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Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative

therapeutic option for many patients with hematological malignancies and

nonmalignant hematopoietic disorders. To achieve stable engraftment of

donor hematopoietic stem cells (HSCs), recipient HSC deletion is needed to

create space for incoming donor HSCs and donor HSCs must escape immune

rejection by the recipient. Conventional allo-HSCT requires high dose of

irradiation and/or chemotherapy to produce sufficient host stem cell and

immune system ablation to permit donor HSC engraftment. However, these

procedures also result in nonspecific tissue injury that can cause short- and

long-term adverse effects as well as incite and amplify graft-versus-host-

disease (GVHD). The delivery of targeted radiotherapy to hematopoietic

tissues with the use of a radioimmunoconjugate (ROIC) as a part of

transplant preparative regimen has shown clinical benefits. ROIC clinical data

provide evidence for decreased relapse without increased transplant-related

mortality by delivering higher targeted radiation to sites of malignancy than

when given in a nontargeted fashion. An alternative approach to allo-HSCT has

been developed and tested in preclinical mouse models in which

nonmyeloablative preconditioning with low dose of the alkylating agent

(busulfan) or lower systemic dose of irradiation combined with co-

stimulatory pathway blockade (CTLA4-Ig, anti-CD40L monoclonal antibody)

and/or immunosuppressive drugs have been used. Under these conditions,

mixed chimerism and transplantation tolerance to fully MHC mismatched

donor marrow was observed. Recently, several novel proof-of-concept

antibody-mediated preconditioning methods have been developed that can

selectively target hematopoietic stem and immune cells with minimal overall

toxicity. Antibody-drug-conjugate (ADC) combined with reduced intensity

conditioning or high dose ADC as single dose monotherapy have shown

promise for allo-HSCT in preclinical models. The purpose of the current

review is to discuss the literature exploring antibody-based conditioning that

includes native antibody, radiolabeled antibody conjugates, and ADC for

allo-HSCT.
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Introduction

Hematopoietic stem cells (HSCs) replenish the blood system

throughout the life span of an organism and maintain

homeostasis. Hematopoietic stem cell transplantation (HSCT)

is an effective treatment modality that enables replacement of

host HSCs with HSCs from a healthy donor or genetically

corrected HSCs from the patient (1). Although HSCT is most

often performed for the treatment of malignancies, HSCT has

been successfully employed as treatment of nonmalignant

lymphohematological disorders such as thalassemia, sickle cell

anemia, aplastic anemia, inherited immunodeficiencies,

autoimmune diseases, and metabolic storage disorders (2–10)

and for tolerance induction in transplant patients receiving solid

organ grafts (11, 12). For engraftment of allogeneic or gene

corrected autologous HSCs, two obstacles must be overcome.

First, recipient HSCs must be depleted to create niche space for

incoming donor HSCs, and second, the transplanted cells must

escape immune rejection by the recipient.

HSCT conditioning varies in the degree of myelosuppression

and immune suppression from high-dose myeloablative to

reduced intensity conditioning (RIC). These conditioning

regimens also can result in short-term and long-term

complications including multi-organ damage, mucositis, need

for frequent red blood cell and platelet transfusions, infertility,

and secondary malignancies (13, 14). Allo-HSCT immune

complications including multiorgan toxicity associated with

conditioning regimens also can incite and amplify graft-versus-

host disease (GVHD), limiting the broader array of allo-HSCT

applications (15, 16). The choice of RIC depends upon host factors

such as age, organ system dysfunction, Hematopoietic

Cell Transplantation-specific Comorbidity Index (HCT-CI),

Pretransplant Assessment of Mortality (PAM) score, disease risk,

GVHD prophylaxis, and donor graft characteristics. For patients

with hematological malignancies, the use of RIC is predicated on

evidence that the higher-dose regimens may not necessarily offer

an advance over RIC in decreasing tumor recurrence, despite the

observed increased toxicity (17). While in some nonmyeloablative

settings, graft-versus-tumor (GVT) activity was sufficient to

diminish or eliminate tumor burden to a comparable extent as

myeloablative conditioning, more commonly, lower non-relapse

mortality rates were offset by higher relapse rates (18–20). For

patients with nonmalignant diseases, the risk of GVHD

complications outweighs the potential of a graft-versus-

hematopoietic effect that can facilitate alloengraftment (21). As

such, there is a considerable interest in finding less toxic

myeloablative or RIC conditioning approaches without

compromising the positive anti-tumor effects, especially for

patients that qualify for RIC and those with nonmalignant disease.

Depending on several donor and host factors and the degree

to which RIC regimens eliminate or otherwise incapacitate the

host hematopoietic and immune compartments, outcomes can
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include full or partial chimerism, autologous recovery or aplasia.

In situations of partial chimerism, the progressive replacement of

host lymphopoiesis and hematopoiesis with the donor’s immune

and hematopoietic systems is possible (22). In the absence of

donor and endogenous host hematopoietic recovery, graft failure

causes a prolonged time period of aplasia and risk of infection due

to susceptibility to viral, bacterial and fungal infections. Disease

progression may be observed due to lack of donor immune

competent cells needed to mount a successful attack on

malignant cells that have escaped conditioning.

Myeloablative conditioning regimens include alkylating

agents, DNA synthesis inhibitors and/or total body irradiation

(TBI) that may serve the dual purpose of treating malignant

disorders. For patients with nonmalignant disease, the goals of

nonmyeloablative regimens are to prevent rejection of donor cells

and open marrow niches of sufficient magnitude and duration to

treat the underlying disease while minimizing toxicity. Preclinical

studies, including ours, have shown that blocking the CD40/

CD40L costimulatory pathway by administering anti-CD40L

(anti-CD154) blocking monoclonal antibody (mAb) can

effectively induce tolerance in solid organ transplantation

models and augment donor bone marrow (BM) alloengraftment

in sublethally irradiated recipients of MHC-disparate donor grafts

(23–29). In a murine model of sickle cell disease (SCD), recipients

conditioned with low dose of the alkylating agent (busulfan) along

with anti-CD40L mAb and the fusion protein, CTLA4-Ig that

blocks the CD28/CTLA-4 costimulatory pathway became mixed

chimeras that permitted the acquisition of normal red blood cell

morphology without evidence of GVHD (30). In other studies,

mice conditioned with minimal (100-200 cGy) TBI, anti-CD40L

mAb, and the mammalian target of rapamycin inhibitor,

sirolimus, facilitated alloengraftment and induced profound

donor tolerance with uniform donor skin graft acceptance (31).

Engraftment in the complete absence of cytoreductive

conditioning also has been possible in mice receiving repetitive

infusions of donor BM and anti-CD40L mAb (26) or a very high

number of donor BM cells (termed “megadose”) in the context of

anti-CD40L mAb and CTLA4-Ig (27); notably, anti-CD40L mAb

and CTLA4-Ig are also effective in inhibiting donor anti-host T cell

responses culminating in GVHD (25, 32). On the far end of the

spectrum, nonirradiated mice given a single high BM dose (80×106

cells), anti-CD40L mAb and sirolimus had macrochimerism levels

ranging from 6-15%. With 8 repeated BM doses totaling 160×106

cells (~8×109/kg), anti-CD40L mAbmonotherapy in the absence of

sirolimus resulted in chimerism levels ranging 6% to 12% (26).
Naked antibody-mediated
cytoreduction to facilitate allo-HSCT

An alternative strategy to safely engraft MHC-mismatched

HSCs without chemoradiotherapy would be to employ mAbs
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that can ablate the recipient’s hematopoietic and immune

systems or the hematopoietic system in an immune deficient

setting. mAb-based approaches that target CD45 (or c-kit; see

below) for recipient HSC depletion have shown promise as non-

genotoxic HSCT conditioning agent. As both precursor and

mature hematopoietic cells express CD45, anti-CD45 mAb

represents an attractive target for HSCT conditioning. CD45 is

a membrane glycoprotein whose expression and glycosylation

patterns are controlled in a leukocyte-specific manner (33, 34).

CD45 is widely expressed in the hematopoietic system,

participates in the regulation of lymphocyte activation and

maturation, as well as thymic selection (35). All mature

leukocytes including tissue-seeded lymphocytes and BM

seeded precursor cells express CD45 (35, 36), whereas CD45

dim expression on HSCs has been documented in different

species (37, 38). Multiple isoforms for CD45 exist with

molecular weights ranging from 180 to 220 kDa (39, 40).

Naked mAbs targeting CD45 have been tested for HSCT

conditioning both in mice and human transplantation. In a

syngeneic model, a cytolytic anti-CD45 mAb (30F11) treatment

alone did not allow donor engraftment. Mice given 5.5Gy TBI

and 4×107 BM cells had a mean of ~75% engraftment that did

not significantly increase with the addition of the four daily

doses of 30F11 mAb. In an allogeneic model in which recipients

were given two doses of 2×107 BM, donor chimerism induced by

combining anti-CD45 mAb and 8Gy TBI resulted in almost full

alloengraftment in marked contrast to mean donor levels of <5%

with 8Gy TBI or anti-CD45 mAb alone (38). The lack of

adequate conditioning with naked anti-CD45 mAb (30F11)

likely occurred as a result of the depletion of lymphoid cells

only by host lytic mechanisms, such as complement fixation

and/or antibody-dependent cellular cytotoxicity (ADCC), with

sparing of myeloid progenitors, necessitating the addition of TBI

(41). Similarly, rat anti-human CD45 mAb clones (YTH24.5 and

YTH54.12) reduced mature leukocytes and leukemic blasts in

BM of patients with acute leukemia but without relevant effects

on myeloid precursor cells (41). In an antibody-based minimal-

intensity conditioning regimen in patients, anti-CD45 mAbs

(YTH24.5 and YTH54.12) along with alemtuzumab (anti-

CD52), fludarabine, and low dose cyclophosphamide (Cy)

accomplished both myelosuppression and immunosuppression

(42). Of 16 high-risk patients with primary immunodeficiency

disorders who received allo-HSCT, 15 engrafted, 69% achieved

full or high-level mixed chimerism in both lymphoid and

myeloid lineages and 19% experienced chimerism but only in

the T-lymphoid lineage. For the entire cohort, 81% of this high-

risk cohort survived at a median of 40 months (42). Even in these

immunodeficiency patients, sufficient alloengraftment with

naked anti-CD45 mAb required genotoxic agents.

Signaling engaged by c-kit ligand binding to KIT, a dimeric

transmembrane receptor tyrosine kinase expressed by HSCs and

their progenitors (43), is essential for HSC homing, proliferation,

adhesion, maintenance, and survival (44, 45). The significance of
Frontiers in Immunology 03
c-kit in HSC regulation can be demonstrated in mildly anemic

W41/W41 mice that have a partial loss of KIT function resulting

in reduced HSCs and are readily reconstituted by congenic HSCs

with minimal radiation conditioning (46, 47). Administration of

ACK2, a blocking anti-mouse c-kit mAb first reported in 2007

targeted reduction in HSCs of sufficient magnitude to allow

congen i c donor BM engra f tment in Rag2 - / -g c - / -

immunodeficient mice (48). ACK2 given in utero eliminated

fetal HSCs in developing mouse embryos and permitted

congenic HSC engraftment in neonates (49). Similarly,

significant donor engraftment was seen following HSCT in a

mouse model of Fanconi anemia (FA) that has an inherent HSC

defect; CD4 depletion and c-kit mAb further improved

multilineage donor engraftment in this minor histocompatibility

antigen mismatch transplant model as compared to c-kit mAb

(50). Whereas ACK2 as a single agent was incapable of

conditioning immunocompetent adult mice, adding sublethal

TBI permitted meaningful donor chimerism (51). Further, anti-

c-kit mAb with low dose of irradiation provided modest long-

term engraftment in non-human primates (52).

In other studies, ACK2 and anti-CD47 mAbs were infused

into immunocompetent, non-anemic F1 recipients given

parenteral donor congenic lineage (neg) BM. At least 50% of

HSCs, myeloid cells, B cells and NK cells were of donor origin,

while mean donor T cell chimerism was ~30% (53). Here, anti-

CD47 Ab worked as a myeloid-specific immune checkpoint

inhibitor that blocks a “don’t eat me” signal in monocytes and

macrophages (54) to improve ACK2 mediated HSC depletion by

ADCC. In a donor and host minor histocompatibility antigen

disparate model, mean engraftment levels of ~20% donor HSCs

and myeloid cells were seen with ACK2, anti-CD47 mAb, and

anti-CD4 plus anti-CD8 mAbs. Without anti-CD47 mAb, ACK2

and anti-CD4 plus anti-CD8 mAbs induced T cell depletion

that was insufficient to provide mean donor chimerism

levels of >5% (53). To engraft MHC-mismatched HSCs into

immunocompetent recipient mice (55), 4 antibodies (anti-

CD117, anti-CD47, anti-CD122, and anti-CD40L) were given

to haploidentical recipients of nonmanipulated BM cells,

resulting in ~20% mean donor chimerism (55). Although

transplantation with purified lineage-Sca-1+c-kit+ (LSK) cells

failed to engraft, adding anti-CD4 and anti-CD8 depleting Abs

improved mean chimerism up to 30%. Engraftment of

haploidentical LSK cells induced tolerance to matched heart

grafts without loss of transplantation immunity against foreign

tissues. All 6 mAbs followed by infusion of donor LSK cells into

MHC-mismatched recipients resulted in ~50%mean chimerism,

albeit less than mean chimerism levels of >95% in high dose TBI

conditioned recipients (55). These data support Ab mediated

conditioning for potential broad application in both

hematopoietic allotransplantation and tolerance induction in

solid organ transplantation.

The myelodysplastic syndromes (MDS), a group of clonal

disorders, are characterized by ineffective mature blood cell
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1031334
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Saha and Blazar 10.3389/fimmu.2022.1031334
production and increased risk of progression to acute myeloid

leukemia (AML). Successful elimination of MDS HSCs is an

important part of curative therapy. The MDS HSC depletion

potential of anti-human c-kit mAb (SR-1; CD117) was tested in a

xenograft mouse model in which BM from MDS patients was

infused. SR-1 and the humanized anti-c-kit mAb, AMG 191, each

depleted MDS HSCs in xenografted mice and facilitated

engraftment of normal donor human HSCs thereby restoring

normal hematopoiesis (56). In non-human primates, injection of

a humanized anti-human c-kit mAb, AMG 191 provided

measurable hematopoietic stem and progenitor cell depletions

(57). Currently a human trial is in progress in children with

severe combined immunodeficiency (SCID) using AMG 191 as a

conditioning agent to facilitate BM niche clearance before infusion

of CD34+ enriched grafts (clinicaltrials.gov NCT02963064).

Radiolabeled antibody as
conditioning for stem cell
transplantation

Allo-HSCT is the only curative therapy for many patients

with advanced AML. However, treatment related toxicity and

relapse are still major cause of morbidity and mortality. To

increase the radiation dose delivered to the target organs while

further reducing the late toxic effects of external beam g-
irradiation, strategies using radioimmunotherapy (RIT)

targeted toward hematopoietic tissues as a part of the

conditioning regimen have been investigated. RIT, which

employs an a-, b- and/or g-emitting radionuclide conjugated

to a targeting Ab, is effective for delivering cytotoxic doses of

radiation to a cell type of interest while minimizing off-(tumor)

target toxicity. Radiolabeled Abs can target high doses of

radiation to lymphoid tissues with at least 2- to 3-fold more

radiation delivered to BM, and at least 5-fold more to the spleen

and other sites of AML, while sparing normal organs (58–64).

CD45 is present at high density on all hematopoietic cells and at

least 90% of myeloid leukemias express CD45 (65), making

CD45 an attractive target for myeloablative conditioning in

patients with AML and MDS.

The myeloablative and immunosuppressive effects of b- and
g-emitter iodine-131 (131I) conjugated to an anti-CD45 mAb

(30F11) were evaluated in CD45 congenic and H2-mismatched

murine marrow transplant models (66). Recipients conditioned

with 0.5 mCi 131I-anti-CD45 Ab (~17Gy) or 8Gy TBI followed

by T cell depleted BM resulted in >80% donor chimerism in a

congenic HSCT setting, in contrast to the higher TBI dose

(14Gy) that was necessary for allogeneic engraftment.

Although MHC-mismatched engraftment occurred in only 3

of 11 mice receiving 1.5 mCi 131I-anti-CD45 Ab, engraftment

frequency improved significantly in recipients conditioned with

0.75 mCi 131I-anti-CD45 Ab along with subablative 8Gy TBI,

suggesting radiolabeled Ab can partially replace TBI
Frontiers in Immunology 04
conditioning (66). The immunosuppressive effects of 131I-anti-

CD45 Ab were also evaluated in an MHC minor mismatch

transplant model (67). T cell depleted BM engraftment could be

detected in 86% of the recipients treated with 0.75 mCi of 131I-

anti-CD45 Ab alone and in 100% of mice treated with either

10Gy TBI alone or 0.75 mCi of 131I-anti-CD45 Ab and 2Gy TBI,

demonstrating the radiation delivered by 0.75 mCi of 131I-anti-

CD45 Ab provides a biological effect equivalent to 8Gy TBI (67).

Orozco JJ and colleagues have reported that recipients

conditioned with a b-emitter yttrium-90 (90Y) conjugated to

an anti-CD45 mAb combined with pre- and posttransplant Cy

in the absence of TBI or fludarabine facilitated high levels of

haploidentical BM engraftment and improved survival in a

murine leukemia model (68).

a-emitters with short path length and high linear energy

transfer could be more suitable for the delivery of highly

localized cytotoxic radiation with minimal nonspecific

radiation in surrounding tissues as an HSCT conditioning

regimen. The a-emitter bismuth 213 (213Bi) conjugated to an

anti-CD45 mAb (CA12.10C12) was evaluated as a replacement

for 2Gy TBI in a canine model of nonmyeloablative dog

leukocyte antigen (DLA)-identical marrow transplantation

(69). Recipients were conditioned with 213Bi-anti-CD45 Ab

followed by BM engraftment from DLA-identical littermates

and were treated with mycophenolate mofetil combined with

cyclosporine for posttransplant immunosuppression. This

nonmyeloablative conditioning regimen resulted in stable

long-term donor chimerism ranging 30-70% in all recipients.

To reduce toxicity associated with external g-beam radiation,

Chen et al. investigated the potential of anti-canine CD45 mAb

conjugated with an a-emitter, astatine-211 (211At) as a

conditioning regimen in DLA identical HSCT (70).

Conditioning of recipients with 211At-anti-CD45 Ab along

with posttransplant immunosuppression consisting of

mycophenolate mofetil and cyclosporine resulted stable long-

term donor engraftment. The immunosuppressive potential of

anti-CD45 mAb conjugated to 211At was also evaluated in a

canine model of autologous gene transfer. Successful

myelosuppression with rapid autologous recovery and minimal

off-target toxicity, but only minimal durable engraftment

occurred because of a low transduced cell dose (71). In a

canine pre-sensitization model using donor blood transfusions,

dogs receiving 9.2Gy TBI followed by DLA-identical marrow

grafts had graft rejection in 100% of the recipients. However,

conditioning of recipients with 211At-anti-CD45 Ab along with

TBI was successful in abrogating graft rejection in 86% of the

recipients (72).

Lytic anti-CD45 mAb or anti-CD45 mAb RIT with standard

chemotherapy have been tested in the clinic for conditioning of

patients with hematological malignancies with the dual benefit

that hematological malignancies are CD45+ (63, 64, 73, 74).

Inclusion of a 90Y-DOTA conjugated to anti-CD45 mAb (BC8),

with a standard RIC regimen before allo-HSCT for patients with
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unfavorable risk multiple myeloma, proved both feasible and

well-tolerated (75). This regimen did not result in increased

grade ≥ 3 toxicities beyond those expected with alkylating agent

and TBI alone (76, 77). Although a maximum dose of 32Gy was

delivered to the liver, no grade III/IV dose-limiting-toxicities

were observed and no dose related transaminitis was seen,

suggesting that patients may tolerate even higher hepatic doses

using 90Y-anti-CD45 mAb combined with RIC. Toxicity was not

increased with 131I-anti-CD45 mAb added to myeloablative

regimens (58, 60, 64, 78). These examples of targeted RIT

deliver high doses to sites of heme malignancies while

minimizing other organ toxicities. Notably, anti-CD45 Ab RIT

induces neutropenia, lymphopenia, and thrombocytopenia

similar to conventional conditioning (63, 70).

Antibody-drug-conjugate as
conditioning for stem cell
transplantation

Toxicity associated with chemotherapy or radiation-based

conditioning remains a major obstacle for the broader

application of HSCT. There is a considerable interest in

finding less toxic and more focused approaches to achieve BM

conditioning. mAb-based conditioning agents are expected to

have much less off-target toxicity than traditional non-targeted

modes of cell killing. An alternative mAb-based approach to

conditioning involves the use of immunotoxin conjugated to

mAbs targeting HSCs, facilitating alloengraftment of

transplanted cells while maintaining marrow cellularity

(Figure 1). Saporin (SAP) and other protein-based

immunotoxins have been widely tested in cancer therapy, with

greater success for hematological malignancies than solid

tumors (79). SAP is a ribosome-inactivating protein with

potent cell-cycle-independent cytotoxic activity (80) that can

be targeted to specific cell types by conjugation to a mAb

directed against cell-surface antigen. SAP is released

intracellularly following receptor-mediated internalization

resulting in the halting of protein synthesis and induction of

cell death (80). Palchaudhuri et al. used anti-CD45 mAb SAP

conjugates to deplete HSCs and hematopoietic precursors

resulting in durable multilineage donor engraftment (~90%) in

immunocompetent mice (81). CD45-SAP conditioning caused a

less adverse immediate effect on BM cellularity and preserved

thymic function; immune reconstitution appeared early in such

recipients as compared to those receiving TBI. Importantly,

investigators have shown that pretreatment with a higher dose

of CD45-SAP followed by transplantation with congenic BM

cells could completely normalize erythropoiesis in a mouse

model of human SCD (81). Czechowicz et al. used a similar

approach with CD117-SAP as a nonmyeloablative conditioning
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strategy. CD117-SAP monotherapy enabled robust BM/HSC

transplantation in an immunocompetent mouse model

avoiding clinically significant collateral damage across tissues

(82). The lack of CD117 expression on mature lymphocytes

helped maintain immune cell function following treatment with

CD117-SAP including retention of effective responses by

recipients against both viral and fungal challenges (82). The

efficacy of conditioning with CD45-SAP was evaluated in two

mouse models of recombinase-activating gene (RAG) deficiency

(83). Recipients conditioned with RIC (2Gy TBI) or with CD45-

SAP alone resulted in low and intermediate levels of donor

engraftment in both the BM and thymus. CD45-SAP with 2Gy

TBI resulted in more robust donor engraftment with faster

kinetics in both models comparable to conditioning using 8Gy

TBI dose. Compared to TBI, CD45-SAP based conditioning

allowed significant improvement of thymic architecture and

matura t ion of thymic ep i the l i a l ce l l s suppor t ing

thymopoiesis (83).

In models of FA and hemophilia A (HA), ADCs were

utilized as alternative conditioning regimens (84, 85). FA

complement group A (FANCA) knockout mice were

conditioned with CD45-SAP, CD117-SAP, or Cy followed by

transplantation with unmanipulated BM cells from

heterozygous healthy donors. ADC conditioning resulted in

HSC depletion comparable to Cy treatment, but with

substantially less toxicity, and facilitated donor engraftment to

levels comparable to Cy conditioning (84). Gao et al. found that

a combination of CD45-SAP and CD117-SAP as nongenotoxic

preconditioning was effective for factor VIII (2bF8) gene therapy

in HA mice. ADC preconditioning permitted long-term

engraftment of 2bF8 lentivirus-transduced HSCs, resulting in

continued FVIII expression. Supplementing CD8-targeting SAP

further improved donor chimerism and FVIII expression in all

recipients (85). Although promising, none of these studies

evaluated ADC-based nongenotoxic conditioning alone for

allo-HSCT (81–85).

Because allo-HSCT is much more challenging to accomplish

than syngeneic or congenic HSCT due to the requirement to

overcome T cell- and/or NK cell-mediated rejection to enable

meaningful engraftment (86, 87), fewer studies have considered

ADC-based conditioning for allo-HSCT. Using a fully MHC-

mismatched transplantation model, recipients were conditioned

with CD117-SAP followed by transient immunosuppression and

immune modulation (depleting anti-CD8 mAb, non-depleting

anti-CD4 and anti-CD154 mAbs, sirolimus) before

transplantation with BM cells (88). Chimerism was not

observed following BM transplantation in unconditioned mice,

mice conditioned with unconjugated anti-CD117 Ab, or mice

conditioned with isotype-control Ab (Iso-SAP). Whereas stable

donor chimerism with mean levels of ~50% was observed in 93%

of the recipients conditioned with CD117-ADC and transient
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immunosuppression. Stable chimeras experienced long-term

survival of donor-specific skin allograft (88). In another study,

using murine allo-HSCT model, Persaud et al. have shown that

recipients conditioned with Baricitinib (JAK1/2 inhibitor) and

CD45-SAP or CD117-SAP followed by BM transplantation

resulted in robust multilineage alloengraftment (89). Unlike

TBI-based conditioning, ADC-based conditioning did not

promote GVHD alloreactivity in F1 mice challenged with

parental splenocytes. Interestingly, using a donor lymphocyte

infusion model for graft-versus-leukemia response (GVL), a

combination of CD45-ADC and JAK1/2 inhibition provided a

balance between tumor control and GVHD outcome as

compared to either treatment alone. These data suggest that

ADC-based conditioning can provide a suitable platform for the

treatment of AML without inducing GVHD (89).
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Recently we demonstrated the efficacy of CD45-ADC as a

conditioning strategy for multilineage donor engraftment in

three distinct mouse transplant models (90). Anti-mouse

CD45-ADC, an anti-CD45 mAb engineered for rapid half-life

clearance conjugated with a DNA crosslinker payload from the

pyrrolobenzodiazepine (PBD) class, effectively promoted

alloengraftment. The payload used to develop ADC is tesirine,

a PBD dimer that kill cells by antimitotic activity (91). A single

dose of CD45-ADC (3 mg/kg) as monotherapy mediated

complete depletion of hematopoietic stem and progenitor cells

in BM and hematopoietic cells as well as mature lymphocytes in

peripheral organs, resulting in robust engraftment in both

congenic and minor mismatched transplant models. In an

MHC-disparate allo-HSCT model, pretransplant CD45-ADC

(3 mg/kg) combined with low-dose TBI and tolerogenic anti-
frontiersin.org
FIGURE 1

Conditioning approaches for MHC mismatched transplantation. A nonmyeloablative conditioning regimen consist of antibody-drug conjugate
(ADC) targeting hematopoietic stem cells (HSCs) along with immune suppression and/or transient immune regulation can enable durable
alloengraftment in fully MHC-disparate HSCT recipients. Immunotoxins that can efficiently deplete hematopoietic stem and progenitor cells,
and/or lymphoid cells may allow robust donor engraftment with great potential to confer the benefit of fully myeloablative conditioning but
with significantly reduced toxicity.
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CD40L mAb enabled 89% of recipients to achieve stable

alloengraftment. Adding a JAK inhibitor posttransplant further

improved alloengraftment. Most strikingly, conditioning fully

allogeneic recipients with a single dose of 5 mg/kg or 2 doses of 3

mg/kg CD45-ADC was sufficient for stable multilineage donor

engraftment (mean engraftment, >90%) without irradiation or

additional immunosuppression, and engraftment potential was

comparable to lethal TBI conditioning. Importantly, evidence of

potential PBD-related cardiotoxicity was absent by histology.

Recipients in all groups remained healthy with almost 100%

survival throughout the observation period following allo-HSCT

and did not develop any sign of GVHD. Thus, CD45-ADC given

pretransplant has the potential utility to confer the benefit of

fully myeloablative conditioning but with substantially reduced

toxicity when given as a primary agent at a lower dose or at a

high dose as monotherapy (90).

We have evaluated the plasma drug concentration of

intravenous-administered CD45-ADC versus isotype-ADC

over a time course (90). At all doses, CD45-ADC was

detectable immediately post infusion, and plasma drug

concentration declined rapidly, reaching lower quantification

limits by 48 hours. Calculated CD45-ADC clearance and

exposure established a substantial target-mediated drug

disposition (TMDD) due to a broad CD45 expression profile

coupled with a desired rapid half-life (2 to 4 hours for CD45-

ADC groups) suitable for juxtaposition to hematopoietic cell

infusion. Compared with 3 mg/kg CD45-ADC, isotype-ADC at

3 mg/kg demonstrated a longer half-life (15.3 hours) and higher

area under the curve (AUC)-based exposure (3.8-fold), as

expected due to lack of TMDD. CD45-ADC mediated

depletion of recipient HSCs and mature lymphocytes were

routinely evaluated before BMT and based on our findings all

HSCT experiments were performed 2-3 days post conditioning

(90). In contrast to studies using CD45-SAP mediated

conditioning that were performed 7-8 days post conditioning

(83–85, 89), the payload used for CD45-ADC was PBD that has

a short half-life in mice. Similarly, CD117-SAP mediated

depletion of recipient HSCs were evaluated before BMT and

HSCT experiments were performed 6-8 days post conditioning

(82, 84, 85, 88). Lastly, unconjugated antibodies were also given

6-7 days prior to BMT for HSCT conditioning (48, 50, 53, 55).

All these published data suggest that investigators provided

sufficient time for clearance of antibodies (conjugated or

unconjugated) from serum of recipients before HSCT to avoid

antibody mediated elimination of donor stem cells.

For CD45-ADC, there is a broad reactivity and hence

depletion of lymphohematopoietic cells would impair host

anti-donor immune rejection responses. Whereas CD117 is

expressed not only on HSCs but also on a subset of NK cells,

common lymphoid progenitors (CLP), common myeloid
Frontiers in Immunology 07
progenitors (CMP), and prothymocytes that require c-kit for T

cell development. CD117-SAP mediated substantial reduction of

host HSCs and their progeny through the CLP and CMP

differentiation stages overwhelms the host capacity to reject

donor HSCs that would have an advantage in competing for

BM HSC niches. Further, hybrid resistance accounts for the

capacity of parental host NK cells to reject F1 donor BM cells, an

immune response that is ineffective when high donor BM cell

doses are given to mice. An analogous situation is seen in

patients who receive “megadose” transplants and have a higher

likelihood of alloengraftment than when conventional BM doses

are used.
Conclusion

Currently, conditioning with alkylating agents alone or

with TBI is commonly used in clinical allo-HSCT. These

cytotoxic interventions have been deemed useful for patients

with malignant diseases. A different situation exists for non-

malignant disorders who do not require tumor cytoreduction.

Immunotoxin-based approaches (Table 1) are receiving greater

attention due to lower toxicity compared with chemotherapy

or TBI conditions that achieve comparable alloengraftment

levels. Recent findings in murine models (53, 55, 81–85, 88–

90), nonhuman primates (57, 92), and early human trials (93)

support the feasibility and efficacy of antibody and ADC based

approaches for cellular therapies. Additional preclinical work

will help assess the dosing schedule, safety, age of recipients,

the optimal donor cell numbers, the efficacy of other ADCs

with superior HSC-depletion potential and degree of off-target

specificity. The requirement for receptor-mediated ADC

internalization for target cell killing limits the risks of off-

target and bystander toxicity. The clinical utility of

immunotoxins has been widely tested and safety data

available from previous clinical trials can facilitate the

clinical translation of immunotoxins for allo-HSCT

conditioning. Anti-CD45 mAb RIT continues to have a place

as an established strategy for focused elimination of

hematopoietic lineage cells. The relative risk:benefit ratio of

these approaches (Table 2) in the clinic is becoming better

understood. For allo-HSCT, ADC-based approaches should

significantly reduce major complications and side-effects as

compared to standard conditioning regimens and would be

more beneficial for patients with nonmalignant disorders

including primary immune deficiencies, hemoglobinopathies,

inborn errors of metabolism, SCID, and marrow failure

syndromes such as Fanconi anemia, where partial donor

chimerism can improve the disease condition. Optimization

of strategies for allo-HSCT and translation to human clinical
frontiersin.org
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TABLE 1 Antibody-based approaches for hematopoietic stem cell transplantation.

HSC targeting
agent

TBI Immune
modulation

Drugs Donor graft BM / HSC
dose

% Chimerism Organ
graft

Reference

Naked mAb

Anti-mouse CD45
(Clone 30F11)

-
5.5Gy
-

8Gy

-
-

Anti-CD4 +
Anti-CD8

-

-
-
-
-

Congenic
Congenic

MHC mismatch
MHC mismatch

4×107 BM
4×107 BM
4×107 BM
4×107 BM

<2% (day 30)
~80% (day 30)
<5% (day 30)
>95% (day 30)

-
-
-
-

(38)

30F11 -
5.5Gy
-

8Gy

-
-
-
-

-
-
-
-

Congenic
Congenic

MHC mismatch
MHC mismatch

4×107 BM
4×107 BM
4×107 BM
4×107 BM

<2% (3 months)
65% (3 months)
<5% (3 months)
>90% (3 months)

-
-
-
-

(41)

Anti-mouse c-kit
(Clone ACK2)

– – – Congenic 35×103 HSC ~90% (24 weeks) – (48)

ACK2 – Anti-CD4 – Minor mismatch 2×107 BM 63% (Fanca-/-) (38 weeks)
93% (Fancd2-/-) (38 weeks)

– (50)

ACK2 3Gy – – Haploidentical 1×106 BM ~79% (24 weeks) – (51)

Naked mAb

ACK2
ACK2

-
-

Anti-CD47
Anti-CD47+ Anti-CD4/8

-
-

Haploidentical
Minor mismatch

3×106 Lin-
BM

15×104 LSK
HSC

60% (24 weeks)
~20% (24 weeks)

-
-

(53)

ACK2 -
-
-

Anti-CD47+
Anti-CD122 + Anti-

CD40L
Anti-CD47+

Anti-CD122 + Anti-
CD40L + Anti-CD4/8

Anti-CD47+
Anti-CD122 + Anti-
CD40L + Anti-CD4/8

-
-
-

Haploidentical
Haploidentical
MHC mismatch

3×106 BM
9×103 LSK
9×103 LSK

~20% (16 weeks)
~30% (16 weeks)
>50% (8 weeks)

Accept
-

(55)

RIT
131I-Anti-CD45
(30F11)

-
8Gy

-
-

-
-

Congenic
MHC mismatch

1×107 BM
(T depleted)
1×107 BM
(T depleted)

86-94% (16 weeks)
(0.5 – 1.5 mCi anti-CD45)
>90% (0.75 mCi) (12 wks)

-
-

(66)

RIT
131I-Anti-CD45
(30F11)

-
2Gy

-
-

-
-

Minor mismatch
Minor mismatch

1×107 BM
(T depleted)
1×107 BM
(T depleted)

>80% recipients (0.75 mCi)
(12 weeks)

100% recipients (0.75 mCi)
(12 weeks)

-
-

(67)

90Y-Anti-CD45
(30F11)

– – Cy Haploidentical 1.5×107 BM >85% (0.3 mCi) (6 months) – (68)

213Bi-Anti-CD45
(Clone CA12.10C12)

– – MMF +
CSP

DLA identical marrow
graft

4.7×108

MNCs/kg
30-70% (3.6 – 8.8 mCi/kg)

(27 weeks)
– (69)

211At-Anti-CD45
(CA12.10C12)

– – MMF +
CSP

DLA identical marrow
graft

2 – 8×108

MNCs/kg
19-58% (0.2 – 0.6 mCi/kg)

(52 weeks)
– (70)

211At-Anti-CD45
(CA12.10C12)

– – CSP Autologous gene
modified CD34+ cells

0.3 – 2×106

CD34+
Low durable engraftment

(0.4 – 0.49 mCi/kg)
– (71)

211At-Anti-CD45
(CA12.10C12)

9.2Gy – – DLA identical marrow
graft

6.3×108

MNCs/kg
100% (in 86% recipients)

(0.2 – 0.4 mCi/kg)
(12 months)

– (72)

ADC

Anti-CD45-SAP
(Clone 104)

-
-

-
-

-
-

Congenic
Congenic

1×107 BM
2×103 HSC

75-90% (4 months)
90% (4 months)

-
-

(81)

Anti-c-kit-SAP
(Clone 2B8)

– – – Congenic 1×107 BM >80% (20 weeks) – (82)

(Continued)
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trials will be a welcome addition to the armamentarium for

treating patients suffering from high-risk malignancies. Anti-

human CD117 mAbs and ADCs are under advanced clinical

development (93–95). Currently, Magenta Therapeutics is

conducting a phase 1 clinical trial of CD117-amanitin for

patients with AML and MDS. The successful translation of a

mAb-based conditioning approach for MHC-mismatched

HSCT would have broad implication for curative treatment

across many settings.
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TABLE 1 Continued

HSC targeting
agent

TBI Immune
modulation

Drugs Donor graft BM / HSC
dose

% Chimerism Organ
graft

Reference

104-SAP 2Gy – – Congenic 0.5×106

Lin-
>80% (16 weeks) – (83)

2B8-SAP
104-SAP

-
-

-
-

-
-

Heterozygous
Heterozygous

1×106 BM
1×106 BM

10-35% (24 weeks)
10-30% (24 weeks)

-
-

(84)

2B8-SAP + 104-SAP – Anti-CD4/ Anti-CD8 – Congenic 2.5×106 BM ~75% (20 weeks) – (85)

2B8-SAP – Anti-CD4/8 + Anti-
CD40L

Rapa MHC mismatch 2×107 BM ~50% (3 months) Accept (88)

104-SAP or 2B8-SAP – – JAK1/2
inhibitor

MHC mismatch 1-2×107 BM ~90% (6 months) – (89)

ADC

104-ADC (Low dose) 50cGy
50cGy
50cGy

Anti-CD40L
Anti-CD40L
Anti-CD40L

-
Cy/Rapa
JAK

inhibitor

MHC mismatch
MHC mismatch
MHC mismatch

4×107 BM
4×107 BM
4×107 BM

54% (12 weeks)
60-77% (12 weeks)
74-78% (12 weeks)

-
-
-

(90)

104-ADC (High dose) – – – MHC mismatch 4×107 BM >90% (22 weeks) – (90)
fro
Cy, cyclophosphamide; MMF, mycophenolate mofetil; CSP, cyclosporine; DLA, dog leukocyte antigen; MNCs, mononuclear cells.
SAP, saporin; Rapa, rapamycin; JAK1/2 inhibitor, Baricitinib / ruxolitinib; ADC, antibody-drug conjugate.
TABLE 2 The pros and cons of antibody-based approaches in HSCT.

HSC targeting
agent

Advantages Disadvantages

Naked mAb Non-genotoxic conditioning agent for HSCT Unconjugated Ab employs relatively weaker host lytic mechanisms such
as complement fixation, antibody-dependent cellular cytotoxicity

Radioimmunotherapy
(RIT)

RIT is effective for delivering cytotoxic doses of radiation to a cell
type of interest while minimizing off-target toxicity
Radioimmunoconjugates have the potential to decrease relapse
without increasing transplant related toxicity by delivering higher
doses of radiation to malignant cells

Although radiolabeled anti-CD45 mAbs have been shown to facilitate
alloengraftment, logistics and concerns for BM and organ toxicity in allo-
HSCT warrant careful consideration.
mAb RIT also induce neutropenia, lymphopenia, and thrombocytopenia
similar to conventional conditioning

Antibody-drug
conjugate (ADC)

mAb-based conditioning agents are expected to have much less off-
target toxicity than traditional non-targeted modes of cell killing

Transient leukopenia following conditioning with CD45-ADC
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