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N6‐methyladenosine (m6A) is the most abundant RNA chemical modification in

eukaryotes and is also found in the RNAs of many viruses. In recent years, m6A

RNAmodification has been reported to have a role not only in the replication of

numerous viruses but also in the innate immune escape process. In this review,

we describe the viruses that contain m6A in their genomes or messenger RNAs

(mRNAs), and summarize the effects of m6A on the replication of different

viruses. We also discuss how m6A modification helps viral RNAs escape

recognition by exogenous RNA sensors, such as retinoic acid-inducible gene

I (RIG-I)-like receptors (RLRs), during viral invasion. Overall, the goal of our

review is to summarize howm6A regulates viral replication and facilitates innate

immune escape. Furthermore, we elaborate on the potential of m6A as a novel

antiviral target.

KEYWORDS
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Introduction

N6-methyladenosine (m6A) was the first internal RNA modification identified in

mRNAs of mammalian cells in 1974 (1). However, our understanding of m6A is currently

limited. In 1994, 20 years after the discovery of m6A, methyltransferase was identified as a

protein complex, and methyltransferase-like 3 (METTL3) was identified as an S

−adenosyl methionine (SAM)-binding protein with methyltransferase capacity (2, 3).

M6A is the most abundant and well-characterized RNA modification (4, 5). Additionally,
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m6A is a reversible chemical modification that affects nearly all

aspects of RNA biology, including RNA folding structure,

mRNA maturation, nuclear export, translation, and mRNA

decay (6–20).

M6A was once termed as the fifth base in mRNA. It was first

identified by chromatography (1). Methylated RNA

immunoprecipitation sequencing (MeRIP-seq), also named

m6A-seq, is the most widely used sequencing method for RNA

m6A profiling, but it cannot precisely identify which adenosines

are modified (21). M6A individual-nucleotide resolution

crosslinking and immunoprecipitation sequencing (miCLIP-

m6A-seq) and photo-crosslinking-assisted m6A sequencing

(PA-m6A-seq) can detect and characterize m6A in RNA with

pinpoint accuracy (22). In addition to mRNA of mammalian

cells, m6A has been identified in a wide range of viral RNAs,

including DNA and RNA viruses (as shown in Table 1). The

replication of many viruses can be modulated by m6A, and in-

depth studies have revealed that m6A exhibits contrary functions

in the replication process of different viruses. Additionally, m6A

affects the recognition of viral RNAs by RLRs (38–40).

Innate immune responses function as the primary antiviral

strategy when host cells are invaded by viruses. RLRs are key

sensors among pattern recognition receptors (PRRs). RLRs can

recognize exogenous viral RNAs and stimulate the production of

type I interferons (IFNs), which can result in the upregulation of

antiviral proteins, such as RNA-dependent protein kinase

(PKR), 2′ ,5′-oligoadenylate synthetase (OAS), 2 ’ ,5 ’-

oligoadenylate-dependent ribonuclease L (RNase L), and Mx
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proteins (41, 42). RLRs include three components: RIG-I,

melanoma differentiation-associated protein 5 (MDA5), and

laboratory of genetics and physiology 2 (LGP2) (43, 44). RIG-I

recognizes double-stranded RNAs (dsRNAs) (<300 bp)

containing either a 5’-triphosphate or 5’-diphosphate (45–47);

MDA5, which shares a similar structure with RIG-I, senses long

dsRNAs (>1,000 bp) (48, 49); and LGP2, which lacks the caspase

recruitment domain (CARD), is a regulator of RIG-I and MDA5,

and exhibits different regulatory functions (50–52). RIG-I and

MDA5, which are sensors of exogenous viral RNAs, can sense

RNAs generated by both DNA and RNA viruses.

Interestingly, m6A modifications in the RNAs of different

viruses exhibit many differences during the replication process.

Moreover, m6A modifications in viral RNAs play a significant

role in RLR recognition after viral infection. Here, we review the

function of m6A in viral replication and the innate immune

sensing of RLRs.
M6A RNA methylation

Eukaryotic cell mRNA has many internal chemical

modifications, including m6A, 5-methylcytosine (m5C), N1-

methyladenosine (m1A), and pseudouridine (Y) (1, 53–56);

among these, m6A is the most abundant modification (Figure 1A).

In addition, m6A is a reversible chemical modification (Figure 1B).

The RNA transferases, including METTL3, methyltransferase-like

14 (METTL14), WT1-associated protein (WTAP), KIAA1429 (also
TABLE 1 Effect of m6A on DNA virus.

Virus Genome Effect of m6A on virus replication Reference Effect of m6A on
RLR sensing

Reference

Kaposi's sarcoma‐associated double-
stranded DNA

promote virus reproduction in iSLK.219 cells,
iSLK.BAC16 cells and B cells

(23, 24) no applicable data found no applicable
data found

herpesvirus (KSHV) suppress virus reproduction in KiSLK cells (25)

suppress virus reproduction in TREx BCBL1-Rta
cells

(26)

Epstein–Barr virus (EBV) double-
stranded DNA

promote virus reproduction (27, 28) no applicable data found no applicable
data foundsuppress virus reproduction (29)

Herpes simplex virus 1 (HSV‐
1)

double-
stranded DNA

promote virus reproduction (30) no applicable data found no applicable
data found

Simian vacuolating virus 40
(SV40)

double-
stranded DNA

promote virus reproduction (31) no applicable data found no applicable
data found

Adenovirus (AdV) double-
stranded DNA

promote virus reproduction (32) no applicable data found no applicable
data found

Bombyx mori
nucleopolyhedrovirus
(BmNPV)

circular double-
stranded DNA

suppress virus reproduction (33) no applicable data found no applicable
data found

Human Papillomaviruse 16
(HPV-16)

circular double-
stranded DNA

promote virus reproduction (34) no applicable data found no applicable
data found

Hepatitis B virus (HBV) partially double-
stranded DNA

promote virus reproduction (35, 36) attenuate RIG-I sensing
activity

(38)

suppress virus reproduction (35, 37)
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known as vir-like m6A methyltransferase-associated protein

[VIRMA]), zinc finger CCCH domain-containing protein 1

(ZC3H13), RNA-binding motif protein 15 (RBM15), and

methyltransferase-like 16 (METTL16) are termed as ‘writers’.

METTL3, METTL14, and WTAP, which are the most well-known

‘writers’, can form a protein complex. This protein complex can

recognize the consensus DRA*CH ([A/G/U], [A/G], A*, C, [A/C/

U]) motifs and add a methyl to the specific N6 position of adenosine

(22, 57). As previously mentioned, AlkB homolog 5 (ALKBH5) and

fat mass and obesity-associated protein (FTO), which function as

demethylases, are known as ‘erasers’, and can remove the methyl of

m6A. ‘Readers’, including YTH N6-methyladenosine RNA-binding

protein 1, 2, and 3 (YTHDF1, YTHDF2, and YTHDF3), YTH

Domain Containing 1 and 2 (YTHDC1 and YTHDC2), eukaryotic

initiation factor 3 (eIF3), insulin-like growth factor 2mRNA-binding

protein 1, 2, and 3 (IGF2BP1, IGF2BP2, and IGF2BP3), fragile X

mental retardation protein (FMRP), and heterogeneous nuclear

ribonucleoproteins A2/B1 (hnRNPA2/B1), recognize the m6A

modifications in RNAs and regulate several biological processes of

RNAs, such as translation, decay, and translocation. Owing to the

lack of research techniques, there was limited knowledge about the

function of m6A until the Chinese-American scientist Chuan He

proposed the concept of RNA epigenetics in the early 2010s (58).

Since then, significant progress has been made in the study of m6A

modification. In addition to eukaryotic mRNAs, m6A is also found

in many viral mRNAs, viral genomes, and intermediate RNAs

produced during the viral replication process. In 1976, only 2

years after m6A was identified in eukaryotic mRNAs, influenza
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virus mRNA was found to contain internal m6A modifications (59).

Although a few articles on m6A modifications of viral RNAs have

been published to date, it seems that the study of viral RNA

epigenetics is poised for a major expansion and has the potential

to change our understanding of how viruses regulate their life cycle.
Function of m6A RNA methylation in
the life cycle of DNA viruses

DNA viruses (with DNA genomes) can also produce RNAs

(which contain m6A) during replication (Figure 2). Further

studies have shown that m6A modifications have different

regulatory functions in the life cycle of different viruses

(Table 1). M6A in viral RNAs promotes the replication of

herpes simplex virus 1 (HSV‐1), simian vacuolating virus 40

(SV40), adenovirus (AdV), and human papillomavirus 16

(HPV-16) (30–32, 34). However, m6A functions as a

suppressive regulator of Bombyx mori nucleopolyhedrovirus

(BmNPV) replication (33). Furthermore, m6A in the RNA of

Kaposi’s sarcoma‐associated herpesvirus (KSHV) adversely

affects replication in different cells. Interestingly, m6A

functions as a positive regulator of KSHV in iSLK.219,

iSLK.BAC16, and B cells, but as a negative regulator in KiSLK

and TREx BCBL1-Rta cells (23–26). Different researchers have

different opinions regarding the function of m6A. M6A functions

adversely during the replication process of Epstein–Barr virus

(EBV) and hepatitis B virus (HBV) (27, 28, 35–37). Although
FIGURE 1

Introduction of m6A modifications. (A) M6A is one of the first identified and most abundant internal modifications in the mRNA of eukaryotic
cells. (B) M6A is a reversible chemical modification in RNAs; ‘writers’ add a methyl to the N6 position of adenosine; ‘erasers’ remove the methyl
of m6A; after adding m6A in RNAs, ‘readers’ recognize the modified RNAs and regulate the biological process of RNAs, including translation,
decay, and translocation.
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there is no direct sequencing evidence to prove the presence of

m6A in the RNA of human cytomegalovirus (HCMV), METTL3

and METTL14 small interfering RNAs (siRNAs) inhibit HCMV

reproduction, indicating that m6A may function as a positive

regulator of the life cycle of HCMV (60, 61).

Function of m6A RNA methylation in
the life cycle of cytoplasmic RNA
viruses

RNA viruses have RNA genomes, most of which replicate in

the cytoplasm. As shown in Figure 3, ‘writers’ and ‘erasers’ are

located in the nucleus under a steady state; however, they may

also be detected in the cytoplasm after infection, suggesting that

these proteins can shuttle between the nucleus and the

cytoplasm (62–66). The positive-sense RNA genome of

cytoplasmic RNA viruses, such as Flaviviridae, Coronavirus,

and Picornaviridae, functions as mRNA, and can produce

negative-sense complementary RNA (cRNA) by serving as a

replication template during the replication process. The

genomes of the Pneumoviridate and Rhabdoviridae families

consist of negative-sense RNA, and both cRNA and mRNA

are produced during transcription. Positive-sense cRNA

functions as a template for viral genome replication. M6A

modifications exist in the viral genome RNA, cRNA, and
Frontiers in Immunology 04
mRNA of many RNA viruses, and m6A plays different roles in

different viruses (Table 2). Replication of Flaviviridae, including

Zika virus (ZIKV), dengue virus (DENV), and hepatitis C virus

(HCV), is deeply modulated by m6A, and m6A in the RNA of

these viruses is a suppressive regulator of viral replication (62,

63, 67). With the spread of the SARS-CoV-2 infection since

2019, scientists have been paying great attention to the study of

coronaviruses. Liu’s work indicated that both positive and

negative RNAs of SARS-CoV-2 contain m6A modifications,

and m6A negatively regulates SARS-CoV-2 infection, as

overexpression of METTL3 can inhibit its replication (66, 68–

70). Porcine epidemic diarrhea virus (PEDV), a member of the

Coronaviridate, also contains m6A in its genomic RNA, and

m6A suppresses its replication (71). Enterovirus 71 (EV71) also

possesses a positive-sense RNA genome; however, m6A

promotes the replication of EV71, which contrasts with its

function in the replication of coronavirus. Human respiratory

syncytial virus (HRSV, a member of the Pneumoviridae family),

human metapneumovirus (HMPV, a member of the

Paramyxoviridae family), and vesicular stomatitis virus (VSV,

a member of the Rhabdoviridae family) all have negative-sense

RNA genomes and share a similar life cycle in the cytoplasm.

M6A is also found in the genomes of these viruses and plays a

positive role in the replication process, as it can promote viral

protein expression and help viral RNAs escape RIG-I

recognition (72–74).
FIGURE 2

M6A modifications of viral RNAs during the replication process of DNA viruses. DNA viruses produce mRNAs during replication. The viral mRNAs
can be m6A modified, and these modifications can modulate the replication of DNA viruses.
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Function of m6A RNA methylation in
the life cycle of intranuclear RNA
viruses

Although most RNA viruses replicate in the cytoplasm, for

some of them, replication occurs in the nucleus. Influenza virus

(belonging to the Orthomyxoviridae family) possesses a

segmented negative-sense single-stranded RNA genome, and is

a strict intranuclear replication RNA virus. When influenza virus

encounters host cells, hemagglutinin (HA) proteins bind to a-(2,
3)-linked or a-(2, 6)-linked sialic acid on the cell surface

membrane, and endocytosis of viral particles is triggered. Once

influenza virus penetrates the cells, the viral genome can be

released from uncoated virion particles and translocated to the

nucleus for genome replication; cRNA and mRNA are

synthesized in the nucleus during transcription; cRNA acts as

a template for the virion RNA (vRNA) replication process,

which also occurs in the nucleus; mRNA of the influenza virus

is exported to the cytoplasm and serves as a template for the

synthesis of viral proteins. Finally, progeny virus assembly and

budding is completed in the plasma membrane (Figure 4).

The influenza virus was the first confirmed to contain m6A,

and the replication of influenza virus is modulated by m6A

(Table 2). At first, Krug discovered that m6A was present in the

mRNA of influenza virus (59); more than 40 years later,

Courtney revealed that vRNA and cRNA also contained m6A
Frontiers in Immunology 05
modifications (75). Further studies have indicated that m6A

promotes influenza replication, and that METTL3 and YTHDF2

play an important role in the replication process (75).

Function of m6A RNA methylation in
the life cycle of retroviruses

Retroviruses are a family of RNA viruses that have a reverse

transcriptase capable of making a complementary DNA copy of

the viral genomic RNA, which is then integrated into the host

cell’s DNA. M6A can also be found in the viral genomic RNA and

mRNA of retroviruses (Figure 5). Human immunodeficiency

virus type 1 (HIV-1), Rous sarcoma virus (RSV), and feline

leukemia virus (FeLV) all belong to groups of retroviruses that

contain m6A modifications in their RNAs (76, 77, 82–84). It was

discovered that m6A plays different roles in the replication of

retroviruses (Table 2). Many research groups have revealed that

post-transcriptional m6A modification of HIV-1 mRNAs

enhances viral gene expression, whereas Lu et al. discovered

that YTHD proteins could bind to the genomic RNA of HIV-1

and inhibit viral reverse transcription after viral entry (76–80). A

recent study has revealed that m6A functions as a suppressive

regulator of the life cycle of endogenous retroviruses (ERVs).

Host cells can recognize m6A modifications in the mRNAs of

intracisternal A-particles (IAPs) and related ERVK elements, and

the m6A-modified RNAs can restrain their ability to trigger
FIGURE 3

M6A modifications of viral RNAs during the replication process of cytoplasmic RNA viruses. Some of the cytoplasmic RNA viruses possess a
positive RNA genome, whereas some possess a negative RNA genome. Cytoplasmic RNA viruses can produce mRNA (the positive-sense RNA
genome of cytoplasmic RNA viruses functions as mRNA) and cRNA. M6A is present in the viral genome RNA, cRNA, and mRNA, and can modulate
viral protein expression and viral replication. ‘Writers’ and ‘erasers’ can translocate from the nucleus to the cytoplasm after viral infection.
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TABLE 2 Effect of m6A on RNA virus.

Virus Genome Effect of m6A on
virus replication

Reference Effect of m6A on RLR
sensing

Reference

Zika virus (ZIKV) positive-sense, single-
stranded RNA

suppress virus
reproduction

(63) no applicable data found no applicable
data found

Dengue virus (DENV) positive-sense, single-
stranded RNA

suppress virus
reproduction

(67) no applicable data found no applicable
data found

Hepatitis C virus (HCV) positive-sense, single-
stranded RNA

suppress virus
reproduction

(62) attenuate RIG-I sensing activity (38)

Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2)

positive-sense, single-
stranded RNA

suppress virus
reproduction

(66, 68) decrease RIG-I binding activity (69)

Porcine epidemic diarrhea virus
(PEDV)

positive-sense, single-
stranded RNA

suppress virus
reproduction

(71) no applicable data found no applicable
data found

Enterovirus 71 (EV71) positive-sense, single-
stranded RNA

promote virus
reproduction

(64, 65) no applicable data found no applicable
data found

Human respiratory syncytial virus
(HRSV)

negative-sense, single-
stranded RNA

promote virus
reproduction

(72) no applicable data found no applicable
data found

Human metapneumovirus (HMPV) negative-sense, single-
stranded RNA

promote virus
reproduction

(73) m6A enables viral RNA to escape
from RIG-I sensing

(73)

Vesicular stomatitis virus (VSV) negative-sense, single-
stranded RNA

promote virus
reproduction

(74) m6A suppress RIG-I sensing via
reshaping double-stranded RNA

(40, 74)

Influenza A virus (IAV) segmented, negative-sense,
single-stranded RNA

promote virus
reproduction

(75) no applicable data found no applicable
data found

Human immunodeficiency virus type
1 (HIV-1)

two positive-sense, single
single-stranded RNA

promote virus
reproduction

(76–79) m6A enables viral RNA to escape
from RIG-I sensing

(39)

suppress virus
reproduction

(80)

Endogenous retroviruses (ERVs) positive-sense, single-
stranded RNA

suppress virus
reproduction

(81) no applicable data found no applicable
data found
Frontiers in Immunology
 06
 f
FIGURE 4

M6A modifications of viral RNAs during the replication process of intranuclear RNA viruses. After binding to the receptors, the genome of
intranuclear virus enters the nucleus, where replication and transcription occur. M6A is present in the viral genome RNA, cRNA, and mRNA. Both
RNA translocation and mRNA translation are modulated by m6A modification.
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inflammatory responses, such as those observed in human

neurodegenerative diseases (81, 85).
Function of m6A RNA methylation in
RLR sensing

Toll-like receptors (TLRs) and RLRs are the main receptors

of PRRs that can sense viral RNAs. Studies of PRR sensing of

m6A-modified viral RNA have been mainly focused on RLRs.

RIG-I and MDA5 are the main sensors of RLRs, and their

primary function is to recognize exogenous RNA and stimulate

the expression of type I IFNs when host cells are invaded by

viruses (86). The RNAs produced in the replication process of

both DNA and RNA viruses can be recognized by RLRs, and

some studies have indicated that m6A modification helps

exogenous viral RNA escape recognition by RLRs (Figure 6).

Although HCMV is a DNA virus, it can trigger RLR sensing

activity, and m6A might play a key role in this process (60, 87).

However, the interaction between m6A and RLR stimulation has

not yet been thoroughly clarified, and there is no direct evidence

to indicate that the mRNA of HCMV contains m6A (60). This

study suggests that m6A might play a role in the recognition of

HCMV viral mRNA. HBV is another well-known DNA virus;

but its life cycle produces an RNA intermediate termed

‘pregenomic’ RNA (pgRNA). Furthermore, pgRNA is modified

by m6A, which reduces the sensing activity of RIG-I (38, 88).

RLRs mainly recognize viral RNA from RNA viruses during viral

infection, and m6A in the RNA genomes of HIV-1, HCV, SARS-
Frontiers in Immunology 07
CoV-2, HMPV, and VSV can help viral RNA escape RIG-I

recognition and inhibit the expression of type I IFNs (38, 39, 69,

73, 74). RNAs containing chemically modified nucleotides fail to

trigger RLRs, and m6A is a functional modification (40, 89, 90).

However, the mechanism of how m6A-modified RNA escapes

RLR sensing remains unclear. Qiu suggested that m6A

modification impairs the conformation of duplex structures in

viral RNAs and interferes with sensing by intracellular receptor

RLRs; finally, m6A attenuates innate immune response and

facilitates immune invasion (74).
Conclusion and expansion

We have concluded from previous studies that the addition of

m6A to viral RNAs has both promotive and suppressive functions in

the viral life cycle and plays an important role in immune escape

fromRLRs.M6A promotes the replication of DNA viruses, including

HSV-1, SV40, AdV, and HPV-16 (30–32, 34), and it has also been

shown to positively regulate infection by many RNA viruses, such as

EV71, HRSV, HMPV, VSV, and IAV (64, 65, 72–75). By contrast,

m6A suppresses the replication of DNA viruses, such as BmNPV,

and RNA viruses, including ERVs, Flaviviridae, and Coronaviridae

(62, 63, 66, 67, 71, 81). Importantly, m6A can function as both a

proviral and antiviral regulator in the life cycle of some viruses, such

as KSHV, EBV, HBV, and HIV-1 (23, 25–28, 35–37, 76–80). The

reason why the effect of m6A varies between different viruses is

uncertain. We think that this is because RNAs of different viruses

interact with different ‘readers’.
FIGURE 5

M6A modifications of viral RNAs during the replication process of retroviruses. Retroviruses possess an RNA genome and have reverse transcription
activity. M6A is present in both genomic RNA and mRNA of retroviruses, and plays roles in reverse transcription, RNA transcription, and mRNA translation.
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To date, studies have indicated that m6A in viral RNAs

could reduce the sensing activity of RLRs and help viruses

escape innate immune recognition during viral invasion (38–

40, 69, 73, 74). However, other studies have revealed that viral

invasion can cause changes in the expression of ‘writers’,

‘readers’, or ‘erasers’, resulting in expression changes in

immunoregulatory proteins and eventually influencing IFN

production. M6A targeting of IFN-b can enhance the

destabilization of IFN-b mRNA and restrict the duration of

the antiviral response (61). Degradation of WTAP induced by

viral infection reduces the m6A levels of interferon-regulatory

factor 3 (IRF3) and interferon a/b receptor subunit 1 (IFNAR1)

mRNAs, resulting in the suppression of IRF3 translation

and destabilization of IFNAR1 mRNA (91). Kastan’s

work revealed that the RNA-binding protein YTHDF3

promotes the production of interferon-stimulated genes

(ISGs); however, Zhang’s work indicated that YTHDF3

functions as a negative regulator of antiviral immunity by

promoting the translation of FOXO3 mRNA (92, 93).

METTL3, METTL14, and YTHDF1 promote the expression of

interferon-induced transmembrane 1 (IFITM1), a well-known

ISG (94). A recent study by You’s group reported that m6A can

stabilize IRF3 mRNA, and Zhu’s group demonstrated that m6A

can increase the stability of interferon-regulatory factor 7 (IRF7)

mRNA (95, 96). As a result, the expression of type I IFNs is

enhanced. Therefore, m6A has multiple functions in the viral

replication process and modulates the antiviral response of

type I IFNs.
Frontiers in Immunology 08
Future perspective: m6A as a target
for antiviral therapy

As m6A is present in the life cycle of many viruses, drugs

targeting this pathway may have the potential to act as antiviral

drugs. For example, 3-deazaadenosine (DAA), an m6A

modification inhibitor, inhibits the replication of various viruses

in vitro or in vivo, including HRSV, parainfluenza virus type 3

(PIV3), Ebola virus, HIV, and IAV (75, 76, 97, 98). The SARS-

CoV-2 pandemic is still ongoing, and studies have provided a

proof of concept suggesting that targeting of the cellular

components of the m6A RNA modification pathway could lead

to novel therapeutic opportunities to control this viral pathogen.

In general, the study of viral m6A epitranscriptomics, which

started in the early 1970s, has rapidly evolved in the past 5 years,

and indicates that m6A modification is an important component

in viral infections and innate immunity recognition. Importantly,

there is a need for a clear mechanistic understanding of m6A

modifications in viral RNAs to determine their function in viral

replication, and to explore their potential as antiviral targets.
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FIGURE 6

M6A modifications of viral RNAs and their function in RLR sensing. Viral RNAs can form complicated secondary structures, and RLRs can recognize
the double-stranded component. Adding m6A to viral RNAs can reshape RNA structure and enable viral RNAs to escape RLR recognition.
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