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High-risk genotypes for type 1
diabetes are associated with the
imbalance of gut microbiome
and serum metabolites

Tong Yue1†, Huiling Tan1†, Chaofan Wang2†, Ziyu Liu2,
Daizhi Yang2, Yu Ding1, Wen Xu2, Jinhua Yan2,
Xueying Zheng1, Jianping Weng1* and Sihui Luo1*

1Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of
Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China,
2Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen
University, Guangzhou, Guangdong, China
Background: The profile of gut microbiota, serummetabolites, and lipids of type

1 diabetes (T1D) patientswith different human leukocyte antigen (HLA) genotypes

remains unknown. We aimed to explore gut microbiota, serummetabolites, and

lipids signatures in individuals with T1D typed by HLA genotypes.

Methods: We did a cross-sectional study that included 73 T1D adult patients.

Patients were categorized into two groups according to the HLA haplotypes

they carried: those with any two of three susceptibility haplotypes (DR3, DR4,

DR9) and without any of the protective haplotypes (DR8, DR11, DR12, DR15,

DR16) were defined as high-risk HLA genotypes group (HR, n=30); those with

just one or without susceptibility haplotypes as the non-high-risk HLA

genotypes group (NHR, n=43). We characterized the gut microbiome profile

with 16S rRNA gene amplicon sequencing and analyzed serum metabolites

with liquid chromatography-mass spectrometry.

Results: Study individuals were 32.5 (8.18) years old, and 60.3% were female.

Compared to NHR, the gut microbiota of HR patients were characterized by

elevated abundances of Prevotella copri and lowered abundances of

Parabacteroides distasonis. Differential serum metabolites (hypoxanthine, inosine,

and guanine) which increased in HR were involved in purine metabolism. Different

lipids, phosphatidylcholines andphosphatidylethanolamines, decreased inHRgroup.

Notably, Parabacteroides distasonis was negatively associated (p ≤ 0.01) with

hypoxanthine involved in purine metabolic pathways.

Conclusions: The present findings enabled a better understanding of the

changes in gut microbiome and serum metabolome in T1D patients with
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1033393/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1033393/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1033393/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1033393/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1033393&domain=pdf&date_stamp=2022-12-13
mailto:wengjp@ustc.edu.cn
mailto:luosihui@ustc.edu.cn
https://doi.org/10.3389/fimmu.2022.1033393
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1033393
https://www.frontiersin.org/journals/immunology


Yue et al. 10.3389/fimmu.2022.1033393

Frontiers in Immunology
HLA risk genotypes. Alterations of the gut microbiota and serum metabolites

may provide some information for distinguishing T1D patients with different

HLA risk genotypes.
KEYWORDS

type 1 diabetes mellitus, human leukocyte antigen, gut microbiota, serum
metabolites, serum lipids
Introduction

Type 1 diabetes mellitus (T1D) is a disease driven by genetic

and environmental factors (1). Human leukocyte antigen (HLA)

allele combinations are the most significant genetic risk factors

for the development of T1D (2). The HLA epitopes have been

shown to be protective (like HLA-DR14, DR15) or detrimental

(like HLA-DR3, DR4, DR9) with susceptibility for T1D (1, 3).

Moreover, HLA-DR3 (4), DR4 (5), and DR9 (6) are also

observed to be associated with cardiometabolic risk, an

important cause of death for patients with T1D.

The gut microbiome is a vital environmental factor of T1D

that has been increasingly studied in recent years (7). The

imbalance of the gut microbiota may modify intestinal

immunity as well as alter intestinal permeability (8), which

mediate the consequent imbalance of metabolites (9), islet

autoimmunity (10, 11), and the development of T1D (12).

Serum metabolites and lipids are also environmental factors

involved in T1D pathogenesis (1). Multiple serum metabolites

and lipid molecules have been found to vary between patients

with T1D and healthy populations (13). Also, a recent study

suggested that gut-related metabolites are associated with

autoimmunity and pathogenesis of latent autoimmune

diabetes in adults, suggesting that the interaction between gut

microbiota and diabetes could be mediated by certain

metabolites (14). Furthermore, the gut microbiota and serum

metabolites of T1D patients are also associated with the

progression of microvascular (15, 16) and macrovascular

complications (16, 17).

Interestingly, HLA can alter gut microbiota (18, 19). Animal

and human studies confirmed that HLA-DR can influence the

development of autoimmune diseases by shaping the

microbiome (20). HLA-DR3 and DR4 are common HLA risk

haplotypes for autoimmune diseases, which can change the

diversity of gut microbiome in the development of multiple

sclerosis (21), autoimmune hepatitis (22), and rheumatoid

arthritis (23). However, studies about the impact of HLA on

the gut microbiome in T1D animal models and patients are

limited. In one study, specific major histocompatibility complex

(MHC) alleles prevent T1D in NOD mice by shaping intestinal
02
microbes (24). However, only two studies in humans reported

that the HLA risk for developing T1D is associated with the gut

microbiome changes (12, 25). Also, to date, the effect of T1D

related-HLA on serum metabolites and lipids has not been

reported in previous studies or investigated in relation to gut

microbiota. Therefore, it remains poorly understood how the

HLA, gut microbiome, serum metabolites, and lipids interact

within the host so as to result in the development of or

protection from T1D.

This study used an integrative multi-omics analysis to

explore the intestine microbiome and serum metabolites

profile in T1D patients with different HLA genotypes. We

further discussed whether HLA-associated perturbation of the

microbiome and metabolite profile might influence the T1D

development and cardiovascular risk in T1D patients.
Results

Clinical characteristics of the
T1D patients

In this cross-sectional study, we included a total of 73

patients with T1D. The recruitment details were available in

the methods sections. We categorized these patients into two

groups according to the HLA haplotypes they carried: those with

any two of three susceptibility haplotypes (DR3, DR4, DR9) and

without any of the protective haplotypes (DR8, DR11, DR12,

DR15, DR16) were defined as high-risk HLA genotypes group

(HR, n=30, 70.0% female); those with just one or without

susceptibility haplotypes as the non-high-risk HLA genotypes

group (NHR, n=43, 53.5% female). The average age of the

patients in the HR group and the NHR group was 31.7 (6.76)

years and 33.2 (9.07) years, respectively. No significant

differences in most characteristics such as age and sex were

observed between the HR and the NHR groups. Moreover, the

prevalence of glutamic acid decarboxylase autoantibody

(GADA) positivity was higher in the HR group (p-value:

0.025). More clinical characteristics information is shown

in Table 1.
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Microbiome community profiling
of HR and NHR

The overview of the relative abundances at the family levels

is displayed in Figure 1A. Other taxonomic levels results are

shown in the Supplementary Materials Supplementary Figures

1A–C, E, F. The b-diversity plots are demonstrated in Figure 1B

(Permutational multivariate analysis of variance test, F= 1.8078,

R2 = 0.02483, p<0.066). For the a-diversity analysis, the Chao1
index (T-test, p= 0.51802) and the Shannon index (T-test, p=

0.51787) showed no statistical differences between the NHR and

HR groups (Figures 1C, D). Results of the ACE index (T-test, p=

0.99438), Simpson index (T-test, p= 0.30753) and Fisher index

(T-test, p= 0.50573) are shown in the supplementary materials

Supplementary Figure 1D. From the pattern, the microbiota

profiles between HR and NHR groups appeared to be different,

though the differences were not statistically significant.

We further investigated the differential microbiota

composition between the two groups by the linear

discriminant analysis effect size analysis (LEfSe). The threshold

of the logarithmic LDA score for discriminative features was 2.

The histogram of LDA value distribution and the cladogram of

different taxa is demonstrated in Figures 2A, B. Prevotella copri
Frontiers in Immunology 03
(FDA=4.56519; p=0.0281) and Parabacteroides distasonis

(FDA=3.24702; p=0.04845) were of the most significantly

difference in HR and NHR group, respectively. The different

relative abundance of Parabacteroides distasonis (T−test, p =

0.039) in the HR and NHR groups was shown in Supplementary

Figure 2A, and the different relative abundance of Prevotella

copri (Wilcoxon, p = 0.029) was shown in Supplementary Figure

2B. Besides, some microbes with FDA more than 2 to less than 3

were observed. At the species level, the Ruminococcus torques

abundance was lower in the HR group, but the abundance of

Gabonibacter timonenis, Alistipes indistinctus, and Desulfovibrio

piger were higher. At the order level, Opitutales was elevated in

the HR group, consistent with the elevated abundance of

Puniceicoccaceae, which belonged to Opitutales (Figure 2A).
Metabolites and lipids profiles of
HR and NHR

Different compositions of serum metabolites and lipids were

observed between the two groups according to latent structure

discriminant analysis (OPLS-DA) (Figures 3A, B). Furthermore,

155 differential metabolites and 22 lipids were screened by
TABLE 1 Clinical characteristics of the T1D patients.

Clinical characteristics NHR (N=43) HR (N=30) p-value

Age (year) 33.2 (9.07) 31.7 (6.76) 0.422

Male 20 (46.5%) 9 (30.0%) 0.240

BMI (kg/m2) 21.0 (2.08) 21.7 (1.84) 0.151

TC (mmol/l) 4.98 (0.89) 4.57 (0.71) 0.033

TG (mmol/l) 0.66 [0.53;0.89] 0.68 [0.54;0.92] 0.801

HDLC (mmol/l) 1.54 (0.32) 1.52 (0.28) 0.745

LDLC (mmol/l) 3.00 (0.80) 2.69 (0.54) 0.052

HbA1c (%) 7.00 [6.15;7.85] 7.15 [6.32;7.50] 0.801

Fasting C peptide (nmol/l) 0.02 [0.02;0.03] 0.02 [0.02;0.02] 0.058

Islet Autoantibodies (+) 23 (53.5%) 23 (76.7%) 0.076

GADA (+) 16 (37.2%) 20 (66.7%) 0.025

ZnT8A (+) 6 (14.0%) 8 (26.7%) 0.291

IA2A (+) 12 (27.9%) 10 (33.3%) 0.812

Age of onset (year) 21.4 (9.09) 18.1 (7.95) 0.111

Diabetes duration (year) 10.7 [8.25;14.1] 12.2 [9.62;16.4] 0.173

Insulin dosage (u/kg) 0.70 [0.54;0.81] 0.67 [0.54;0.79] 0.642

Energy Intake (kcal/day) 1185 [1020;1687] 1196 [825;1509] 0.346

Fat Intake (g/day) 42.1 [30.8;57.0] 35.3 [27.0;49.4] 0.148

Protein Intake (g/day) 66.9 [52.0;80.8] 60.2 [48.7;80.9] 0.523

Exercise (min/week) 88.2 [29.4;135] 44.1 [14.7;197] 0.454

Alcohol (No) 27 (62.8%) 19 (63.3%) 1.000

Smoking (No) 38 (88.4%) 25 (83.3%) 0.731
fronti
Continuous variables in a normal distribution are shown with mean (SD), while the median [interquartile range] is used to show the non-normally distributed data. Total numbers,
n (percentage), are used to represent categorical variables; TG, Triglyceride; TC, total cholesterol; LDLC, low-density lipoprotein cholesterol; HDLC, high-density lipoprotein cholesterol;
HbA1c, glycosylated haemoglobin A1c; GADA, glutamic acid decarboxylase autoantibodies; ZnT8A, zinc transporter 8 antibody; IA‐2A, anti‐protein tyrosine phosphatase like protein.
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combining fold-change (>1.2) and p-value (<0.05). The results are

shown in volcano plots in supplemental materials Supplementary

Figure 3A, B. Compared with the NHR group, 3a,7a-

dihydroxycholanoic acid, C23H45P3, C16H39N4O3P, diisodecyl

phthalate, C26H46O4P2 were differential metabolites that

decreased in the HR group, while C29H62ClN4O5P,

hypoxanthine, inosine, and guanine increased. As for differential

lipids, most of them belonged to glycerophospholipids.

phosphatidylcholine (35:1), phosphatidylcholine (33:1),

phosphatidylethanolamine (36:5), and phosphatidylcholine (37:4)

decreased in the HR group, and phosphatidylethanolamine

(38:3), lysodimethylphosphatidylethanolamine (19:4),

phosphatidylethanolamine (40:6) increased, compared with the

NHR group.

We then annotated the differential metabolites and lipids in

HumanMetabolome Database to perform pathway analysis. Among
Frontiers in Immunology 04
the155differentialmetabolites and22 lipids, 62differentialmetabolites

and 16 lipidswere annotated. The heatmap in supplementalmaterials

Supplementary Figures 4A, D showed the differential levels of these

annotatedmetabolitesandlipidsbetweentheHRandtheNHRgroups.

In the pathway analysis of differential metabolites, the purine

metabolism pathway was annotated (p = 0.031421) in the Kyoto

Encyclopaedia of Genes and Genomes database, and three differential

metabolites (hypoxanthine, inosine, and guanine) were involved.

Figure 3C demonstrated the purine metabolism pathway, showing

differential metabolites (hypoxanthine, inosine, and guanine) elevated

in the HR group. In the pathway analysis of differential lipids, most of

the differential lipids were phosphatidylcholine and

phosphatidylethanolamine, which are involved in the metabolism of

glycerophospholipid, linoleic acid, alpha-linolenic acid, and

arachidonic acid; and glycosylphosphatidylinositol-anchor

biosynthesis Figure 3D.
A

B DC

FIGURE 1

Results of diversity and taxonomy. (A) At the family level,the stacked bar plots; (B) Result of b-diversity visualized using principal coordinate
analysis based on Bray-Curtis Index (Permutational MANOVA test, F= 1.8078, R2= 0.02483, p<0.066); (C, D) The plots of a-diversity: (C) The
chao1 -diversity boxplots (T-test, p= 0.51802). (D) The shannon index boxplots (T-test, p=0.51787).
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Correlation between HLA-risk differential
serum metabolites and gut microbes

Association analyses ofHLA-risk differential gutmicrobiota and

differential serum metabolites demonstrated that Parabacteroides

distasonis was negatively associated (r=-0.32701, p ≤ 0.01) with

hypoxanthine involved in the purine metabolic pathways, which

was presented in the Figure 4A. As to Prevotella copri, another

differential microbe with LDA>3, there was no relationship between

Prevotella copri and differential metabolites. Moreover, the level of

microbes with FDAmore than 2 to less than 3 were associated with

differential metabolites. The Holdemania was negatively associated

with butylhydroquinone (HMDB0040178). The Desulfovibrio piger

was positively associated with homovanillic acid sulfate

(HMDB0011719), and the Allisonella was positively associated

with tranexamic acid (HMDB0014447).

The association analyses of differential gut microbiota and

differential lipids were presented in Figure 4B. Some kinds of

phospha t idy l cho l ine (phospha t idy l cho l ine (34 :1 ) ,

phosphatidylcholine (42:3)) showed a positive association with

Sanguibacteroides and Gabonibacter timonensis. The Desulfovibrio

piger was positively associated with phosphatidylethanolamines.

However, there was no relationship between Parabacteroides

distasonis and differential lipids. Prevotella copri also showed no

relationship with differential lipids.
Frontiers in Immunology 05
Discussion

Our results demonstrated that HLA appears to perturb the gut

microbiome and serummetabolite profile amongpatientswithT1D.

To our knowledge, this is the first time to explore the multi-omics

profile, including the gut microbiome, serum metabolome, and

lipidome, in T1D subjects with different genetic risks. Most

previous studies compared the different microbiome profiles

between T1D participants and healthy controls both at high T1D-

HLAgenetic risk (26–30).Todate, the effectofT1D-HLAgenetic risk

on serum metabolites and lipids has not been reported, which may

linkHLAgenotype risks and relativemicrobiota changes.Our results

provided insight into understanding the interaction of HLA genetic

risk and environmental risks in T1D.

In our study, the profile of gut microbiome, serum metabolite,

and lipidome between patientswith different T1D-HLAgenetic risks

(DR3/4/9) are different. The influence of T1D-related genes on gut

bacterial composition has been explored in previous animal studies

(24, 31). However, only a few studies reported that HLA genotypes

with a higher risk for developingT1D are associatedwith human gut

microbiome changes (12, 25). They found that T1D patients with

both DR3/DR4 haplotypes had the lowest responses to intestinal

commensal bacteria such as R. faecis (12). In addition,

Saccharimonadaceae is elevated in subjects with high-risk HLA

haplotypes (DR3/DR4 only), Romboutsia and Intestinibacter are
A

B

FIGURE 2

Results of different taxa (screened by P value <0.05) between two groups by LEfSe analysis. (A) Histogram of LDA value distribution. (B)
Cladogram plots depicting the microbial taxa that differed significantly.
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elevated in people with protective haplotypes (25). The mechanism

under the HLA effect on regulating gut microbiota in T1D may

involve innate and adaptive immune responses. HLA molecules are

antigen presentationmolecules that can present peptides to CD4+ T

cells (32), and the HLA polymorphism can recognize unique

bacterial antigens that caused the depletion of these gut taxa and

the changing gut bacterial composition. As to the effect of T1D-HLA

genetic risk on serummetabolites and lipids, the related studies were

limited. However, we found a negative association between

Parabacteroides distasonis and hypoxanthine in our study,

suggesting that the HLA may indirectly influence the profile of

serum metabolites by regulating the gut microbiota.

The differential gut microbiota, serum metabolites, and lipids

between the HR and NHR groups are found to be related to the
Frontiers in Immunology 06
development of T1D or other human autoimmune diseases in

previous studies. In our study, we found that HR patients were

characterized by enriched Prevotella copri, Desulfovibrio piger,

Eubacterium siraeum, Sanguibacteroides, Gabonibacter timonensis,

Puniceicoccaceae, Opitutales, Allisonella, Alistipes indistinctus, and

Holdemania. NHR patients were characterized by enriched

Parabacteroides distasonis and Ruminococcus torques. Microbiota

populations of Prevotella, Parabacteroides distasonis, and

Ruminococcaceae are related to insulin signalling pathway and

carbohydrate metabolism, which are also enriched in gestational

diabetes mellitus populations (33). Consistent with our results, the

abundanceofPrevotella copri increases inmanyhumanautoimmune

diseases, such as rheumatoid arthritis (34), ankylosing spondylitis

(35), and T1D (36). Studies have indicated that Prevotella copri can
A B

DC

FIGURE 3

Results of metabolites profiles analysis between two groups. (A) OPLS-DA analysis displaying a discriminative trend of metabolite composition
and (B) lipid composition between two groups. (C) Differential metabolites (screened by combining P value (<0.05) and fold change (>1.2))
mainly involved in purine metabolism (Hypoxanthine;Inosine;Guanine). (D) Differential lipid metabolite were phosphatidylcholines and
phosphatidylethanolamines, which involved in glycerophospholipid, linoleic acid, alpha-linolenic acid, arachidonic acid metabolism, and
glycosylphosphatidylinositol-anchor biosynthesis.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1033393
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yue et al. 10.3389/fimmu.2022.1033393
aggravate the branched-chain amino acids synthesis aswell as induce

in insulin resistance (37). However, another study results

demonstrated that Prevotella copri is an indicator of good

postprandial glucose metabolism (38), and the glucose metabolism

improvement induced by plant diet is linked to the increased

Prevotella copri (39, 40). Nevertheless, Eleftherios P Diamandis

held that Prevotella copri proliferate in a specific dietary and

lifestyle milieu are epiphenomena for a lifestyle (41). Enrichment

of Prevotella copri is predictive for Western individuals responding

favorably to a high-fiber, barley-kernel-based diet (42). These studies

(41, 42) indicated the influence of diet on the abundance and

contrasting effect of Prevotella copri. Further mechanism study of

Prevotella copri in relation to T1D is needed.

In addition, Desulfovibrio piger is another microbe enriched in

the HR group, which was reported to flourish in aged,

immunocompromised, and glucose regulation impaired obese

mice (43). Expansion of Desulfovibrio was key features of humans

with metabolic syndrome. In addition, in mice fed the

Methylococcus-based western diet (a diet can improve glucose

regulation), researchers found the diet-induced glucose changes

were consistent with the substantial reduction of Desulfovibrio

abundance (44).

Another differential microbiota Parabacteroides distasonis

enriched in the NHR group, is also related to the development of

T1D. Accumulating evidence suggests Parabacteroides distasonis

is a potential probiotic that can exert protective effects against

diabetes, multiple sclerosis, and cardiovascular disease (CVD)

(45). Wang et al. reported that Parabacteroides distasonis can

alleviate metabolic dysfunctions and obesity. They treated obese

mice with live Parabacteroides distasonis, resulting in less food
Frontiers in Immunology 07
intake and ameliorating glucose homeostasis (46). However,

several studies have suggested that Parabacteroides distasonis

33B can mimic the human insulin B:9–23 peptide and may

stimulate T1D onset (47). Different Parabacteroides distasonis

strains and host genetic background may be the potential

decisive factors of those contrasting findings.

Differential serum metabolites detected in this study were

concentrated around the purine metabolism pathway, and the

association between purine metabolism and diabetes, including T1D

(48), T2D (49) as well as gestational diabetes mellitus (50), has been

investigated in previous studies. Consistent with our results, elevated

serum hypoxanthine and uridine levels had been found in T1D

patients (51). In addition, one previous study showed that uric acid,

xanthine, inosine, and adenosine levels are elevated in T2D patients

with diabetic nephropathy, which indicates those purine metabolites

may be helpful in evaluating the development of T2D (52).

As to the differential lipid metabolites, the level of most

phosphatidylcholines and phosphatidylethanolamines was lower

in the HR group. The dysregulation of lipid metabolism can

precede T1D in earlier metabolomics studies (53). For example,

compared to children who did not progress to T1D, the

phosphatidylcholine in children who progressed to T1D is

downregulated (54). Another study observed the association

between phosphatidylcholine and reversion of islet

autoimmunity, which implied the prevention of T1D

progression (55). In young age-at-onset T1D children, the

decreased glycerophospholipids in cord blood also predicts a

high risk for T1D progression and islet autoimmunity (56, 57).

Notably, in our study, we also speculated that HLA-

associated perturbation of the microbiome and metabolite
A

B

FIGURE 4

(A) Results of combined analysis of microbiome and metabolome between two groups; (B) Results of combined analysis of microbiome and
lipidome between two groups. **p<=0.01,*p<=0.05.
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profile might increase the cardiovascular risk in T1D patients. As

discussed before, Prevotella copri (58) and Parabacteroides

distasonis (59) are related to the pathogenesis of CVD. The

purine metabolites are associated with CVD risk and mortality

in T1D patients (60). The differential lipid metabolite

phosphatidylcholine and unsaturated fat metabolism were also

related to the CVD mortality and total mortality in T2D patients

(61). Though the people included in this survey self-reported no

history of CVD, we will continue to trace the CVD status of

those patients to verify the conjecture.

The limitationsof this studyareas follows.First, the sample size is

relatively small. Second, the overestimation of the causalities in

microbiota studies is common, and we should look at this study’s

results with caution. Third, the gut microbiota dynamics can’t be

discovered in this studybecause it’s a cross-sectional study.Oneof the

strengths of this study is the well-characterized subjects. Moreover,

the measurement of serum and lipid metabolites is targeted and

quantitative. Compared to previous studies, this study first explores

the multi-omics profile in T1D patients with different HLA

gene risks.
Conclusion

In conclusion, we depicted the multi-omics profile, including

the gut microbiota, serum metabolites, and lipids in T1D

subjects with different HLA genotypes. High-risk T1D-related

HLA genotypes might perturb the profile of microbiome and

metabolite in T1D patients. We further speculated that HLA-

associated perturbation of the microbiome and metabolite

profile might increase the cardiovascular risk in T1D patients.

Although the specific mechanism of HLA on the microbiome

and metabolome is still unclear, our findings will provide some

information to help better understand the association between

HLA and microbiome, and provide some information for

distinguishing T1D patients with different HLA risk genotypes.
Methods

Subject recruitment and
sample collection

There were 73 individuals with T1D admitted to the

Department of Endocrinology of the Third Affiliated Hospital

of Sun Yat-sen University recruited in this cross-sectional study

from 2019 to 2020 (62). The criteria of the American Diabetes

Association were used to make the diagnosis of T1D (63).

Chronic gastrointestinal disorders, chronic or acute

inflammatory and infectious disorders, usage of antibiotic

medicine, probiotics, and corticosteroids within three months

after enrolment, pregnancy, and breastfeeding were all exclusion

factors. All participants were given diabetes instructions and
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were required to follow a diabetes diet. High-resolution HLA

DRB1-DQA1-DQB1 haplotypes sequencing was performed by

sequence specific oligonucleotide, which would be used to

perform the HLA genotyping. In Asian populations,

DRB1*0301-DQA1*0501-DQB1*0201 , DRB1*0405-

DQA1*0301, DRB1*0901-DQB1*0303 were the common

susceptible haplotypes for the development of T1D (64, 65).

DRB1*0803-DQA1*0103-DQB1*0601 , DRB1*1101-

DQB1*0301 , DRB1*1202-DQA1*0601-DQB1*0301 ,

DRB1*1501-DQA1*0102-DQB1*0602 (64, 66), and DRB1*16

(67) were the protective haplotypes for T1D. Based on the

evidence from studies mentioned above, we classified HLA

DRB1-DQA1-DQB1 haplotypes into three categories,

susceptibility haplotype (DR3, DR4, DR9 haplotype),

protective haplotype (DR8, DR11, DR12, DR15, DR16

haplotype) and others (Supplementary Materials ST. 1). Next,

we defined a criterion to group patients with high and non-high

risk HLA genotypes based on haplotype properties

(Supplementary Materials ST. 2) (64, 68). In detail, patients

with any two of three risk haplotypes (DR3, DR4, DR9

haplotype) and without any of the protective haplotypes (DR8,

DR11, DR12, DR15, DR16 haplotype) were defined as high-risk

HLA genotypes group (HR); patients with just one or without

risk haplotypes as the non-high-risk HLA genotypes group

(NHR). In result, patients were categorized into HR (n=30)

and NHR (n=43) groups.

Personal and medical history were obtained by interview and

electronic patient records (Table 1). In total, 73 fecal samples (30

HR patients and 43 NHR patients) were collected and stored in a

sterilized tube, and transformed to the laboratory to keep at -80°

C for further analysis. Blood samples for metabolites analysis

were also obtained from all participants and stored at -80°C

till processing.
Microbial 16S rRNA gene
sequence analysis

Microbial 16S rRNA gene sequencing was carried out on the

Illumina platform with the paired-end sequencing strategy.

Briefly, we followed the instructions of MagPure Stool DNA

KF kit B (Magen, China) and extracted DNA from fecal samples

first. Then we did PCR with primers 806R and 341F to amplify

the bacterial 16S rRNA gene’s V3-V4 regions. Next, we purified

V3-V4 amplicons with the AmpureXP beads and eluted

amplicons in an Elution buffer. Finally, purified V3-V4

amplicons received the paired-end sequencing on an

Illumina platform.

MOTHUR (v1.31.2) was used to splice and process the raw

16S rRNA gene amplicons to get high-quality sequencing (69).

Then high-quality gene amplicons were analyzed in QIIME

package for gene amplicon sequence variants (ASVs)

classification (70). The QIIME v1.8.0 with Greengenes
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database v201305 was used as the reference database for

classifying ASVs. Based on ASVs annotation, taxonomic

profiles were created at different levels (the level of phylum,

class, order, family, genus).

Various alpha diversity indexes such as the Shannon

diversity index were used to assess gut microbial community

richness variations between the HR and NHR groups. The global

microbiota composition and structure differences (beta

diversity) of the two groups based on ASV abundance were

compared using principal coordinate analysis with the Bray-

Curtis Index. Those analyses were performed on the

MicrobiomeAnalyst website (71, 72). Furthermore, LEfSe (73)

was carried out on the Galaxy website (74) to determine the

significantly different taxa between HR and NHR groups.
Serum metabolomics and
lipidomics analysis

Untargeted liquid chromatography-tandem mass

spectrometry analysis was used to detect serum small molecule

metabolites. High-resolution mass spectrometer Q Exactive

(Thermo Fisher Scientific, USA) was used in negative and

positive ion modes to increase the coverage of lipid detection.

Metabolome analysis was performed on the MetaboAnalyst

website (75, 76). For the detected small molecule metabolites,

orthogonal projection to OPLS-DA was used to examine the

overall plastic metabolites distribution as well as to detect

differential metabolites between the HR and NHR groups.

Combining fold-change (>1.2) and p-value (<0.05) was used to

screen out the differential serum metabolites. Then the signal

transduction pathways and biochemical metabolic pathways of

differential metabolites were annotated in the Kyoto

Encyclopaedia of Genes and Genomes database.
Combined analysis of microbiome
and metabolome

A combined analysis was constructed based on Pearson

correlation analysis to investigate the complex relationship

between microbiome and metabolome. Briefly, differential

metabolites and microbes detected before were selected to

calculate the correlation coefficient and statistical significance

using the R package psych 2.1.9.
Statistical analysis

Statistical analyses were done on R version 4.1.1 (http://

www.r-project.org/). The clinical characteristics data analysis

was performed with the R package compareGroup 4.5.1,

Shapiro-Wilks test was performed first to decide the
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continuous variable was normal or non-normal-distributed.

Then the continuous variables were compared between groups

using t-test or analysis of variance. Categorical data were

compared by exact Fisher test or Chi-square test. For

microbiome and metabolome data analysis, specific matched

statistics methods and websites were used, as mentioned above.

P values less than 0.05 were considered significant.
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