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hepatitis B patients in the
malignant progression of
hepatocellular carcinoma

Yuemin Nan1*†, Suxian Zhao1†, Xiaoxiao Zhang1, Zhifeng Xiao2

and Ruihan Guo3

1Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical
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Hepatitis B Virus (HBV) infection may lead to various liver diseases such as

cirrhosis, end-stage liver complications, and Hepatocellular carcinoma (HCC).

Patients with existing cirrhosis or severe fibrosis have an increased chance of

developing HCC. Consequently, lifetime observation is currently advised. This

study gathered real-world electronic health record (EHR) data from the China

Registry of Hepatitis B (CR-HepB) database. A collection of 396 patients with

HBV infection at different stages were obtained, including 1) patients with a

sustained virological response (SVR), 2) patients with HBV chronic infection and

without further development, 3) patients with cirrhosis, and 4) patients with

HCC. Each patient has been monitored periodically, yielding multiple visit

records, each is described using forty blood biomarkers. These records can

be utilized to train predictive models. Specifically, we develop three machine

learning (ML)-based models for three learning tasks, including 1) an SVR risk

model for HBV patients via a survival analysis model, 2) a risk model to encode

the progression from HBV, cirrhosis and HCC using dimension reduction and

clustering techniques, and 3) a classifier to detect HCC using the visit records

with high accuracy (over 95%). Our study shows the potential of offering a

comprehensive understanding of HBV progression via predictive analysis and

identifies themost indicative blood biomarkers, which may serve as biomarkers

that can be used for immunotherapy.
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1 Introduction

Hepatitis B virus (HBV) infection is a worldwide public

health crisis. According to the World Health Organization

(WHO), 316 million people have chronic HBV infection in

2019, while approximately 555,000 people die from HBV

infection globally each year, with hepatocellular carcinoma

(HCC) accounting for 45% of deaths (1). Primary liver cancer

is a common malignancy worldwide, including HCC,

intrahepatic cholangiocarcinoma (ICC), and mixed

hepatocellular carcinoma-cholangiocarcinoma (cHCC-CC), of

which HCC accounts for 85-90% (2). According to GLOBOCAN

2020 data, liver cancer has the 6th highest annual number of new

cases at 905,700, accounting for 8.3% of new cases of all cancers.

Due to its poor prognosis, the number of deaths reached 830,000

in 2020, making it the 3rd leading cause of cancer deaths (3).

China is one of the regions with high incidence of liver cancer,

the annual number of new cases reaches 410,000 and 391,000

deaths, which is 45.3% and 47.1% of the global rate respectively,

and is also the 5th most prevalent malignant tumor and the 2nd

leading cause of cancer death in China (4).

Most HCC is asymptomatic in its early stages, and most

patients are locally advanced or have distant metastases by the

time of diagnosis. The main reason for the low long-term

survival rate of liver cancer is, first of all, the imperfect risk

assessment of early stage of liver cancer, which leads to 70% to

80% of patients being in the middle to late stage at the time of

diagnosis (5).

The detection of serum tumor markers can be one of the

main methods for early screening and post-treatment efficacy

assessment of HCC. The guidelines for the diagnosis and

treatment of primary liver cancer (2020) specify AFP as a

common and important index for diagnosis of liver cancer

and efficacy testing. Liver fibrosis is a tissue repair response to

liver damage caused by various pathogenic factors, and the

process of abnormal increase or excessive deposition of

extracellular matrix during the repair process, as well as the

pathological process of developing cirrhosis and liver cancer (6).

Studies (7) have shown that liver fibrosis is a reversible process.

Therefore, timely and accurate knowledge of fibrosis changes

with AFP and levels can help clinicians grasp the trend,

regression and prognosis of patients’ disease.

The key to an effective liver cancer surveillance program that

provides early diagnosis and improves prognosis is to have simple

and accurate tools to identify patients with different liver cancer

risks, reduce patient burden, and optimize resource allocation to

increase the frequency of surveillance in high-risk groups.

Ultimately, individualized patient monitoring of liver cancer risk

can be achieved, thereby improving early diagnosis and treatment

of liver cancer and ultimately reducing mortality. Retrospective

studies also occupy an important position in clinical research and

are important for understanding the efficacy of disease therapies

and disease regression in the real world.
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The immune system plays a crucial role in the development

and progression of HCC. Some patients benefit greatly from

immunotherapy with checkpoint inhibitors. Adoptive T-cell

transfer, vaccination, and virotherapy are other immune

strategies being researched, but none of them have shown

consistent clinical efficacy as of yet. One of the promising

research direction is the identification and validation of

predictive biomarkers, which remains a significant challenge in

the checkpoint immunotherapy for HCC.

This study gathered real-world electronic health record

(EHR) data from the China Registry of Hepatitis B (CR-HepB)

database (8). A total of 396 patients with HBV infection at

different stages were extracted from CR-HepB, including 1)

patients with a sustained virological response (SVR), 2)

patients with HBV chronic infection but without further

development, 3) patients with cirrhosis, and 4) patients with

HCC. Patients in the database have received constant clinical

monitoring, yielding multiple visit records that can be utilized to

train predictive models. Each of theses records can be

represented by a collection of 40 blood biomarkers.

Specifically, we develop three machine learning (ML)-based

models for three learning tasks, including 1) an SVR risk

model for HBV patients via a survival analysis model, 2) a risk

model to encode the progression from HBV cirrhosis and HCC

using dimension reduction and clustering techniques, and 3) a

classifier to detect HCC using the visit records with high

accuracy (over 95%). Our study shows the potential of offering

a comprehensive understanding of HBV progression via

predictive analysis.

The rest of this paper is organized as follows. Section 3

describes the datasets used in this study and the details of the

adopted methods. In Section 4, several experiments are

conducted to evaluate our hypothesis. Finally, inSection 5 we

discuss the findings, implications, limitations, and future work.
2 Material and methods

2.1 Dataset

A collection of 396 patients were extracted from the CR-

HepB database, including 234 patients with HBV chronic

infection and without further development, 90 patients with

cirrhosis, and 72 patients with HCC. The inclusion criteria is: 1)

age is greater than or equal to eighteen (any gender), 2) with

complete hematological results. The exclusion criteria is: 1)

patients with biliary obstruction or other factors causing

hepatic sludge or hepatic edema, 2) patients who had a liver

transplant, 3) patients with drug-induced hepatitis or

autoimmune hepatitis. A total of 2400 visit records were

gathered from their clinical visit data in between Jan. 2007 and

Jan. 2020. Among these records, 1690, 168, and 542 entries were

from chronic HBV, cirrhosis, and HCC patients, respectively.
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Table 1 shows the stats of the patients divided into the three

classes. The average number of visits for HBV, cirrhosis, and

HCC patients are 7.22, 1.87, and 7.53, respectively. It is observed

that the cirrhosis patients had less visits compared to HBV and

HCC patients, which is a factor that may lead to prediction

inaccuracy for this class.

A total of forty blood biomarkers are utilized as features to

represent each visit record for a patient. These features include:

qualitative HBeAg, quantitative HBeAg, qualitative HBsAG,

quantitative HBsAG, qualitative anti-HBc, quantitative anti-HBc,

qualitative anti-HBe, quantitative anti-HBe, qualitative anti-HBs,

quantitative anti-HBs, Tri-iodothyronine (T3), Tetra-iodothyronine

(T4), thyroid-stimulating hormone (TSH), neutrophilic granulocyte

(GR), Low-Density Lipoprotein (LDL), prothrombin time (PT),

prothrombin activity (PTA), cholesterol (CHOL), total bilirubin

(TBI), total protein (TP), drinking alcohol or not, any prior

treatment, nucleoside analogues, absolute lymphocyte count (LY),

triglycerides (TG), alpha-fetoprotein (AFP), white blood cell count

(WBC), albumin (ALB), direct bilirubin (DBI), alkaline

phosphatase (ALP), creatinine (Cr), creatine kinase (CK),

cholinesterase (CHE), platelet count (PLT), hemoglobin (HGB),

time since first visit, Alanine Transaminase (ALT), glutamyl

transpeptidase (gamma-GT), Aspartate Aminotransferase (AST),

high-density lipoprotein (HDL).

The trial protocol and the implementation of the pilot study

were in accordance with the requirements of the Declaration of

Helsinki and other regulations. This study is a non-

interventional retrospective study. All recipient personally

identifiable information were removed or strictly encrypted.
2.2 Survival analysis model

The predictive objective in this study is the time to HBV

turning negative. Two biomarkers, including HBeAg and HBsAg

are utilized for evaluation. We adopt the Random Survival Forest

(RSF) model (9) for survival analysis. An RSF adopts ensemble

learning to aggregate a collection of decision tree (DT) models

that are trained to be de-correlated to increase the model diversity

via two ways: 1) each tree in the ensemble is trained on a different

subset of the original training set, namely, bootstrapping; 2) for

each node of a tree, the algorithm only selects a random subset of

features and thresholds for split criterion evaluation. Finally, the

predicted results of the DTs are aggregated to form the final
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prediction outcome. The concordance index (C-index) (10) is

utilized as the performance metric.
2.3 HBV malignant progression analysis

The proposed distance-based method for HBV malignant

progression analysis is detailed as follows.
1. Each visit entry of a patient is represented by a vector

with forty elements, corresponding to the forty features

of the dataset.

2. The geometric centroids for the three classes (i.e., HBV,

Cirrhosis, and HCC) are then computed. In a multi-

dimensional space, each patient visit is a data point, and

patients in the same class tend to be close to each other.

3. Each patient has multiple visit records, yielding multiple

data points with temporal characteristic. Thus, by

tracing these data points we can find out which

direction the patient’s condition heads to. There are

two major cases that are of interest:the data points of a

patient either head toward or move away from the

centroid of HCC. The former case indicates a

malignant progression, while the latter may lead to an

SVR. The moving distance of the data point series can be

quantified and used for risk analysis.

4. As more patients & visits are added to the dataset, the

centroids of the three classes can be updated, and the

above step can be re-run.
Figure 1 is a diagram that shows an artificial example. To

visualize it, we apply principal component analysis (PCA) to

project the multi-dimensional features to the 2D space. Patients

with HBV, Cirrhosis, and HCC are marked with blue squares,

orange circles, and blue diamond shapes. The bigger three

shapes represent the three centroids, and a sequence of blue

squares with red lines denote the visit records of a patient. Since

we want to highlight the example patient, the three centroids,

and the arrow, the rest elements of the chart have been moved to

the background. The arrow indicates a malignant progression

for this patient, since the data points are moving towards the

centroid of HCC (ie., the green diamond).
2.4 Three-class classification

2.4.1 Predictive models
Fifteen base predictive models were selected to conduct

experiments for the classification task. We provide a brief

review for these models as follows.
• A Decision Tree (DT) model (11) is trained to be able to

construct a tree data structure to make prediction
TABLE 1 Stats of the dataset.

Class # patients # visits

HBV 234 1,690

Cirrhosis 90 168

HCC 72 542

Total 396 2,400
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(classification or regression). An internal node of the

tree represents a feature, a branch is a learned rule, and a

leaf is a predicted outcome. During training, an

Attribute Selection Measure (ASM) is utilized to

determine which feature is used to split the dataset.

The two popular ASMs are information gain (IG) and

the Gini index. Taking IG as an example, the training

algorithm aims to maximize the overall IG value and

takes a greedy method to always select the feature that

yields the highest value of IG to build the tree

recursively.

• The Random Forest (RF) (12) works by aggregating a

collection of DTs, which are a group of weak learners to

constitute a more powerful predictive model via a voting

strategy (13). Since each DT is individually trained,

resulting in multiple uncorrelated trees, which helps

reduce the variance (14, 15).

• The Adaptive Boosting (ADA) Classifier (16) aggregates

a set of weak learners via a weighted sum of the

individual predicted results. ADA is featured by

adjusting the training strategy based on the

classification errors , with an aim to fix the

misclassified samples and improve the overall

predictive performance.
tiers in Immunology 04
• The Category Boost (CAB) model (17) is also an

ensemble model of DTs but focused on gradient

boosting. Also, the CAB classifier is featured with a

support of categorical features.

• The Extra Trees Classifier (ET) (18) works by fitting a

collection of DTs with randomization, namely, the extra

trees using a sampling strategy to train these trains with

different sampled dataset.

• The Light Gradient Boosting Machine (LGBM) (19)

model utilizes a best-first strategy to build a set of

DTs, improving the training efficiency compared to

the tree-boosting approaches.

• The Gradient Boosting Classifier (GBC) (20) adopts an

optimization framework to tackle the boosting

procedure by modeling it as a minimization problem

on the loss function. Specifically, a set of weak learners,

namely, DTs, are used jointly to train the classifier via a

greedy strategy, i.e., each DT node is split based on the

highest score of purity. The overall training algorithm is

an additive procedure, involving one DT to be updated

in a round, and the rest DTs are unchanged. The goal of

each tree addition is to improve the overall predictive

accuracy. Once the loss reaches a certain level, the

algorithm can be stopped.
FIGURE 1

An example diagram that showcases the distance-based method for HBV malignant progression analysis.
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• The K Nearest Neighbors (KNN) (21) model adopts a

voting strategy from its k-nearest neighbors to

determine the prediction outcome of the current data

point.

• The Linear Discriminant Analysis (LDA) (22) classifier

adopts the Bayes’ rule to derive a a linear boundary by

fitting the conditional class densities using the training

data. For each class, a Gaussian density is fit so that data

points belonging to different classes can be separated.

• The Logistic Regression (LR) (23) model can predict the

occurrence probability of an event, using the given

datasets with a set of data points in two classes.

Although originally designed for binary classification,

extension to multi-class classification is straightforward.

The model’s outcome is in between 0 and 1. A threshold

of 0.5 is usually used to determine positive vs. negative

classes when dealing with a classification problem.

• The Naive Bayes (NB) (24) model is based on the Bayes’

theorem. Specifically, a collection of supervised models

are trained with an assumption that two features in a

feature pair are conditionally independent given the

class label.

• The Quadratic Discriminant Analysis (QDA) (22)

model is similar to LDA but adopts a quadratic

decision boundary to distinguish the data points

belonging to two or more classes.

• The Ridge model (25) works by fistly converting the

targets from {0, 1} to {-1, 1}, and then treating the task as

a regression model to perform a gradient decent

optimization.

• The Support vector machine (SVM) (26) with a linear

kernel, is a discriminative that is widely used. The model

aims to find the optimal hyperplane in a high dimensional

space to separate the data points that need to be classified.

• The Extreme Gradient Boosting (XGB) (27) model is an

accurate and scalable version of boosting-tree models,

with an aim to optimize the computing efficiency and

predictive accuracy. XGB also uses regularization to

control overfitting (28).
2.4.2 Performance metrics
We adopt the Harrell’s C-index [10] (A.K.A. the

concordance index) to evaluate the performance of risk

models developed for survival analysis. The intuition is that

the risk model will assign a score indicatingthe chance of turning

negative for each patient, and the patient with a higher score

should have a shorter time-to-turning negative. The

computation of C-index involves a pair of patients i and j (i ≠

j), with the their scores si and sj and the observed time-to-turning

negative ti and tj. The patient pair (i, j) is said to be a concordant

pair if si > sj and ti< tj, or it becomes a discordant pair. With this

definition, the C-index can be given in Equation 1.
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C − index =
# concordant pairs

# concordant pairs + # discordant pairs
(1)

A value of C-index close to 0.5 means that the predicted

score is not better than coin flip to determine which patient’

HBV will turn negative in a shorter period of time. Also, a value

close to 1 indicates that the score can well reflect the fact that

which patient will be tested negative in HBV first.

For the classification task, we employ five metrics for

performance evaluation, including accuracy (Acc), precision

(Pre), recall (Rec), F1 score, and Area under the ROC Curve

(AUC). Equations 2 - 5 show the definitions of Acc, Pre, Rec, and

F1, respectively.

Acc =
TP + TN

TP + TN + FP + FN
(2)

Pre =
TP

TP + FP
(3)

Rec =
TP

TP + FN
(4)

F1 = 2� Pre� Rec
Pre + Rec

(5)

where the terms TP, FP, TN, FN stand for the corresponding

numbers of true positives, false positives, true negatives, and

false negatives, respectively. The ratio of false alerts is reflected in

Pre. The model has less false alerts the higher the pre. Rec

displays the number of missed positive samples in the meantime.

In other words, the less positive samples that have been

overlooked, the higher the Rec. For a classification assignment

with an unbalanced dataset, F1 represents the harmonic mean of

Pre and Rec and offers a better statistic than Acc. In addition, a

ROC curve (receiver operating characteristic curve) is a graph

that illustrates the overall performance of a classification model.

On a ROC curve, TPR versus FPR are presented for various

categorization criteria. When the classification barrier is

lowered, more objects are categorized as positive, which

increases FP and TP. AUC is the abbreviation for “Area under

the ROC Curve.” In other terms, the AUC is the area in two

dimensions below the entire ROC curve from (0,0) to (1,1). An

overall measure of performance across all potential classification

criteria is provided by AUC. AUC is not affected by classification

thresholds. Regardless of the categorization threshold that is

used, it evaluates the accuracy of the model’s predictions.
3 Results

Python 3.7.0 was used to run the experiments for this

investigation. PyCaret (29) was adopted to implement the

learning methods. Microsoft Office 365 Excel, Matplotlib 3.4.2,

and Seaborn 0.11 were used to plot the charts. A self-developed
frontiersin.org
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Pythonlibrary named BAIX (https://github.com/aibaix accessed

June 9th 2022) was used for data cleaning and exploratory data

analysis. For the classification task, the 2,400 samples were

divided into a training (1,675) and test (725) set in the ratio of

7:3. A five-fold cross validation (CV) was conducted on the

training data.
3.1 Results of survival analysis on HBV
turning negative

Figure 2 shows the duration distribution of HBV turning

negative for HBeAg (subfigure (a)) and HBsAg (subfigure (b))

biomarkers. It can be observed that 60 patients’ HBeAg have

turned negative with a mean of 33.6, a min of 5, and a max of130

months, respectively. For HBsAg, the cases were less (ten

patients), with a mean of 35.3, a min of 10, and a max of 79

months, respectively.
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Figure 3 shows two subfigures ((a) and (b)) for the estimated

survival functions of HBeAg and HBsAg-positive persistence for

ten random patients, with an overall C-index of 0.9104 and 0.9075,

respectively. It is observed that different patientspresent different

estimated probability of HBV turning negative. In subfigure (a),

four patients (2, 3, 7, 8) are more probable to have HBeAg turning

negative within 1,000 days, while the rest could take more than

3,000 days. Similar observations can be noted for patients 5 and 10

in subfigure (b). Since the survival function for each individual

patient can be plotted and compared with others, a patient and the

physician in charge can quickly understand the risk.
3.2 Results of malignant
progression analysis

Table 2 displays a three by three matrix that lists the average

pair-wise distance between a class of data points to the centroid
A B

FIGURE 2

(A) Duration distribution of HBeAg turning negative; (B) Duration distribution of HBsAg turning negative.
A B

FIGURE 3

(A) Estimated survival functions of HBeAg-positive persistence for ten random patients, with an overall C-index of 0.9104. (B) Estimated survival
function of HBsAg-positive for ten random patients, with an overall C-index of 0.9075.
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of the other class. It can be observed that data points in the same

class are closer to the centroid of its own class than points from

other classes, because the three elements on the diagonal are the

smallest vertically and horizontally.

Figure 4 shows two opposite examples of HBV progression.

Both patients in the two subfigures have been with HBV only.

The horizontal axis and the vertical axis represent the visit time

and the distance to the centroid of a class, respectively. Subfigure

(a) shows that patient A has been moving towards HCC,

indicating a malignant progression, because the its distance to

the HCC centroid has gradually dropped from 1.24 to 1.052 after

seven visits. The distances to HBV and cirrhosis do not change

much. On the other hand, in subfigure (b), the patients’ visit

records have been moving away from the centroids of all three

classes, indicating a potential of SVR.
3.3 Results of three-class classification

Table 3 reports the predictive results of the fifteen models

using a five-fold CV. Based on the CV results, we select the best-

performing model and evaluate it on the test set. Models in the

table are sorted by Acc, and the highest scores foreach metric are

marked in bold. We have the following observations.
Fron
• LGBM presents the highest scores in Acc (0.9548), Pre

(0.9511), and F1 (0.9489), the second highest Rec

(0.8015), and the third highest AUC (0.9892), making

it undoubtedly the best overall model among the fifteen

models.
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• The other top-five models following LGBM in the table

are ET, RF, XGB, and CAB, with an Acc of 0.9516,

0.9503, 0.9497, and 0.9478, respectively. The gaps

between LGBM and these models are minor (less than

1%). Another observation is that the top-five models are

tree-based, demonstrating the superior modeling ability

of tree-based models. Other traditional models, such as

SVM, LR, and NB do not fit well on our dataset.

Based on the results in Table 3, the best model,

namely, LGBM, is selected for a further evaluation on

the test set. Additional results for LGBM are presented in

Figures 5–7. The interpretations of these figures are as

follows.

• Figure 5-(a) plots the learning curve, which shows the

training and CV scores as more instances are utilized in

training. It can be seen that the training score reached

1.0 with only 400 training samples, while the CV score

was less than 0.9 with the same number of training

instances. As more samples participated in training, the

training - CV score gap narrowed down, posting a CV

score of 0.95, which partially addressed the overfitting

issue.

• The ROC curves and the calculated AUCs are shown in

Figure 5-(b). Five curves, including the ROC curves for

each individual class, the micro and macro-average ROC

curves, along with the corresponding AUC scores, are

reported. Since each ROC curve plots TPR vs. FPR at

various classification thresholds, AUC is threshold-

invariant. An ideal ROC curve stays to the top left area

of the chart, yielding an AUC score close to 1.0. In
TABLE 2 Distance from to.

From \To HBV Cirrhosis HCC

HBV 1.2517 1.2743 1.5866

Cirrhosis 1.283 1.216 1.4998

HCC 1.3915 1.3329 0.962
frontiers
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FIGURE 4

Malignant progression analysis for patient A (subfigure (A)) and patient B (subfigure (B)).
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Figure 5-(b), the AUCs for the three classes were 0.99,

0.96, and 1.0, and the micro and macro-average AUCs

were 1.0 and 0.98, respectively. The results show that the

selected LGBM model was robust and performed well

with different thresholds. However, we found that the

AUC score of 0.96 for class 1 (i.e., cirrhosis) overstated

its performance on this class, reflected by a relatively low

F1 for cirrhosis (see 6-(b)).

• Figure 6-(a) reports the confusion matrix of LGBM on

the test set. The results shown in the matrix are aligned

with our observations on the decision boundary chart.

Classes 0 (HBV) and 2 (HCC) were well-predicted, while

class 1 (cirrhosis) samples were easily classified into class

0, indicating that the current feature setting is effective to

separate HBV and HCC but not so effective to

distinguish HBV and cirrhosis.
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• Figure 6-(b) quantifies the results in the confusion

matrix with Pre, Rec, and F1 reported for each

individual class. It is shown that for class 1 (cirrhosis),

both Pre and Rec were low, leading to a low F1 (0.541).

Also, the number of samples for cirrhosis was only 45 in

the test set. The insufficient samples could be another

reason of this under-performance.

• Figure 7-(a) plots the decision boundary for the three

classes after the forty features were projected to a 2D

dimension space. Since LGBM is tree-based, the decision

boundary consists of a collection of horizontal and

vertical linesegments, attempting to separate the three

classes. It is noted that the blue samples (HBV) and

green ones (HCC) take different regions within the

plotted 2D space, and that the orange ones (cirrhosis)

are more difficult to be distinguished, as they are spread
TABLE 3 Performance comparison.

Model Acc AUC Rec Pre F1

LGBM 0.9548 0.9892 0.8015 0.9511 0.9489

ET 0.9516 0.9913 0.7954 0.9468 0.9457

RF 0.9503 0.9901 0.7846 0.9474 0.9434

XGB 0.9497 0.9865 0.7961 0.9445 0.944

CAB 0.9478 0.9824 0.7838 0.943 0.9414

GBC 0.942 0.9729 0.7877 0.9387 0.9361

DT 0.9287 0.919 0.7936 0.9259 0.9268

KNN 0.8917 0.9586 0.8336 0.9196 0.9013

QDA 0.8783 0.8916 0.6766 0.8869 0.8779

SVM 0.8 0 0.7518 0.8793 0.827

LR 0.7917 0.9296 0.7643 0.8845 0.8228

Ridge 0.7694 0 0.7691 0.8788 0.8011

LDA 0.7592 0.9285 0.7619 0.8727 0.7912

ADA 0.7344 0.8716 0.669 0.852 0.7762

NB 0.7287 0.8962 0.7038 0.8511 0.77
frontiers
The highest scores for each metric are marked in bold.
A B

FIGURE 5

(A) Learning curve for LGBM; (B) ROC curves for LGBM.
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across both areas taken by HBV and HCC points. This

observation is interesting, since it leads to our hypothesis

that if an HBV patient, after multiple visits, finds that a

clear visual path can be observed towards the centroid of

the HCC area, it may indicate that the risk of HCC has

been increasing for this patient.

• The feature importance data are displayed in Figure 7-(b),

where the top ten most important features are listed and

ranked by a variable importance score. The top ten

features are AFP, quantitative HBsAg, ALP, HGB, CHE,

quantitativeanti HBc, Cr, TP, LY, and quantitative HBeAg.
4 Discussion

Several studies showed the most indicative biomarkers were

involved in anti-HBV infection immunotherapy. Secretion of

HBsAg and HBeAg promoted macrophage polarization from

M1 phenotype towards M2 via the SIRT1/Notch1 pathway (30).

Inhibitory receptor programmed death receptor 1 (PD-1) which

contributes to T cell exhaustion was well-tolerated in chronic
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hepatitis B virus infection (CHB) HBeAg-negative patients,

which caused HBsAg decline in most CHB patients (31).

Furthermore, macrophage polarization and T cell exhaustion

are both related to tumor immunotherapy, which reminds us

biomarkers identified in the study may provide a new potential

target for immunotherapy.

This study collected real-world electronic health record (EHR)

data from 25 hospitals in China and built a cohort of 480 patients

with HBV infection at different stages, including 1) patients with a

sustained virological response (SVR), 2) patients with HBV

chronic infection and without further development, 3) patients

with cirrhosis, and 4) patients with HCC. Each patient has been

monitored periodically, yielding multiple visit records that can be

utilized to train predictive models. Specifically, we develop three

machine learning (ML)-based models for three learning tasks,

including 1) an SVR risk model for HBV patients via a survival

analysis model, 2) a risk model to encode the progression from

HBV cirrhosis andHCC using dimension reduction and clustering

techniques, and 3) a classifier to detect HCC using the visit records

with high accuracy (over 95%). Our study shows the potential of

offering a comprehensive understanding of HBV progression via a
A B

FIGURE 6

(A) Confusion matrix for LGBM; (B) Classification report for LGBM.
A B

FIGURE 7

(A) Decision boundary chart for LGBM; (B) Feature importance chart.
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predictive and multi-factor analysis using data with pure blood

biomarkers. The most indicative biomarkers identified in the study

may serve as biomarkers that can be used for immunotherapy.

The proposed method can be extended in the following

directions. First, since the visit records for a patient are

sequential, it would be feasible to apply sequential models

such as gated recurrent units (GRU), long short-term memory

(LSTM), and Bidirectional Encoder Representations from

Transformers (BERT) for predictive analysis. Second, this

study demonstrate the feasibility of the three predictive tasks

applied on a small dataset with only 396 patients. The

experiments can be readily extended to a dataset at a large scale.
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