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The cestode Echinococcus multilocularis larva infection causes lethal zoonotic

alveolar echinococcosis (AE), a disease posing a great threat to the public

health worldwide. This persistent hepatic tumor-like disease in AE patients has

been largely attributed to aberrant T cell responses, of which Th1 responses are

impeded, whilst Th2 and regulatory T cell responses are elevated, creating an

immune tolerogenic microenvironment in the liver. However, the immune

tolerance mechanisms are not fully understood. Dendritic cells (DCs) are key

cellular components in facilitating immune tolerance in chronic diseases,

including AE. Here, we demonstrate that indoleamine 2,3-dioxygenase 1-

deficient (IDO1-/-) mice display less severe AE as compared to wild-type (WT)

mice during the infection. Mechanistically, IDO1 prevents optimal T cells

responses by programming DCs into a tolerogenic state. Specifically, IDO1

prevents the maturation and migration potential of DCs, as shown by the

significantly enhanced expression of the antigen-presenting molecule (MHC II),

costimulatory molecules (CD80 and CD86), and chemokine receptors (CXCR4

and CCR7) in infected IDO1-/- mice as compared to infected wild-type mice.

More importantly, the tolerogenic phenotype of DCs is partly reverted in

IDO1-/- mice, as indicated by enhanced activation, proliferation, and

differentiation of both CD4+ and CD8+ - T cells upon infection with

Echinococcus multilocularis, in comparison with WT mice. Interestingly,

in absence of IDO1, CD4+ T cells are prone to differentiate to effector

memory cells (CD44+CD62L-); in contrast, CD8+ T cells are highly biased to

the central memory phenotype (CD44+CD62L+). Overall, these data are the
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first to demonstrate the essential role of IDO1 signaling in inducing

immunosuppression in mice infected with Echinococcus multilocularis.
KEYWORDS

alveolar echinococcosis, Echinococcus multilocularis, dendritic cells, indoleamine
2,3-dioxygenase 1, immunosuppression
Introduction

Alveolar echinococcosis (AE) is a lethal zoonotic disease caused

by infection with the larva of the cestode Echinococcus

multilocularis (E. multilocularis) (1). Humans are occasional

intermediate hosts, and acquire the infection through ingestion of

food and water contaminated with eggs expelled with the feces of

canid species (2). The larval cells predominantly reside in the liver,

progressively invade neighboring tissues and organs, and

eventually lead to a nearly 90% mortality rate if remaining

untreated (3, 4). AE is becoming an emerging/re-emerging

disease worldwide, mainly attributable to the lack of vaccines and

active control measures (2, 5). Of note, E. multilocularis exploits

efficient immune evasion mechanisms to establish persistent

infection (6). However, the mechanism by which E. multilocularis

induces host immune tolerance, is still unclear. Therefore, it is

vitally important to unveil the immune mechanism of AE and

explore effective immunological prevention measures.

Dendritic cells (DCs), the most professional antigen-

presenting cells, are the critical mediators in the activation of

cellular immune responses as well as tolerance induction (7).

During E. multilocularis infection, DCs display phenotypical and

functional alterations favoring disorders of the anti-parasite

immunity, of which Th2- and Treg- responses are enhanced to

promote the tumor-like progression of the parasitic

metacestodes (8–10). In contrast, IFN-g dependent effector

mechanisms, including Th1 responses, abrogate parasite

survival, proliferation and maturation (8, 11, 12). Although the

general importance of DCs in the host-parasite interaction has

been largely appreciated (13), immunomodulatory molecules

involved in DCs functions are still not well characterized in E.

multilocularis infection.

Indoleamine 2,3-dioxygenase (IDO) is an essential enzyme

catalyzing the initial and rate-limiting step in the catabolism of

tryptophan and serotonin in the kynurenine pathway (14, 15).

The resultant catabolite, namely kynurenine, is further degraded

into kynurenic acid and other catabolites by enzymes

downstream of IDO. The IDO-initiated metabolic changes can

exert potent immunomodulatory effects. For instance, resting

regulatory CD4+ T cells (Tregs) become activated upon sensing

the degradation of tryptophan, resulting elevated tolerogenic
02
molecular effectors such as IL-10 and TGF-ß (16, 17). Three

enzymes with IDO activity exist, namely indoleamine 2,3-

dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2)

and tryptophan 2,3-dioxygenase (TDO) (18, 19). In particular,

IDO1, endowed with non-enzymatic signaling activity in DCs,

promotes immune tolerance by altering DCs functions (20–23).

Previous studies have revealed that elevated IDO1 expression on

DCs is of particular significance due to the tolerogenic effects on

T cell responses (24–27). Recent reports suggest that IDO1

activity converts mature DCs into a tolerogenic phenotype that

suppresses effector T cell function and promotes tolerance (28).

Moreover, activation of IDO1signaling reduces the T cell

dependent immunotherapeutic efficacy in several types of

cancer diseases, including the hepatocellular carcinoma (29–

32). Emerging evidence has demonstrated that DCs are involved

in immune tolerance during E. multilocularis infection (33–35).

However, the effects of IDO1 on DCs functions during E.

multilocularis infection have not been elucidated, especially

with regard to how the IDO1 signaling mediates potent

immune tolerance effects in vivo.

Herein, taking advantage of magnetic resonance imaging

and flow cytometry, we found that infection of E. multilocularis

induced enhanced expression of IDO1 on DCs of wild-type

(WT) mice, whereas, mice in absence of IDO1 exhibited

reduced progression of metacestode tissue and decreased

parasite loads in the mice. Mechanistically, activation of

IDO1 signaling prevented the activation, proliferation, and

differentiation of T helper subtype 1 cells (Th1 cells) and

cytotoxic T lymphocytes cells (CTLs), which was attributed

to the reduced maturation of DCs in terms of the expression of

costimulatory molecules and chemokine receptors. We

conclude that IDO1 promotes immunosuppression and

alveolar echinococcosis progression.
Materials and methods

Mice, parasites and infection

Eight- to ten-week-old C57BL/6 mice and IDO1-deficient

(IDO1-/-) C57BL/6 mice were purchased from the Jiangsu
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GemPharmatech Co. Ltd., and were bred in a specific

pathogen-free environment with a 12-h light/dark cycle

supplemented with rodent chow and water ad libitum.

E. multilocularis protoscoleces (PSCs) were obtained from

intraperitoneal lesions maintained in BALB/c mice under aseptic

conditions, followed by three rounds of clean-up with phosphate

buffered saline (PBS, pH=7.2, containing 1000 mg/mL penicillin

and 1000 U/mL streptomycin) (36). PSCs with over 95% vitality

determined by eosin exclusion were counted using hemocytometer

(37), and 1000 PSCs were injected intraperitoneally per mice as

previously described (38). To determine the parasitic burden using

wet-weighing method, mice were sacrificed in month 1, 2 or 3

post-infection, and parasitic tissues were dissected from the liver

and the peritoneal cavity.
Antibodies

Alexa Fluor® 647 anti-mouse IDO1 (2E2/IDO1), PE anti-

mouse CD11c (N418), PerCP/Cyanine5.5 anti-mouse/human

CD11b (M1/70), Brilliant Violet 650™ anti-mouse CD80 (16-

10A1), APC anti-mouse CD86 (GL-1), FITC anti-mouse I-A/I-E

(M5/114.15.2), PerCP/Cyanine5.5 anti-mouse CD45 (30-F11),

APC/Fire™ 750-anti-mouse CD3 (17A2), FITC anti-mouse

CD4 (RM4-5), Brilliant Violet 650™ anti-mouse CD8a (53-

6.7), APC anti-mouse CD62L (MEL-14), PE/Dazzle™594 anti-

mouse/human CD44 (IM7), PE/Dazzle™594-anti-mouse

CD184 (CXCR4) (L276F12), Brilliant Violet 421™ anti-mouse

CD197 (CCR7) (4B12), PE anti-human/mouse Granzyme B

(QA16A02), Brilliant Violet 421™ anti-mouse IFN-g
(XMG1.2), Brilliant Violet 421™ anti-mouse Ki-67 (16A8)

were purchased from Biolegend, USA.
Purification of splenocytes

Splenocytes were purified as described previously (39). In

brief, the spleen was removed, cut into small pieces with

surgical scissors, and then mechanically dispersed by using a

sterile syringe plunger to force through a 70-mm cell strainer in

50 mL RPMI 1640 medium containing 5% fetal calf serum

(FCS). The cell suspension was centrifuged at 500 g for 5 min at

4°C, then the pellet was resuspended in 1 mL ACK buffer

(erythrocyte lysing buffer) and incubated at room temperature

for 3-5 min, followed by addition of 14 mL cold RPMI 1640

medium. After centrifugation at 500 g for 5 min at 4°C, cells

were resuspended in cold RPMI 1640 medium containing

5% FCS.
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Flow cytometry

Splenocytes were incubated with TruStain FcX™ PLUS anti-

mouse CD16/CD32 (Biolegend; clone: S17011E) for 10 min at 4°C,

and then stained with mAbs specific for various cell surface

markers. To evaluate the production of IFN-g and Granzyme B,

splenocytes were diluted to 4 × 106 cells/mL and cultured (500 mL/
well) in a 24-well plate containing Cell Activation Cocktail (with

Brefeldin A; Biolegend) for 6 h. Cells were then harvested and

washed twice in cell staining buffer prior to surface marker staining

as described above. Cells were then fixed and permeabilized using

Intracellular Fixation Buffer & Intracellular Staining

Permeabilization Wash Buffer (Biolegend). Intracellular staining

was then performed using mAbs specific for IFN-g and granzyme

B, respectively. For Ki-67 staining, freshly isolated splenocytes were

stained following the above-mentioned surface and intracellular

staining procedures, with no in vitro stimulation. Samples were

resuspended in cell staining buffer, tested with BD FACSCelesta

flow cytometer, and analyzed using FlowJo software (BD, USA).
Magnetic resonance imaging (MRI)

MRI scanning was performed using a small-animal MRI

Facility (Bruker PharmaScan 70/16 US, Germany) with the

Paravision 360 software platform. The scanning coil is mouse

body coilRF RES 300 1H 075/040 QSN TR. The mice were

anesthetized by inhalation with 2% ~ 3% isoflurane (RWD,

Shenzhen) during scanning. The body temperature of mice was

kept constant throughout the experiment us ing a

thermoregulated water circulation system, and the oxygenation

level of the mice was monitored by a pulse oximeter. The scan

protocols for axial images were performed using the

T2_TurboRARE as described previously (40). In brief, echo

time (TE) = 25 ms, repetition time (TR) = 2100 ms, slice

thickness = 1.0 mm, field of view (FOV) = 35 mm×30 mm,

scanning time = 17 min 42s; T1_FLASH_flc: TE = 3 ms, TR =

300 ms, flip angle = 90°, slice thickness = 1.0 mm, FOV = 35

mm×30 mm, scanning time = 5min 45s. The maximum

diameter of metacestodes was quantified and analyzed using

T1 Imaging and T2 imaging of Sante MRI Viewer V3.0.
Mixed lymphocyte reaction (MLR)

DCs were purified from the spleens of the E. multilocularis

infected IDO1-/- and wild-type (WT) mice using CD11c

Microbeads UltraPure (Miltenyi Biotech). 5×105 DCs per well

of each genotype were seeded into 24-well plate with or without

the stimulation of LPS (Sigma). 24 h later, DCs were further

treated with mitomycin C for 30 min, and then washed with
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1032280
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Meng et al. 10.3389/fimmu.2022.1032280
sterile PBS for downstream experiments. Splenic CD4+ T cells

from naïve BALB/c mice (purified with CD4 Microbeads,

Miltenyi Biotech) were labeled with CFSE (Thermo Fisher

Scientific) according to the manufacture’s instruction, and co-

cultivated with the above mentioned DCs with the ratio of DCs:

T cells at 1:4. Wells only containing CFSE stained naïve CD4+ T

cells were prepared as negative controls. On day 4 of the co-

cultivation, cells were collected, and the CFSE dilution was

assessed using flow cytometry to determine the T

cell proliferation.
Statistical analysis

Data were represented as the mean ± SEM. Significance of

differences was determined by 2-tailed unpaired t-test or

ANOVA using the GraphPad Prism 9.0 software. p

values<0.05 were considered statistically significant.
Results

E. multilocularis infection induces
enhanced expression of IDO1 on DCs

To investigate the expression level of IDO1 on DCs during E.

multilocularis infection, we employed an AE mouse model in

which C57BL/6 mice were intraperitoneally injected with E.

multilocularis protoscoleces (PSCs). (Figure 1A). Taking

advantage of MRI scanning, tumor-like metacestode tissues

were observed in the liver of infected mice, indicating

successful establishment of murine AE model (Figure 1B). To

determine the expression of IDO1, mice were sacrificed and

splenocytes were analyzed using flow cytometry at multiple time

points post infection with E. multilocularis (Figure 1A). We

found that in uninfected mice, splenic CD11c+MHC II+ DCs

barely expressed IDO1 (Figures 1C, D; Supplementary Figure 1).

In contrast, splenic CD11c+MHC II+ DCs in E. multilocularis

infected mice exhibited significantly higher frequency and

intensity of IDO1 1-, 2- and 3- month post infection.

(p<0.001; Figures 1C, D). These results suggest that

metacestode tissue growth is positively correlated to the

enhanced expression of IDO1 in DCs during E. multilocularis.
IDO1 signaling promotes metacestode
tissue progression in mice infected with
E. multilocularis

Next, we infected IDO1-/- and wild-type (WT) mice with E.

multilocularis to assess whether IDO1 signaling affected the

disease progression as illustrated in Figure 2A. MRI

examination was used to depict the liver metacestode tissues of
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infected WT and IDO1-/- mice, among which WT mice showed

more extensive parasite lesions than IDO1-/- mice in month 2

and 3 after infection (Figures 2B, C). To further evaluate the

metacestode tissue progression, we measured the parasite load

directly by weighing metacestode tissues. As shown in Figure 2D,

IDO1-/- mice exhibited a significantly lower parasite load

compared to WT mice 2- and 3- month post infection (p<0.05

or p<0.01). These results demonstrate that IDO1 signaling plays

an essential role in facilitating parasite growth in mice upon E.

multilocularis infection.
Deficiency of IDO1 signaling results in
enhanced maturation of DCs in mice
infected with E. multilocularis

It has been reported that E. multilocularis infection prevents the

maturation of DCs, as illustrated by the diminished expression of

various costimulatorymolecules and chemokine receptors (10, 41). To

investigatewhether IDO1 is involved in thematurationofDCs inmice

infected with E. multilocularis, we next evaluated its effects on the

expressionofmultiple phenotypicmaturationmarkers, namelyCD80,

CD86, MHC II, CD11b, CXCR4, and CCR7, on DCs in infected

IDO1-/- andWTmice (Figure 3A). Strikingly, the intensity of all tested

molecules on splenic DCs of infected IDO1-/- mice was significantly

higher than the counterparts on splenic DCs of infected WT mice

(p<0.05,p<0.01or<0.001,Figures3B–G,SupplementaryFigure2A-F).

Taken together, these results suggest that IDO1 signaling suppresses

DCs maturation during infection with E. multilocularis.
IDO1 deficiency mice exhibit increased
T cells activation during E. multilocularis
infection

Optimal T cell responses are essential to control the E.

multilocularis infection in mice. To determine whether the

phenotype of IDO-/- DCs necessarily impacts the T cell response,

we performed theMixed Lymphocyte Reaction in vitro. Our results

reveal that, in comparation with IDO1 sufficient DCs isolated from

E. multilocularis infected WT mice, IDO1 deficient DCs from

infected IDO1-/- mice induce more robust T cell proliferative

alloresponses (Supplementary Figure 3). CD44 and CD62L are

common surface markers for assessment of major subsets of CD4+

T and CD8+ T cells in mice (42, 43). To further determine the

effects of IDO1 on T cells activation during E. multilocularis inf

ection, CD62L and CD44 were employed to assess naive (CD44-

CD62L+), effector memory (CD44+CD62L-) and central memory

(CD44+CD62L+) T-cell subsets in the spleens of IDO1-/- and WT

mice infected with E. multilocularis (Figure 4A). We found that the

frequency and the absolute number of activated effector memory

CD4+, but not CD8+, T cells (CD44+CD62L-) were significantly

higher in IDO1-/- mice infected with E. multilocularis, in contrast
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with infectedWTmice (p<0.01 or <0.001, Figure 4B). Interestingly,

the activated central memory CD8+ T cells (CD44+CD62L+) were

significantly higher in infected IDO1-/- mice when compared to

that of infected WT mice (p<0.01 or <0.001, Figure 4C). In

particular, the absolute number of activated central memory

CD8+ T cells was increased by 2–3 folds in infected IDO1-/-mice

(Figure 4C). Collectively, these data suggest that the IDO1

signaling prevents effector memory CD4+ T cells or central

memory CD8+ T cells development in mice infected with

E. multilocularis.
Frontiers in Immunology 05
Enhanced T cells proliferation in IDO1-/-

mice infected with E. multilocularis

As shown above, deficiency of IDO1 signaling enhances the

activation of T cells in mice infected with E. multilocularis. Next,

we used Ki67, a nuclear protein expressed throughout the cell

cycle in proliferating cells, to determine the proliferation of both

CD4+- and CD8+- T cells during E. multilocularis infection. As

shown in Figures 5A, B the frequency and the absolute number

of Ki67 expressing splenic CD4+- and CD8+- T cells, were
A

B

D

C

FIGURE 1

Expression of IDO1 on splenic DCs in murine E multilocularis infection model. (A) Schematic representation of the experimental setup.
(B) Representative MRI images of metacestode tissue in the liver from E multilocularis–infected mice, and metacestode tissues were manually
encircled with dashed yellow lines. (C) Representative flow cytometry plots of IDO1 on splenic CD11c+MHC II+DCs in infected and non-infected
C57BL/6 mice (n = 5/group). (D) The frequency of IDO1 expressing splenic CD11c+MHC II+DCs derived from infected mice and non-infected
controls (n = 5/group). Splenic CD45+MHC II+CD11c+ cells were gated. Data are pooled from 2 independent experiments, and presented as the
mean ± SEM. ***, p<0.001. PSCs, protoscoleces; p.i., postinfection; i.i., intraperitoneal injection; MRI, magnetic resonance imaging; MFI, median
fluorescence intensity; FMO, full minus one staining control.
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significantly higher than that in infected WT mice (p<0.05),

indicating that IDO1 signaling limits T cell proliferation.
Deficiency of IDO1 signaling promotes
Th1 and CTL development in mice
infected with E. multilocularis

To further characterize the impact of IDO1 signaling on the

phenotypeofT cells duringE.multilocularis infection,we evaluated
Frontiers in Immunology 06
the pro-inflammatory activity of CD4+- and CD8+- T cells by

examining their secretions of IFN-g and granzyme B using flow

cytometry. In uninfected IDO1-/- and WT mice, both CD4+- and

CD8+- T cells displayed a lower percentage and absolute number of

IFN-g- and granzyme B- secreting cells. In contrast, the percentage

and absolute number of IFN-g-producingCD4+- andCD8+-T cells

were significantly higher in infected IDO1-/- mice compared to that

in infected WT mice (p<0.001, <0.01, or <0.05, Figures 6A, B).

Furthermore, a remarkably increased frequency of granzyme B-

producing CD8+ T cells was observed in infected IDO1-/- mice
A

B

DC

FIGURE 2

The effects of IDO1 on lesion area and parasite load in E multilocularis infected mice. (A) Schematic representation of the experimental setup.
(B) Representative MRI images of metacestode tissue in the liver of IDO1-/- and wild-type (WT) mice infected with E multilocularis, and
metacestode tissues are manually encircled with dashed yellow lines. (C) The maximum diameter of metacestode tissues in IDO1-/- and WT
mice was quantified during MRI scanning using software in month 1, 2 and 3 post-infection with E multilocularis (n = 6/group). (D) The parasite
load in IDO1-/- and WT mice assessed by wet weight measurement at 1-, 2, and 3- month post-infection with E multilocularis (n = 10/group).
Data are pooled from 2 independent experiments, and presented as the mean ± SEM. ns, not significant; *, p<0.05; **, p<0.01. PSCs,
protoscoleces; p.i., post infection; i.i., injected intraperitoneally; MRI, magnetic resonance imaging.
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compared to that in infected WT mice (p<0.01 or <0.001,

Figure 6C), indicating that IDO1 suppresses the cytotoxic

function of CD8+ T cells during E. multilocularis infection.

In conclusion, these results demonstrate that IDO1 signaling

play an important role in negatively regulating T cell immune

responses by preventing DCs maturation in mice infected with

E. multilocularis.
Discussion

Immune tolerance is one of the major hallmarks of E.

multilocularis infection (44). During the infection, various host

immune cells interacted with the parasites primarily in the liver

and formed a granulomatous inflammatory microenvironment,

among which the pivotal role of DCs has long been appreciated

(33, 36, 37). As previously reported, immune tolerance mediated

by DCs was induced at the early stage of infection, which likely

accounts for the generation of immunosuppressive

microenvironment in the liver, leading to the immune evasion
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by the forementioned helminthic parasites (35). However, only

few investigations have so far been carried out towards the

identification and characterization of DCs functions during E.

multilocularis infection.

DCs are professional antigen-presenting cells (APCs) with

unique phenotypic markers and immunologic functions (45).

Along with the maturation of DCs after antigen uptake, the

expression of surface markers such as the MHC II and

costimulatory molecules CD86 and CD80 are upregulated.

Upon migration to the peripheral immune organs, mature

DCs interact with naive T cells to promote T cell activation

and differentiation (46). In this study, we evaluated the

expression of MHC II, CD80 and CD86 on DCs in mice

infected with E. multilocularis. Our data showed that the

expression of the forementioned molecules on DCs was

significantly increased on DCs in infected IDO1-/- mice

compared to that in infected wild-type mice, suggesting that

IDO1 is a negative regulator of DCs maturation during E.

multilocularis infection. In addition, chemokine receptors

CXCR4 and CCR7 have been appreciated for the key roles on
A

B D

E F G

C

FIGURE 3

IDO1 signaling limits DCs maturation in mice infected with E multilocularis. (A) Schematic representation of the experimental setup. (B–G)
Quantification of the relative intensity of CD80, CD86, MHCII, CD11b, CXCR4, and CCR7 within splenic DCs of the IDO1-/- and WT mice at 3
months post-infection with E multilocularis (n = 6/group). CD45+MHC II+CD11c+ cells were gated. Data are pooled from 2 independent
experiments, and presented as the mean ± SEM. ns, not significant; *, p<0.05; **, p< 0.01; ***, p< 0.001. PSCs, protoscoleces; p.i., post
infection; i.i., injected intraperitoneally.
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DC trafficking in chronic infectious diseases (47). In this

investigation, we compared their expression on DCs in mice

infected with E. multilocularis in the presence or absence of

IDO1 signaling. We found that the expressions of CXCR4 and

CCR7 was significantly enhanced on DCs in infected IDO1-/-

mice compared to infected wild-type mice. Taken together, our

data are the first to identify that IDO1 plays an important role in

E. multilocularis infection by repressing DCs maturation.
Frontiers in Immunology 08
However, the detailed mechanism of IDO+ DCs orchestrating

the immune tolerance remains enigmatic, especially the effects of

the immunomodulatory molecules secreted by the parasites.

Early studies have shown that there is a positive correlation

between IFN-g production and parasiticidal effects during

infection of E. multilocularis (38, 48–50). In the present study,

the frequency or the absolute number of the activated and

proliferative CD4+- and CD8+- T cells were significantly higher
A

B

C

FIGURE 4

Enhanced activation of T cells in IDO1-/-mice infected with E multilocularis.(A) Conceptual schematic diagram. (B, C) Representative flow cytometry
plots (left), the frequency (upper right), and the absolute number (lower right) of activated CD4+ T cells (B), and CD8+ T cells (C) of IDO1-/- and WT
mice at 3 months post-infection with E multilocularis (n = 6/group). CD45+CD3+CD4+ and CD45+CD3+CD8+ cells were gated respectively for
panel (B, C) Data are pooled from 2 independent experiments, and presented as the mean ± SEM. ns, not significant; **, p< 0.01; ***, p< 0.001.
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in infected IDO1-/- mice compared to that in infected wild-type

group. More impressively, both CD4+- and CD8+- T cells secreted

significantly higher IFN-g in absence of IDO1 signaling, suggesting
that IDO1 signaling negatively regulates the IFN-g production

comprehensively in major T cell subsets in E. multilocularis-

infected mice. Moreover, the cytotoxic potential of CD8+ T cells,

as represented by granzyme B expression, was significantly

increased in infected IDO1-/- mice compared to that in infected

wild-type counterpart. Recent research findings have shown that

overexpression of IDO1 in DCs facilitates T cell anergy in non-

infectious disease models (22, 51). This effect occurs mainly

through a mechanism called bystander suppression, by which the

minor IDO1+ DCs population is able to suppress TCR signaling

(52, 53). Interestingly, our data demonstrate that IDO1+ DCs not

only inhibit the activation and clonal expansion of bothCD4+- and
Frontiers in Immunology 09
CD8+-T cells, but also suppress their differentiation in context ofE.

multilocularis infection.

The microarray data has indicated IDO1 was significantly up-

regulated inE.multilocularis-infected liver tissue (54).Accordingly,

our data demonstrated that, in the spleen, IDO1 was highly

upregulated in mice upon infection with E. multilocularis. We

then identified IDO1 signaling as an important mediator in

programming DCs to the tolerogenic state during E.

multilocularis infection. Our data are first to demonstrate the

essential role of IDO1 signaling in regulating immune responses

in vivo during E. multilocularis infection. We also established the

direct linkbetween the impressiveproperties of IDO1 signaling and

impaired maturation of DCs in spleens of mice infected with E.

multilocularis. More importantly, compared to infected IDO1-/-

mice, infected wild-type mice exhibited higher volumes of
A

B

FIGURE 5

Enhanced proliferation of T cells in IDO1-/-mice infected with E multilocularis. (A, B) Conceptual schematic diagram (left), representative flow
cytometry plots (middle), and the frequency (upper right) and the absolute number (lower right) of proliferating CD4+ T cells (A) and CD8+ T cells
(B) of the IDO1-/- and wild-type mice at 3 months post-infection with E multilocularis (n = 6/group). CD45+CD3+CD4+ and CD45+CD3+CD8+ cells
were gated respectively for panel (A, B). Data are pooled from 2 independent experiments, and presented as the mean ± SEM. ns, not significant; *,
p < 0.05.
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A

B

C

FIGURE 6

Enhanced Th1 and CTL development in IDO1-/-mice infected with E multilocularis. (A, B) Conceptual schematic diagram (left), representative
flow cytometry plots (middle), and the frequency (upper right) and the absolute number (lower right) of IFN-g secreting CD4+ T cells (A), IFN-g
secreting CD8+ T cells (B), and granzyme B secreting CD8+ T cells (C) of the IDO1-/- and wild-type mice at 3 months post-infection with E
multilocularis (n = 6/group). CD45+CD3+CD4+ and CD45+CD3+CD8+ cells were gated respectively for panel (A) and (B, C). Data are pooled
from 2 independent experiments, and presented as the mean ± SEM. ns, not significant; *, p < 0.05; **, p< 0.01; ***p< 0.001.
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metacestode tissue and higher parasite load as determined byMRI

scanning and wet weight measurement. Indeed, immune tolerance

is a hallmark of AE, and IDO1+ DCs are one of the key immune

subsets to mediate this effect (55). Our results indicate that

engagement of the IDO1 signaling promotes metacestode

progression during infection with E. multilocularis.

In conclusion, we have described an essential role of IDO1

signaling on negatively regulating T cell responses by preventing

DCs maturation in E. multilocularis infected mice. These data

may contribute to an improved understanding of the

immunoregulation mechanisms of IDO1 signaling underlying

the E. multilocularis pathogenesis.
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material. Further

inquiries can be directed to the corresponding authors.
Ethics statement

All animal experiments were performed in accordance with

the guidelines of Institutional Animal Care and Use Committee

of the Qinghai University Affiliated Hospital (P-SL-2022-031).
Author contributions

HF, YF, and GL conceived the study. RM, YF, YZ, and YM

conducted the experiments. RM, YF, and GL analyzed the data.

RM, HF, GL, and YF wrote the paper. All authors contributed to

the article and approved the submitted version.
Funding

This work was financially supported by the National Natural

Science Foundation of China (31960708), and the Applied Basic

Research of Qinghai Province in China (2021-ZJ-724).
Frontiers in Immunology 11
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fimmu.2022.1032280/full#supplementary-material

SUPPLEMENTARY FIGURE 1

Expression of IDO1 on DCs in IDO1-/- mice. (A). Representative flow

cytometry plots of IDO1 expression on CD11c+MHC II+ DCs in infected
and non-infected IDO1-/- and wild-type (WT) mice. (B). The quantification

of the frequency of IDO1 expressing CD11c+MHC II+ DCs (n = 5/group).

CD45+MHC II+CD11c+ cells were gated. Data are presented as the mean
± SEM. FMO, full minus one staining control. ***, p<0.001; ****p< 0.0001.

SUPPLEMENTARY FIGURE 2

IDO1 signaling limits DCs maturation in E. multilocularis-infected mice.
(A-F). Representative of the flow cytometry histogram of CD80, CD86,

MHCII, CD11b, CXCR4, and CCR7 within splenic DCs of the IDO1-/- and

WT mice at 3 months post-infection with E. multilocularis (n = 6/group).
CD45+MHC II+CD11c+ cells were gated. ns, not significant; *, p<0.05; **,

p< 0.01; ***, p< 0.001. Abbreviations: PSCs, protoscoleces; p.i., post
infection; i.i., injected intraperitoneally.

SUPPLEMENTARY FIGURE 3

IDO1-/- DCs induce more robust T cell stimulatory effects in vitro. Splenic

DCs were purified from E. multilocularis infected IDO1-/- and WT mice,
and co-cultivated with naïve splenic T cells for 4 days. T cell stimulatory

effects of DCs were determined using the CFSE cell proliferation kit. (A).
Representative flow cytometry histograms of the CFSE dilution for T cells.

(B). The quantification of the CFSE dilution for T cells (n = 4/group). *,
p<0.05; ***, p< 0.001.
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