divided into two major categories: 1) those

expressed on the cell surface and mainly involved in the
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recognition of microbial membrane molecular patterns,

including TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10; 2)

those located intracellularly within endosomes and mainly

involved in the recognition of microbial-derived nucleic acids,

including TLR3, TLR7, TLR8, and TLR9 (6).

TLRs are type I integral transmembrane proteins, including

the leucine-rich repeat (LRR) domain, a transmembrane

domain, and the Toll-interleukin receptor (TIR) domain (10).

The LRR motifs of TLRs bind to its recognized PAMPs or

DAMPs resulting in dimerization and recruitment of the TLR

signal transduction TIR domain adaptor proteins (MyD88,

TIRAP/MAL, TRIF, TRAM, and SARM) to activate gene

expression through MyD88-dependent or -independent

pathways (11). In the MyD88 dependent pathway, the MyD88

protein directly interacts with the TLR TIR domain of all TLRs,

except TLR3. The formation of this complex activates the NF-kB
(nuclear factor kappa light chain enhancer of activated B cells) or

AP-1 (activator protein 1) signaling pathway. TLR3 uses the

MyD88 independent pathway, also known as the TRIF-

dependent pathway, while TLR4 is the only receptor capable

of using both pathways. Upon ligand stimulation, either the

TRIF or TRAM molecule is recruited to the TLR TIR domain

leading to delayed NF-kb activation downstream. These signals

are responsible for the induction of several interferon (IFN)

genes (8). Transduction through these pathways is associated

with the recruitment of both pro-inflammatory cytokines and

co-stimulatory molecules to promote inflammatory responses

(Figure 1). Besides their traditional role in innate immunity,

TLRs also serve as a bridge to adaptive immunity. Without TLR

signaling, adaptive immunity is weak and insufficient to support

the survival of the host. TLRs aid in the maturation of DCs,

which in turn allow the host to have optimal antigen

presentation upon pathogen detection. Therefore, the next

section will highlight the different roles of TLRs in lung cancer

immunity and progression and their role in both innate and

adaptive immune alterations.
Toll-like receptors in lung cancer

Lung cancer overview

Lung cancer is currently the world’s leading cause of cancer-

related deaths (12). These deaths are largely due to

asymptomatic progression and escape of immune surveillance

until the disease has advanced to a metastatic stage (12, 13).

Although lung cancer can affect different age populations, the

risk of developing this disease increases after age 50 (12). There

are two types of lung cancer: small cell lung cancer (SCLC) and

non-small cell lung cancer (NSCLC). SCLC is less common as it

originates from the neuroendocrine cells of the lung. NSCLC is

the most common consisting of three subtypes: squamous cell

carcinoma, large cell carcinoma, and adenocarcinoma – the
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latter being the most common type. For tumor cells to survive in

the host, they must acquire a vascular supply (13). To achieve

this, tumor cells must communicate with the surrounding

microenvironment to initiate angiogenesis following the

release of angiogenic growth factors such as vascular

endothelial growth factor (VEGF) and/or through cooperation

with the tumor microenvironment (TME) (13). Within the

TME, innate immune macrophages are the most common cell

type. The role of macrophages depends on their phenotype, M1

or M2, which can either act through inflammatory responses

against tumor invasion, or promote tumor progression,

respectively (14). Tumor cell initiation, migration, and

invasion are associated with the progressive acquisition of

genetic mutations. The resulting mutant proteins can be

recognized by antigen-presenting cells (APCs) such as

macrophages and DCs, as well as lymphocytes that attack the

tumor cells (15). However, tumor cells have advanced their

ability to modulate the innate immune system by forcing

macrophages to differentiate into pro-tumor M2 types or by

altering the antigens presented by DCs to afford tumor cell

protection. Upon successful clonal expansion of tumor cells, and
Frontiers in Immunology 03
with provided access to nutrients and immune cell protection,

tumor cells can expand uncontrollably and migrate to distant

sites (13). Thus, the crosstalk between tumors and immune cells

is critical for tumor development. As such, TLRs may serve as a

hub for crosstalk during cancer progression.
The variable roles of TLRs in lung cancer
cells and the TME

Vast amounts of evidence have demonstrated that TLRs play

an important role in lung cancer development and treatment.

However, opposing roles for either pro- or anti-tumor

progression have been described for different TLRs (Figure 1).

TLRs are expressed on both resident lung epithelial cells as well

as myeloid, lymphoid, and immune infiltrating cells (16). The

ability for TLRs to be activated in both lung cancer epithelial

cells and immune cells may contribute to oppositional response

profiles (16). Activation of lung epithelial TLRs promotes

chemokine production and VEGFs, while activation of innate

immune TLRs enhances adaptive antigen processing and T-cell
FIGURE 1

The roles of TLRs in lung cancer. Left panel: Human TLR1 to TLR9 recognize their ligands in pathogens (PAMPs) to activate MyD88-dependent
(for all TLRs except TLR3) and TRIF-dependent (only for TLR3 and TLR4) pathways to induce innate immune responses in lung cancer. The
activation of TLRs can show both pro- and anti-tumor activities depending on the setting. Right panel: Human TLR2 to TLR4 recognize
endogenous ligands (DAMPs) in lung cancer, but these recognitions appear to induce only pro-cancer activity (Table 1). This figure was
generated using BioRender.
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activation (17). The balance between parenchymal and immune

cell regulation defines the TME, ultimately dictating the

establishment and progression or regression of tumor cells (18).

Lung DCs can be divided into either conventional or

plasmacytoid DCs (pDCs) (19). DCs have an essential TLR-

dependent response that bridges the innate and adaptive immune

system during the progression of lung carcinomas. TLR2 and TLR4

exert Th1- or Th2-like proliferative immune responses in lung-

derived DCs, which normally have low activation in the absence of

TLRs (20). Lung cancer is considered to have a Th2-like (pro-

tumor) microenvironment dominated by immature DCs. pDCs

highly express TLR7/8 and TLR9 (21). TLRs that are highly

expressed in lung carcinoma cells are presented in Table 1.

Under normal conditions, macrophages are seen in high

numbers within the lung TME. TLR2, TLR3, TLR4, and TLR6

are expressed at higher levels than TLR7 and TLR9 in lung

macrophages (41). Upon ligand stimulation, TLRs can induce

both M1 and M2 phenotypes (42). It has been shown that TLR2

and TLR4 activation increases tumor progression by tumor-

associated macrophages perhaps due to higher expression of

these innate cells (22, 41). It should be noted, however, that

TLR9 activation with CpG-ODN type B in a lung tumor mouse

model has been associated with a high influx of macrophages to

the lung (19).
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Natural killer (NK) cells are important innate immune cell

effectors used against tumor cells. They are activated by DCs, and

their cytotoxicity is induced through the MyD88-independent

pathway. Mast cells are another innate immune cell that

abundantly surrounds solid tumors and are known to be pro-

tumor by enhancing tumor angiogenesis (32). Innate myeloid-

derived suppressor cells (MDSCs) negatively regulate the immune

system and are important components of the TME (23). Recent

studies have shown that TLR signaling can regulate the

differentiation and function of MDSCs [27, 28]. The activation

of TLR2 signaling in MDSCs induces tumor regression. TLR2 and

TLR 7/8 are highly expressed in monocytic-MDSCs (m-MDSCs)

making them an important aid for tumor immune evasion (43,

44). Furthermore, agonists targeting TLR 1/2 cause m-MDSCs to

mature into M2 immunosuppressive phenotypes while agonists

targeting TLR 7/8 cause m-MDSCs to differentiate into M1 (45).

Cytotoxic T lymphocytes are the major adaptive cellular

effectors against tumor regression. Tumor regression is

dependent on the MyD88-dependent signaling pathway

involved in the expression of MHC-I. Humoral immunity

encompasses the adaptive immune response that occurs

through B lymphocyte antibody production. Normally the B

cell numbers in the lung are considerably low, but significantly

increased in lung cancer (46). TLR7 and TLR9 are highly
TABLE 1 Roles of TLRs in lung cancer.

TLR Pathway Main Cell Types
Involved

Pro-tumorigenic Activity References

TLR2 Lewis lung carcinoma
MDSCs

TLR2/6 promote tumor growth and metastasis (22)

M1 macrophages TLR1/2 promote M1 macrophages (23)

TLR3 Tumoral exosomes
Lung epithelial

Sensing tumoral RNA to promote metastasis (24, 25)

TLR4 Human lung cancer Upregulated in lung carcinomas, induces immunosuppressive cytokines and resistance to
apoptosis

(26)

NSCLC Upregulates PD-L1 expression (27)

TLR7 NSCLC Promotes tumor progression and chemotherapy resistance (28)

TLR8 Primary lung tumors Upregulated in lung carcinoma (29)

TLR9 Human lung tissue Upregulated in lung carcinoma (30)

Promotes metastasis and progression (31)

TLR Pathway Main Cell Types
Involved

Anti-tumorigenic Activity References

TLR2 Mast cells TLR2 activation on mast cells reversed pro-tumor role (32)

TLR3 NSCLC Induces apoptosis
Reactivate local innate responses

(33)

TLR4 NSCLC
DCs

Inhibits NSCLC by regulation (34, 35)

TLR5 NSCLC Upregulates anti-tumor effect (36)

TLR7/8 DC and NK Enhances DC and NK cell activation (37, 38)

TLR7 NSCLC Inhibits angiogenesis (39)

TLR9 PBMCs
Human primary

TLR9 activation by CpG-ODN induces an anti-tumor activity (40)
fr
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expressed in B cells (21). A mouse model of lung carcinoma

showed that TLR9 activation in B cells promotes tumor

regression (47). TLR9 stimulation with CpG-ODN increased

lung metastasis in the absence of IL-17, a proinflammatory

cytokine (48).
TLR2 in lung cancer

TLR2 is known to heterodimerize with its co-receptors:

TLR1 or TLR6. These combinations allow for increased

diversity in ligand recognition (49). It has been demonstrated

that the TLR2:TLR6 complex activates immune responses, while

the TLR2:TLR1 complex suppresses T cell immunity (23). The

TLR2:TLR6 complex has been linked with enhanced lung cancer

metastasis (23). For distant-site metastasis to occur, certain

intrinsic alterations coupled with the extrinsic release of TME

factors must occur. In a metastasis model, TLR2 and MyD88

knockouts in bone-marrow-derived macrophages (BMDM)

significantly decreased IL-6 expression, a BMDM activation

marker relative to other TLRs and adaptor protein TRIF (22).

Furthermore, an in vivo murine model showed a significant

reduction in macrophage infiltration and inflammatory cytokine

expression in TLR2 knockout mice compared to wild type (WT),

revealing the necessity of TLR2 recognition of a cancer cell

ligand for promotion of metastatic growth (22). Alternatively, in

mast cells TLR2 agonists altered the TME by producing

cytokines and chemokines and by recruiting leukocytes (50,

51). This unique and selective TLR2 activation in mast cells

restored the anti-tumor potential hence inhibiting lung

carcinoma growth (32). As such, the TLR1:TLR2 complex has

favorably been targeted as a promising biomarker because it

inhibits lung tumor growth and decreases m-MDSCs (23). Both

TLR1 and TLR2 have good prognoses for lung cancer and higher

expression of these proteins may emerge as useful biomarkers in

predicting the outcome or progression of lung cancer (43).
TLR3 in lung cancer

Like TLR2, TLR3 also has conflicting roles in lung cancer as

either pro- or anti-tumor receptors (52). In lung epithelial cells,

TLR3 senses tumoral exosomal RNA as a critical step for

initiation of neutrophil recruitment and lung metastatic niche

formation (24). TLR3 has also been shown to recognize double-

stranded RNA from lung tumor cells that activate the

endothelial SLIT2 gene to drive metastatic growth forward

(25). The direct activation of TLR3 by primary tumoral

exosomal RNA induces chemokine secretion in lung epithelial

cells (Table 1), and a direct correlation between reduced lung

metastasis and TLR3 deficiency in mice has been established
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(24). Furthermore, this study highlighted TLR3s role in utilizing

neutrophil recruitment to promote the lung pre-metastatic niche

through activation by tumor-derived exosomal RNAs. On the

flip side, in NSCLC, TLR3 has been observed in vitro to induce

apoptosis of tumor cells and to activate lung DCs to elicit

positive immune responses (33). The prognostic value of TLR3

is also opposing and dependent upon its expression on tumor

versus immune cells. TLR3 expression on tumor cells elicited

favorable NSCLC outcomes during early stages, whereas TLR3

expression on immune cells, primarily macrophages, elicited

poor prognosis in patients’ survival (53). Thus, further research

is needed to elucidate the role of TLR3 in tumor and immune

cells and its dominant role in TME.
TLR4 in lung cancer

TLR4 is one of the most widely studied receptors within the

TLR family, with several synthetic agonists already approved as

adjuvants in vaccines against immunogenic targets (54). TLR4 is

seen at high levels of lung cancer tissue compared to non-lung

cancer tissues (30). TLR4 is specifically shown to help lung

cancer cells escape the immune system through the release of

immunosuppressive cytokines like transforming growth factor

beta (TGF-b), VEGF, and IL-8, while also increasing resistance

to proapoptotic factors like tumor necrosis factor-alpha (TNF-

a) (26). Interestingly, activation of TLR4 by lipopolysaccharide

(LPS) upregulates programmed death ligand 1 (PD-L1), which is

favorable for tumor cells in driving T cell exhaustion, thus

contributing to immune escape (55). TLR4 has also been

shown to positively correlate with malignancy (30). The

association between TLR2 and TLR4 has been shown to

correspond with a higher risk of several cancer types (56).

TLR2 and TLR4 in a double knockout metastatic lung cancer

model have been shown to influence the ability of the tumor to

proliferate and grow, as well as to decrease the number of

neutrophils associated with the tumor (57). Alternatively,

TLR4 can exert potential anti-tumor activity in NSCLC, with

calreticulin (CALR) serving as an antigen characteristically

associated with cell death from immune cells (34)

Additionally, activation of the CALR-TLR4-MyD88 signaling

pathway promotes migration and maturation of DCs, a key step

in tumor regression (34).
TLR5 in lung cancer

The effects of TLR5 in lung cancer have mostly been

associated with anti-tumor activity, with some indications of

pro-tumor effects reported in other cancer types (58). Prognostic

evaluations of NSCLC patients suggest a positive association
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between high TLR5 expression and survival (36). Additionally,

TLR5 signaling increases upon flagellin treatment of NSCLC

cells and can inhibit proliferation, migration, and invasion,

establishing a correlation between TLR5 recognizing flagella of

incoming bacteria into the lung (36). In A549 lung cancer cells,

inhibition of a flagellin-derived agonist delayed tumor growth

through the TLR5 and MyD88-dependent pathway and even

suppressed cell viability (59). Flagellin treatment leading to

TLR5 activation has also shown promising roles in

macrophage recruitment in damaged or infected lung tissue

and is proposed to afford protection against the host’s immune

infection response (60).
TLR7 and TLR8 in lung cancer

TLR7 and TLR8 have similar structures and can both

recognize viral single-stranded RNA. Differences between them

reside in their binding domains which exhibit unique

specificities (39, 61). TLR7 is expressed by pDCs and found to

be present in both B cells and myeloid cells. Conversely, TLR8 is

absent in pDCs and B cells but highly expressed in myeloid cells

(62). TLR7/8 may be regarded as a more advanced target

pathway using synthetic agonists like resiquimod (R848).

Specifically, R848 optimizes the host innate and adaptive

immunity by recruiting and increasing DCs, NKs, and T cells,

while reducing TME regulatory T cells (37, 63). In combination,

R848 and nanoemulsion (NE) have shown significant anti-

tumor effects in lung cancer models through tumoral T cell

activation and lessening of T cell exhaustion (64). Alone, TLR7

can resolve inflammation and inhibit angiogenesis and survival

in NSCLC (39). TLR7 is highly expressed in primary NSCLC

tumor cells and affords resistance to chemotherapeutic agents

(63, 65). Both TLR7 and TLR8 stimulation activate the NF-kB
pathway, thought to improve cell survival, inflammation, and

chemoresistance in primary lung cancer cells (28, 65). While the

anti-tumor roles of these TLRs can be advantageous in drug and

immunotherapy development, their utility may be compromised

by their lesser understood pro-tumorigenic actions.
TLR9 in lung cancer

TLR9 is highly expressed at the mRNA and protein levels in

lung cancer (30). TLR9 can promote metastasis, with evidence

that the agonist CpG ODN promotes and enhances tumor

progression and proliferation (31, 66). NSCLC patients

without metastasis have lower mitochondrial DNA (mtDNA)

and lower TLR9 expression compared to those with metastasis;

therefore, TLR9 and mtDNA can serve as potential biomarkers

for lung cancer progression and metastasis (67). In contrast,
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clinical developments are underway utilizing TLR9 agonists, like

CpG-A ODN and CpG-B ODN to activate pDCs and B cells,

respectively, for the treatment of lung cancer (68, 69). The three

CpG motif classes each induce different interferon-alpha levels

that are utilized for stimulating different immune cell

components like pDC maturation and NK cell activation (68).

Furthermore, TLR9 agonists have shown some utility in

combating checkpoint inhibitor blockades like PD-1 by

priming T-cell responses against lung tumors (70).
Toll-like receptors and lung
cancer immunity

A trend in lung cancer treatments

Targeted molecular therapies are often used in lung cancer

patients who do not qualify for platinum-based doublet

therapies or whose risk for treatment-associated toxicity is

unacceptably high (71, 72). This has resulted in a new trend in

lung cancer treatment that is based on immunotherapy. As

noted earlier, current lung cancer immunotherapies continue

to face challenges due to limited effectiveness and resistance.
Current lung cancer immunotherapies

Two hallmarks of lung cancer diagnosis and treatment

include the use of genomic technologies to profile tumors and

the ability to identify unique predictive molecular targets that

together can identify significant differences amongst tumors and

their TME (73). Immune evasion by tumor cells is largely

targeted in current treatments, and immunosuppressive factors

like PD-L1/2 continue to be exploited (73). Immunomodulatory

therapies readily focus on the interactions between PD-L1 on

tumor cells and its receptor PD-1 on T cells because the binding

of PD-1 to the PD-L1 breaks the activation of T cell anti-tumor

function. Several immune checkpoint inhibitors such as

nivolumab and pembrolizumab (two PD-1 blocking

antibodies) have been approved by the FDA for use in lung

cancer treatment, but only a small portion of lung cancer

patients responds to these immune checkpoint inhibitors (38,

74). Some patients respond well at the beginning of treatment

but fail to respond after 2-4 weeks due to T cell exhaustion. Some

anti-PD-L1 antibodies like MPDL3280A are being used to

prevent T cell exhaustion from occurring (38). However, the

efficacy of these current immunotherapies needs to be improved.

TLRs play important roles in cancer immunity based on their

ability to induce DC maturation, macrophage phenotypic

modulation, enhancement of the B cell response, activation of
frontiersin.org
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NK cells, increased effector T cell activity, and promotion of

suppressive regulatory T cell functions (75). Their anti-tumor

properties have led to the consideration of TLR agonists for use in

cancer immunotherapy (Table 2). In the 1800’s, the TLR4 ligand

LPS was the first reported agonist used in an attempt to reduce

tumor growth, yet today, we know that bacterial pathogens can

promote lung cancer growth and metastasis (87). However, the

use of TLR agonists in lung cancer remains controversial due to

the poorly understood pro-tumorigenic properties of various

TLRs. The underlying mechanisms responsible for the variable

response need to be further investigated. Recently, the use of a

TLR9 class A CpG agonist, Vidutolimod, was found to be effective

in patients with resistance to PD-1 blockade (88). Furthermore,

different types of CpG ODN like DV281 (Class C) and TLR7/8

agonists are being used in combination with immune checkpoint

inhibitors like an anti-PD-1 antibody to induce immune cytokine

and chemokine responses during lung cancer immunotherapy

(Table 3) (40).
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Perspectives

Although research on the role of TLRs in cancer has been a

hot-research area for many years, important questions remain to

be addressed.
Are infection-associated cancers
underestimated?

It is well known that approximately 10-20% of cancer is

associated with bacterial infections. In some cancers, specific

infections are the main cause of diseases, such as HBV (Hepatitis

B) for liver cancer and HPV (Human Papillomavirus) for

cervical cancer. It is not surprising that TLRs recognize these

viruses and play a crucial role in pathogen-associated

oncogenesis. A recent study reported that bacteria-associated

cancers are much higher than 20%, and that bacterial footprints
TABLE 3 Combination of TLR agonists with checkpoint inhibitors for lung cancer treatment.

TLRs TLR agonists Treatment Models/clinic trials References

TLR7/8 R848 R848 + anti-PD1 Ab, orthotopic models (64)

TLR9 DV281
(ODN-C)

Inhaled aerosolized DV281 with anti-PD1 antibody in mice and primates (40)

TLR9 Vidutolimod
(ODN-A)

Treat patients with resistance to PD-1 blockade (clinic Phase Ib trial) (88)
fr
TABLE 2 Use of TLR agonists for lung cancer treatment.

TLRs TLR Agonists Experimental Model/Clinical Trials References

TLR2 Pam2CSK4 Mouse (76)

TLR2 CADI-05 Combined with chemotherapy in trial patients (77)

TLR2/4 Polysaccharide Lewis Lung Cancer (LLC)-bearing C57/BL6J mice and human NSCLC H460-bearing
nude mice.

(78)

TLR3 Poly I:C LLC/2 tumor-bearing mice (79)

TLR4 Cucurbitacin B (CuB), Mouse model
(Cub, extracted from muskmelon pedicel, is a natural bioactive product)

(35)

TLR4 E. coli C57BL/6 mice, promote metastasis (80)

TLR4 L6H21 (an MD2 inhibitor) Prevents lung metastasis in CT26 mouse model (81)

TLR5 CBLB502 Nude mice (enhances radiosensitivity) (59)

TLR7 TQ-A3334 Phase II Trial (82)

TLR7 BNT411 Phase II Trial (83)

TLR7/8 R848 C57BL/6 mice (37)

TLR7/8 BDB001 Phase II trial in patients with PD-(L)1 refractory solid tumors, including NSCLC (84)

TLR9 MGN1703 Phase II Trial (27)

TLR9 IMO-2055 Combined with chemotherapy in Phase II trial (85)

TLR9 PF-3512676 Combined with chemotherapy in Phase III trial (*last updated in 2015, but no study
results are posted on clinicaltrials.gov)

(86)
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like LPS can be detected in about 60-70% of some cancers (89).

Thus, the availability of better-designed antibodies directed at

bacterial-associated patterns along with improved detection

methods, may make it possible to identify cancer pathogens. If

we identify a pathogen as the main cause of a specific type of

cancer, better strategies to prevent cancer initiation may be

possible along with improved modalities for cancer treatment.

Additionally, some viral infections such as HPV and HIV

infections might also be associated with lung cancer. As

mentioned above, HPV is a well-known causative agent for

cervical cancer, but HPV can also infect other organs. Previously

HPV was found to infect the esophagus and induce esophageal

cancer (90). Alternatively, the validity of reports also indicates an

association between HPV and lung cancer (91). The exact

mechanism needs to be further investigated, but one in vitro

study showed that the TLR3 signaling pathway might play a role

in HPV-inducing lung cancer (92). Additionally, a different

intriguing study shows that HIV-infected cells can release

exosomes with special RNA recognized by TLR3 for

promoting cancer cell proliferation (93). Many reports show

that HIV infection is associated with lung cancer (94–96), but

most people assume that this link is indirect (97, 98). However, it

is worth determining the exact mechanism of how HIV-infected

patients dramatically increase the risk of developing lung cancer.

The lung is highly susceptible to pathogen exposure; therefore,

the connection between bacterial and viral infections as well as

mycotic infections and lung cancers should continue to be

carefully investigated.
Are there novel endogenous ligands of
TLRs in cancers yet to be identified?

TLRs recognize not only pathogens but also endogenous

danger molecules, particularly those derived from cancer cells.

Recent structural analyses have identified novel binding amongst

TLRs-PAMPs (99, 100) However, to date, the endogenous ligands

for most TLRs have not been identified and TLRs-DAMPs

binding modules remain poorly understood. The identification

of endogenous TLRs ligands in cancer is incredibly important not

only for a better understanding of tumor development, but also

for the development of novel anti-tumor drugs.
Can TLR activation regulate PD-1/PD-L1
and CTLA-4?

We posit that TLRs are ideal targets for therapeutic

development. Some TLRs can induce anti-tumor activity, while

others can regulate adaptive immunity. The resistance of cancer

patients to immunotherapy has been associated with an
Frontiers in Immunology 08
immunologically “cold” TME where immune-killing activity is

repressed (101). The activation of select TLRs can modulate the

TME from an immunologically cold to an immune hot

environment that is poised to improve the body’s own ability to

fight the disease. Indeed, several clinical trials have used a

combination treatment of TLR agonists and checkpoint

inhibitors with promising results (64, 88). Additionally,

combination therapies involving TLR7 and TLR9 agonists with

PD-1 blockades have increased the proportion of M1 to M2

tumor-associated macrophages and induced infiltration of tumor-

specific IFN-g-producing CD8+ T cells to elicit tumor-specific

adaptive immune responses and hence tumor suppression (102).

However, the mechanism of how TLRs regulate the expression of

PD-1, PD-L1, and CTLA-4 in various cell types remains to be

investigated (102). Interestingly, a recent study has shown ligands

of TLR1/2, TLR7, and TLR9 capable of downregulating PD-1

expression on CD8+ T cells through the release of IL12 by APCs

(103). TLR7 agonists in combination with checkpoint inhibitors

targeting PD-1 and CTLA-4 have been shown to be safe and

effective in immunotherapy-resistant tumor models to promote

more long-term immune responses (104). However, combination

therapy has opposingly been reported to inhibit antitumor activity

upon PD-1 blockade diminishing CpG-ODNs antitumor activity

on macrophages to promote tumor growth (105). Additional

mechanistic insights will lead to the elucidation of more

effective regimens to target both innate and adaptive immunity

against cancer and unravel the molecular determinants of the TLR

response in tumor cells.
Conclusions

TLRs are now being targeted for drug development and

immunotherapy discovery because of promising innate immune

activation. The usefulness of this approach is limited at this time due

to conflicting pro- and anti-tumor activities of TLR receptors. The

opposing effects of TLRs appear to be cell type- and

microenvironment-specific, but the molecular determinants of

these biological responses are not yet understood. Encouraging

results from clinical studies using TLRs alone or in combination

with other checkpoint inhibitors are beginning to appear. Therefore,

there is a need to expand this field of research by exploring TLRs

and their corresponding agonists and antagonists as promising tools

in immunotherapy discovery and drug development.
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