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Exploring the molecular
mechanism of hepatitis virus
inducing hepatocellular
carcinoma by microarray data
and immune infiltrates analysis

Yong-Zheng Zhang, Amir Zeb and Lu-Feng Cheng*

Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, China
The number of new cases of hepatocellular carcinoma (HCC) worldwide

reached 910,000, ranking the sixth, 80% HCC is associated with viruses, so

exploring the molecular mechanism of viral carcinogenicity is imperative. The

study showed that both HBV and HCV associated HCC and non-viral HCC have

the samemolecular phenotype (low gene expression and inhibition of immune

pathways), but in the tumor immune micro-environment, there is excessive

M2-type macrophage polarization in virus-associated hepatocellular

carcinoma. To address this phenomenon, the data sets were analyzed and

identified five hub genes (POLR2A, POLR2B, RPL5, RPS6, RPL23A) involved in

viral gene expression and associated with PI3K-Akt-mTOR pathway activation

by six algorithms. In addition, numerous studies have reported that M2-type

macrophages participate in the hepatic fibro-pathological process of the

development of HCC and are regulated by the PI3K-Akt-mTOR pathway. On

this basis, the study showed that hepatitis virus causes abnormal expression of

hub genes, leading to the activation of the pathway, which in turn promote the

differentiation of M2-type macrophages and eventually promote the formation

of liver fibrosis, leading to the occurrence of HCC. In addition, these hub genes

are regulated by transcription factors and m6A enzyme, and have good

prognosis and diagnostic value. With regard to drug reuse, the results

suggest that patients with virus-related HCC for whom Cytidine triphosphate

disodium salt and Guanosine-5’-Triphosphate are used as supplementary

therapy, and may have a better prognosis. In conclusion, the study has

identified novel molecules that are carcinogenic to hepatitis viruses and are

expected to serve as molecular markers and targets for diagnosis

and treatment.
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Introduction

Hepatic malignant tumors can be divided into two major

categories: primary and secondary. Primary hepatocellular

carcinoma is one of the common malignant tumors in China

with a high mortality rate, ranking third in the sequence of

deaths from malignant tumors after stomach and esophagus (1).

Hepatocellular carcinoma (HCC) is the major subtype of

primary hepatocellular carcinoma. In 2020, there were more

than 910,000 new HCC cases and 830,000 deaths, which has

become a serious public health problem (2). The latest research

results have shown that the occurrence of HCC is mainly related

to hepatitis B virus (HBV) and hepatitis C virus (HCV) infection

(3). At the same time, excessive drinking and smoking are also

related to the occurrence of HCC (4).

Systematic understanding of the virus involvement in the

occurrence, development and metastasis of HCC is conducive to

the early diagnosis and accurate treatment of patients. In theory,

the persistent inflammation of hepatocytes caused by viral

infection promotes the formation of hepatic fibrosis, which is

the basis for the development of HCC (5). Chronic infection

caused by HBV to the human body, and chronic hepatitis B,

compensated cirrhosis, and decompensated cirrhosis to the

onset of HCC are the main pathways for the development of

HBV-associated HCC (HBV-HCC) (6). It has been found that

the HBx protein carried by HBV can regulate the PI3K-Akt

pathway of host hepatocytes, and then activate and release of

excessive TGF-b to participate in the occurrence of liver fibrosis

(7). TGF-b is a key cytokine involved in fibrogenesis and can be

specifically activated by PI3K/Akt (8), which may be an

important factor in the induction of HCC by HBV and HCV

(9, 10). In addition, studies have found that abnormal PI3K/

AKT/mTOR signaling pathway is closely related to HCC

resistance (11). Some studies have demonstrated that N6-

methyladenylate (m6A) modification is involved in the

progression of hepatitis B virus-related liver fibrosis by

regulating the infiltration of immune cells (12), and at

the same time, HBx carried by HBV can interact with

the methylase METTL3, which is closely related to the

development of HCC (13).

Despite the deepening understanding of the etiology of

HCC, the available diagnosis and treatment plan has little

effect. Microarray sequencing technology has been applied to

genome detection for in-depth exploration of the viral

carcinogenicity and tumor development mechanism. However,

results from single microarray or low sample size analyses are

difficult to gain more recognition. In this study, a prospective

method was used that differed from conventional experiments,

the expression profiles of HCC (GSE87630), HBV-HCC

(GSE55092), and HCV-HCC (GSE19665) from the GEO

database were integrated. Differentially expressed genes
Frontiers in Immunology 02
(DEGs) were identified in HCC, HBV-HCC, and HCV-HCC,

compared to normal liver tissue. DEG was analyzed for gene set

enrichment using “h.all. v7.4” and in addition, three types of

HCC were analyzed for tumor immune invasion using

CIBERSORT. To further analyze the molecular mechanisms of

the involvement of the two hepatitis viruses in the development

of HCC, an ExpressAnalyst was used to combine the three data

sets. Compare with HCC, and in contrast to HCC, the DEG of

HBV-HCC and HCV-HCC were identified, and two co-

homology genes were crossed to explore the molecular basis of

viral involvement in HCC. Six sub-networks of key molecular

interactions were obtained using the MCODE method, and gene

ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG), analyses were performed using the DAVID database.

In addition, the hub genes were obtained by analyzing the sub-

networks using six algorithms, and the correlation was explored

between those genes and immune-infiltrating cells using Pearson

correlation analysis. A separate cohort (GSE121248 and

GSE69715) was integrated with HCC (GSE87630) to verify the

stability of hub gene expression. Meanwhile, the protein levels of

those genes were verified in the human protein map (HPA). The

prognostic value of hub genes was verified on the UALCAN data

analysis platform, and the receiver operating characteristic

(ROC) curve was used to analyze the diagnostic value of hub

genes in distinguishing HCC tissues (HBV-HCC and HCV-

HCC) from normal liver tissues. Transcription factor and m6A

methylation predictions were performed using hTFtarget and

m6A2Target and validated in microarrays for hub gene.

Therapeutic drugs related to genes were explored and

developed by STITCH, and effect intensity analysis was

performed on computer simulation software (Schrodinger).

The aim of this study is to provide new insights into the

pathogenesis of viral involvement in HCC and to identify new

prognostic markers and precise drug targets through

comprehensive analysis.

Methods

Data extraction, processing
and consolidation

All data sets (Table 1) were from GEO (https://www.ncbi.

nlm.nih.gov/geo) database, were log transformed and

normalized. The differentially expressed genes (DEGs) between

hepatocellular carcinoma (HCC) tissues and normal liver tissues

were screened out by using “limma” function. The screening

criteria for DEGs were adjusted P value < 0.05 and LogFC≥1.

Volcanic map of gene distribution by using that ggplot2

function. Batch effects were removed from the dataset using

“combat” function by the online platform ExpressAnalyst

(https://dev.expressanalyst.ca/ExpressAnalyst/).
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GSEA and immune infiltration analysis

To clarify the gene effects caused by DEGs of HCC, the R

package “GSEA” was utilized to obtain the GSEA enrichment

scores of hallmark pathways (h.all.v7.4.entrez) (14). HCC

immune infiltration analysis was performed on the dataset

using the “CIBERSORT” method on the Sangerbox3.0

platform (http://vip.sangerbox.com). Due to the small sample

size of GSE19665 for HCV-HCC and the potential for large

deviations in analysis results, an external independent dataset,

GSE69715, was selected for immune invasion analysis.
Analysis of protein-protein interaction
network and functional enrichment

Interaction between intersecting gene were analyzed using a

STRING database (15). The MCODE functional module was

used to cluster the genes and construct a gene sub-network in

cytoscape (version 3.8.3). The DAVID 2021 was used for

analyzing GO and KEGG pathway of module gene (16).

P<0.05 is considered to be statistically significant.
Gene screening and co-expression
network construction

In order to identify the hub genes in the common genes, the

six algorithms (Closeness, Stress, EPC, Degree, MNC, and

Radiality) of the “cytohubba” module were used for gene

sequencing, and the intersection analysis of the top 30 hub

genes was performed using the R software “Upset” package.

Gene co-expression analysis and functional enrichment analysis

of the common hub genes were performed using the GeneMania

platform (17).
Correlation analysis of gene expression

To explore the association between hub genes and M2

macrophage infiltration, Pearson’s method was used for gene

association analysis on HBV-HCC and HCV-HCC data sets.
Frontiers in Immunology 03
Due to the small sample size of GSE19665 for HCV-HCC and

the potential for large deviations in analysis results, an external

independent dataset, GSE69715, was selected for gene

correlation analysis.
Analysis of mRNA and protein expression

Expression data of hub genes in HCC with different stages

and HCC with TP53 mutation were obtained from UALCAN

(18), which is a platform for processing data from TCGA.

Extraction of protein levels of viral carcinogenic hub genes in

HCC Tissue and Normal Liver Tissue from the Human Protein

Atlas (HPA) (19). The staining intensity was divided into strong,

medium, weak or negative. Expression levels included high,

medium, low, and none detected. The proportion of stained

cells was three-tiered (> 75%, 25-75%, or < 25%).
Survival analysis and ROC curve drawing

The survival analysis was analyzed by using the UALCAN.

Survival analysis was performed by Kaplan-Meier and log-rank

test. The expression levels of hub genes were applied for ROC

analysis to estimate their diagnostic significance to distinguish

between HCC and normal in two independent external sets

(GSE121248 and GSE69715) and internal sets (GSE55092 and

GSE19665). The area under curve (AUC) > 0.5 was considered

to have diagnostic value.
Transcriptional factor and m6A enzyme
prediction analysis

In order to find the molecules that regulate the hub genes,

hTFtarget database was used to predict the TFs of the hub genes

and validated the expression levels in the data set (20). Because

of the extensive presence of m6A enzyme modification after

RNA transcription, m6A enzyme prediction (21) and validation

on the hub genes were performed, and constructed a network

diagram based on the interaction relationship.
TABLE 1 The characteristics of the datasets used in the present study.

Accession No. Tissue sources Platform Samples(Control: Case) Data annotation

GSE87630 Liver GPL6947 30:64 HCC

GSE55092 Liver GPL570 81:39 HBV-HCC

GSE121248 Liver GPL570 37:70 HBV-HCC

GSE19665 Liver GPL570 5:5 HCV-HCC

GSE69715 Liver GPL570 66:37 HCV-HCC
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Drug screening based on hub genes

The sequence of hub gene was obtained from NCBI and

homology modeling was performed using Swiss Mode (22).

Schrodinger Glide and IFD modules were used to molecular

dock the hub gene structure with the best score with drug

molecules. The lower binding energy of drug to target (hub

gene) indicates more stable binding. Docking mode diagrams are

drawn using LigPlus (23).
Results

DGE identification and GSEA in HCC

We compared the gene expression in Hepatocellular

carcinoma (HCC) with that in the normal tissue, and obtained

1158 DEGs, among which 819 genes were down-regulated,

accounting for more than 70% (Figure 1A). In HBV-HCC and
Frontiers in Immunology 04
HCV-HCC, the down-regulated genes account for 63% and 83%

of DEG, respectively (Figures 1B, C). Downstream analysis of

DGE using GSEA revealed that virus associated HCC was similar

to HCC, mainly manifested are the activation of DNA damage

and G2M checkpoint, and inhibition of hypoxia, apoptosis and

immune response (Figures 1D-F).
Immune infiltration analysis in HCC

As both the virus-induced HCC and the HCC developed

immunologic derangement, we performed immune infiltration

analysis on them to distinguish the immune cell levels. The

results showed that CD4 T cells and Treg cells were the common

manifestations of them (Figures 2A-C). Interestingly, M2-type

macrophages and plasma cells proliferate extensively in virus-

induced HCC and cause infiltration of mast cells resting in

HBV-HCC, but are not observed in HCC.
A B

D E F

C

FIGURE 1

Differential gene analysis and GSEA analysis in hepatocellular carcinoma (HCC). Gene expression and GSEA analysis of HCC (A, D), HBV-HCC (B,
E) and HCV-HCC (C, F) by using R 3.6.3.
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Genetic differences between virus-
induced HCC and HCC

In order to further clarify the molecular mechanism of virus

participation in HCC, the above three data sets were combined in

the study. See Figure S1 for quality control. Differential gene

analyses of HBV-HCC and HCC, HCV-HCC and HCC, revealed

that compared with HCC, HBV-HCC had 3,141 down-regulated

genes and 2,975 up-regulated genes (Figure 3A), and HCV-HCC

had 2,619 down-regulated genes and 2,555 up-regulated genes

(Figure 3B). In order to find the possible molecular phenotype of

HCC caused by the combination of the two viruses, Venn mapping

of all up-regulated and down-regulated genes was conducted, and

was found that 1859 down-regulated genes and 1815 up-regulated

genes participated in the development of HCC (Figure 3C). The

difference between HCC and virus-associated HCC is that the two

expression patterns differ significantly, and this expression pattern

may be related to viral carcinogenicity.
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Protein-protein interaction analysis and
enrichment analyses

Further analysis of the molecular patterns of two hepatitis

viruses participating in HCC. We performed protein interaction

analysis and MCODE analysis on the intersecting genes. Due to

the limitation of the database on the number of genes, a

interaction analysis was conducted on the up-regulated and

down-regulated genes respectively and the first three

molecular networks of down-regulated genes with the scores

of 35.925, 14.615 and 12.414 (Figure S2A), and the first three

networks of up-regulated genes with the scores of 13.762, 12.557

and 10.618 (Figure S2B) were obtained. Considering the

molecular cascade effect, combining the genes of the above six

sub-networks and conducting GO and KEGG analysis, it is clear

that the modular gene is related to the methylation activation of

mRNA splicing, mRNA processing and tRNA methylation

(Figure 4A), and in addition, it is also involved in the PI3K-
A

B

C

FIGURE 2

Analysis of immune infiltration in HCC. Immune infiltration of HCC (A), HBC-HCC (B), and HCV-HCC (C) using CIBERSORT. Statistical
significance is noted with asterisk: * < 0.05, ** < 0.01, *** <0.001, ****< 0.0001.
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A B

C

FIGURE 3

Differential gene analysis and intersection gene Venn diagram. Gene expression profiles of HBV-HCC (A) and HCV-HCC (B) compared with
HCC. (C) Drawing the intersecting Venn diagram to clarify the molecular mechanism of HCC co-caused by hepatitis viruses.
A B

FIGURE 4

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of DEGs. GO (A) and KEGG (B) enrichment analysis were
performed on the key module genes.
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Akt pathway, viral carcinogenesis, mTOR signaling pathway,

hepatitis B, and hepatitis C (Figure 4B).
Hub genes screening and co-expression
network construction

To obtain biomarkers or drug targets involving

carcinogenesis of hepatitis virus, the study identified 16

potential hub genes using six algorithms (Figure 5A), The

related functions and co-expression network of those genes

were analyzed on the basis of the database. It shows the

complex network with the physical interactions of 34.30%, co-

expression of 32.68%, predicted of 24.59%, and co-localization of

2.73% (Figure 5B). It is noteworthy that, ribosomal protein L23A

(RPL23A), ribosomal protein S6 (RPS6), ribosomal protein L5

(RPL5), RNA polymerase II subunit A (POLR2A) and RNA

polymerase II subunit B (POLR2B) participated in viral gene

expression. In addition, POLR2A, POLR2B and heterogeneous

nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) are related to

post-transcriptional gene silencing by RNA.
Correlation analysis between hub genes
and immune pathway

Since a large number of M2-type macrophages infiltrate

HCC caused by HBV and HCV, and the activation of PI3K-Akt-

mTOR pathway is related to the M2 polarization of

macrophages (11, 24), Through literature review, it was found

that 13 differential genes (25–36), including mTOR, PIK3CA,

AKT2, and PIK3CB, involved in the M2-type polarization of

macrophages, according to the genes related to M2-type
Frontiers in Immunology 07
polarization. We first analyzed the expression of these 13

genes in HBV-HCC and HCV-HCC, and found that mTOR

was down-regulated while other genes were up-regulated (Figure

S3), which was consistent with the molecular characteristics of

macrophage polarization. Furthermore, the analysis of the

correlation between hub genes and these genes was carried

out, and the results emphasized that in the HBV-HCC data

set, RPL5 had a positive correlation with the expression of six

genes including PIK3CB, KRAS, and MAPK1 (Figure 6A).

However, the expressions of POLR2A and POLR2B were

negatively correlated with mTOR expression, but positively

correlated with KRAS expression. In HCV-HCC, RPL23A is

positively correlated with RAC1, JAK1, PIK3CD, etc. (Figure

6B). Similarly, PIK3CB is positively correlated with the

expression of POL2A, but negatively correlated with PLOR2B.

The regulation of PIK3CB by hub genes may be an important

reason for the polarization of M2-type macrophages.
mRNA and protein expression
verification of hub genes

In order to validate the hub gene-expression stability,

independent queues that contained HBV-HCC and HCV-

HCC were selected for the analysis of these hub genes

expression levels. The results demonstrated that while

comparing with HCC, the POLR2A was significantly down-

regulated, however POLR2B, RPL5, RPS6 and RPL23A were

significantly up-regulated in HBV-HCC and HCV-HCC

(Figure 7). Moreover, the relevance between hub genes and

clinical characteristics (cancer stage and TP53 mutation) in

HCC patients was analyzed using the UALCAN. Higher

mRNA expression of gene is associated with staging in
A B

FIGURE 5

Hub genes screening and gene co-expression analysis. (A) Hub genes screening by using six algorithms. (B) Hub genes co-expression and
functional enrichment analysis.
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A B

FIGURE 6

Expression correlation analysis of hub genes and Immune related genes (A) Correlation analysis of HBV-HCC immune pathway related genes
and hub genes by using GSE55092. (B) Correlation analysis of HCV-HCC immune pathway related genes and hub genes by using GSE69715.
Red was positively correlated and blue was negatively correlated. The size of the circle represented the magnitude of correlation, and the cross
indicated no correlation.
A B

D E

C

FIGURE 7

Expression of hub genes in HCC, HBV-HCC and HCV-HCC liver tissues. The expression data of POLR2A (A), POLR2 (B), RPL5 (C), RPS6 (D) and
RPL23A (E) in different groups were analyzed by t-test.
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patients with HCC (Figure S4). Similarly, the mRNA expression

levels of hub genes were higher in HCC with TP53 mutation.

Moreover, the protein expression levels of POLR2B, RPS6

and RPL23A in HCC tissue were higher than those in

normal liver tissue by observing the immunohistochemistry

results (Figure 8).
Prognostic analysis and diagnostic value
of hub genes

The survival analysis of hub gene was carried out by TCGA

data set (HCC) in UALCAN. Although POLR2A expression was

not associated with patient survival rate (Figure 9A), the results

reveled that high expression of POLR2B (P <0.01), RPL5 (P <

0.001), RPS6 (P < 0.05), and RPL23A (P < 0.01) were concerned

with shorter survival rates (Figures 9B-E). In summary,

POLR2B, RPL5, RPS6, and RPL23A may be used as

biomarkers to estimate the prognosis of HCC patients. To

determine the diagnostic significance of these genes in virus-

induced HCC and normal, ROC analysis was performed using

data from internal sets and AUC values for all five genes were

greater than 0.5 (Figures 10A, B). In general, the diagnostic value

of viral oncogenes in HBV-HCC is higher than that in HCV-
Frontiers in Immunology 09
HCC. The same results appeared in separate external data sets

(Figures 10C, D). Therefore, these genes have value for further

development as diagnostic biomarkers in virus-related HCC.
Prediction and validation of transcription
factor and m6A enzymes

As the high expression of hub genes is involved in the

development of HCC caused by virus, we further explored the

molecular mechanism for regulating the hub genes.

Transcription factor (TF) prediction has revealed that a variety

of TF are involved in the regulation of hub genes expression

(Figure 11A), and it was identified in the internal data set that

high expression of 9 TFs and low expression of 5 TFs may be

important causes of abnormal changes in hub genes (Figure S5).

Because the module gene is closely related to RNA methylation

(Figure 4A), the hub genes was predicted by m6A methylation

and verified by internal data sets. The results showed that the

hub genes were regulated by m6A writer and reader proteins

(Figures 11B, S6). Analyzing the prognosis of m6A, identified

that the high expression of mRNA-splicing regulator WTAP

(WTAP), Putative RNA-binding protein 15B (RBM15B) and
A

B

C

FIGURE 8

Protein expression of hub genes in normal and HCC liver tissues. Protein levels of POLR2B (A), RPS6 (B) and RPL23A (C) in normal liver tissue
and HCC liver tissue.
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N6-adenosine-methyltransferase catalytic subunit (METTL3)

were related to the survival time of HCC patients (Figure S7).
Drug screening and computer simulation
analysis of hub genes

As the high mRNA and protein expressions of POLR2B,

RPS6, and RPL23A in HCC tissues and participate in the

expression of viral genes, which is closely related to the

prognosis and diagnosis of patients, compound-protein

interaction analysis was conducted (Figure 12). Cytidine

triphosphate disodium salt (ara-CTP) and Guanosine-5’-

Triphosphate (guanosine trip) have the ability to inhibit

hepatitis virus replication (37, 38). A semi-flexible (Glide) and

induced-fit docking (IFD) methods were used in the study, and it

was found that the two drugs had low binding energy to the hub

genes and more hydrogen bond interactions (Table 2, Figure S8).
Discussion

The carcinogenic effect of virus is obvious, especially virus-

related hepatocellular carcinoma (HCC). However, its

carcinogenic mechanism still needs to be further clarified. We

started from three independent cohorts of HCC and found their

differences. Both DNA damage and G2M checkpoint inhibition
Frontiers in Immunology 10
are caused by the over-expression of HBx protein carried by

HBV (39, 40), which is involved in the development of HCC.

Therefore, targeted regulation of these two processes may be an

important strategy for the treatment of virus-related HCC. The

immune response that lymphocytes are widely suppressed is

related to the development of HCC (41, 42). Hence the

infiltration of two T cell subtypes in the lesion site decrease,

was observed. In addition, high-expression M2-type

macrophages are highly correlated with tissue fibrosis and

tumor immune escape (43). Unlike HCC, virus-related HCC

shows a large number of M2-type macrophages infiltration,

which may be closely related to the viral carcinogenicity.

Further comparison analysis was performed on the difference

in molecular expression between virus-associated HCC and

HCC, and it was unfolded that the key network genes of virus-

associated HCC were mainly involved in the chemical

modification of RNA, which is closely related to the poor

prognosis of tumor patients (44). These genes are inevitably

involved in the activation of immune pathways and the

development of hepatitis. It is significant that PI3K-Akt and

mTOR pathways are involved in the polarization of M2-type

macrophages (24, 45).

To further screen for molecular markers or targets, five hub

genes (POLR2A, POLR2B, RPL5, RPS6 and RPL23A) were

identified which are involved in viral gene expression using six

algorithms. The existing evidence found that these five genes

participated in viral gene expression (46–52), while the
A B

D E

C

FIGURE 9

Overall survival analysis of hub genes. Survival curve for POLR2A (A), POLR2B (B), RPL5 (C), RPS6 (D) and RPL23A (E) in HCC patients from TCGA
database. The expression data were analyzed using log-rank test.
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A B

FIGURE 11

Prediction and validation of TF and m6A enzymes. In the TFs regulatory network (A), the inside is the central gene, and the outside is the transcription
factor. Red represents up-regulation, and green represents down-regulation. In the m6A regulatory nerwork (B), the red lines represented protein-
protein interactions, the green lines represented protein-RNA interactions, and the blue lines represented protein DNA interactions.
A B

DC

FIGURE 10

ROCcurve analysis to assess the diagnostic value of hub genes in differentiating HBV-HCC or HCV-HCC from liver tissues. (A, B) were HBV-
HCC and HCV-HCC, respectively, in the internal data set, (C, D) were HBV-HCC and HCV-HCC, respectively, in the external verification set.
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mechanism involved in liver cancer was not reported. For this

reason, the relationship between the hub genes and PI3K-Akt/

mTOR pathway was explored. The results showed that the hub

genes were positively correlated with the expression of multiple

targets in the pathway. A large number of studies have reported

that M2-type macrophage infiltration promotes the pathological

process of hepatic fibrosis in HCC (53–55). It was found

significant that these hub genes caused the M2-type

polarization of macrophages by activating the PI3K-Akt-

mTOR pathway, and then led to hepatic fibrosis and

participated in the development of HCC.

In view of the carcinogenic effect of the hub gene, was further

verified by independent cohort from GEO and the results
Frontiers in Immunology 12
identified that the hub gene POLR2A was low expressed in

virus-related HCC, and POL2B, RPL5, RPS6, and RPL23A were

high expressed, which were consistent with the expression in the

internal data sets. To expand whether the hub gene expression

pattern was the same as HCC, high expression of the hub genes

mRNA in tumor tissues was found during validation of the HCC

data set in the TCGA database. The differential expression of

POLR2Amay be due to its association with only virus-associated

HCC and not with HCC. The HPA database shows that the

proteins of POL2B, RPS6 and RPL23A are highly expressed in

HCC tissues, and are expected to be molecular targets for anti-

tumor. Furthermore, it was unveiled that high expression of hub

genes, except POLR2A, was associated with a poor prognosis in
FIGURE 12

Drug-hub gene interacvtion. Green rhombus is medicine, and ellipse is gene including POLR2B, RPS6 and RPL23A.
TABLE 2 docking score of drug and hub genes.

Hub genes ara-CTP (kCal·mol-1) guanosine trip (kCal·mol-1)

POLR2B Glide/IFD -6.78/-7.27 -6.94/-8.005

RPS6 Glide/IFD -8.28/-8.527 -7.21/-9.271

RPL23A Glide/IFD -6.74/-6.354 -7.87/-7.162
Note: Glide docking is based on geometry and is used to search for possible binding sites of drugs. IFD is based on the “lock-key theory” and is used as a method to evaluate drug affinity.
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patients with HCC. For target-based drug reuse, the ara-CTP

and guanosine trip can form multi-hydrogen-bond complexes

with POL2B, RPS6 and RPL23A, with low binding energy,

suggesting that they may have a better prognosis when used as

adjuvant therapy for patients with virus-associated HCC, which

is clear from the results. For the regulation of expression of hub

genes, it was speculated that abnormal expression of 14

transcription factors associated with high expression of hub

genes through database and internal validation, and the m6A

enzyme may play an important role in post-transcriptional

modification. In conclusion, this study identified the novel

molecules involved in virus-associated HCC, which can

provide a reference for the diagnosis and treatment of patient.
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