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Xenotransplantation has the potential to solve the shortfall of human organ

donors. Genetically modified pigs have been considered as potential animal

donors for human xenotransplantation and have been widely used in preclinical

research. The genetic modifications aim to prevent the major species-specific

barriers, which include humoral and cellular immune responses, and

physiological incompatibilities such as complement and coagulation

dysfunctions. Genetically modified pigs can be created by deleting several

pig genes related to the synthesis of various pig specific antigens or by inserting

human complement‐ and coagulation‐regulatory transgenes. Finally, in order

to reduce the risk of infection, genes related to porcine endogenous

retroviruses can be knocked down. In this review, we focus on genetically

modified pigs and comprehensively summarize the immunological mechanism

of xenograft rejection and recent progress in preclinical and clinical studies.

Overall, both genetically engineered pig-based xenografts and technological

breakthroughs in the biomedical field provide a promising foundation for pig-

to-human xenotransplantation in the future.
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Introduction

Transplantation is a challenging and complex area of

modern medicine and is an effective approach to managing

patients with organ failure. According to global statistics, more

than 106,795 candidates are on the United States’ transplant

waiting list (https://www.organdonor.gov/[accessed Jan. 3,

2022]), and approximately 300,000 people are on China’s

transplant waiting list annually (1). However, only 129,861

transplantation operations (≤ 10% of global needs) were

performed globally in 2020 (http://www.transplant-

observatory.org [accessed Jan. 3, 2022]). The rising incidence

of vital organ failure, combined with an insufficient availability

of organs particularly from deceased donors, has generated an

increasing gap between organ availability and need, resulting in

extremely long waiting times for patients on waiting lists.

Xenotransplantation, which aims to substitute human failing

organs with animal organs, could efficiently solve various organ

shortages. Pigs (Sus scrofa domesticus) are currently considered

the ideal donor animals for human xenotransplantation (2).

Despite similarities between pig and human organs regarding

size and physiology, major obstacles to clinical application are

due to the immune rejection between species, several

physiological incompatibilities and the risk of xenogeneic

infections or xenozoonoses. Genetic modifications of pigs have

be proposed to overcome most of these hurdles. Recent advances

in gene-editing systems, including zinc finger nucleases,

transcription activator-like effector nucleases, and the clustered

regularly interspaced short palindromic repeats (CRISPR)/

CRISPR-associated protein (CRISPR-Cas) system, allow for

rapid insertion or deletion of specific sites by gene editors that
Frontiers in Immunology 02
reduce the work and shorten the time necessary to create

genetically engineered pigs.

The immune responses for xenotransplants are significantly

stronger when compared with allotransplants (Tables 1, 2).

Thus, immunological rejection, including hyperacute xenograft

rejection (HAR), acute humoral xenograft rejection (AHXR),

acute immune cellular rejection, and other barriers associated

with xenotransplantation, could be alleviated through more

advanced strategies for the genetic modification of pigs. In this

review, we detail the adverse results and underlying mechanisms

caused by the recipient immune response and immune-related

abnormalities in xenotransplantation, focusing on the

application of existing genetically modified pigs in solving

these obstacles (Table 2).
Circumventing HAR via the expression of
human complement-regulating proteins
and the knockout of pig alpha-1,3-
galactosyltransferase (GGTA1-/-)

HAR occurs when a “wild-type” porcine xenograft is

transplanted into primates and is quickly attacked by the

recipient’s immune system. The activation of the complement

(Figure 1) plays a pivotal part in this process, which causes

irreversible damage to the donor organ or even death within

minutes (45). Antibody-mediated complement activation is

completed within minutes and induces graft dysfunction and

disruption, the pathological features of which are endothelial

edema, intersti t ia l hemorrhage, and microvascular

thrombosis (46).
TABLE 1 Obstacles and relevant strategies in human allotransplantation.

Obstacle Onset Mechanism Strategy Reference

Hyperacute
Transplant
Rejection
(Type II
Hypersensitivity)

Minutes
to
Hours

Naturally occurring or preformed circulating antibody in the serum
of the recipient reacts with donor cells (particularly the
endothelium of blood vessel walls).

Stringent antigenic matching is performed between
host and donor.

(3)

Acute
Transplant
Rejection
(Type IV
Hypersensitivity)

Weeks
to
Months

1. Increased expression of HLA class I and II antigens in inflamed
grafts
2. Infiltration of effector cells responsible for the damage of
rejection including T cells, macrophages, NK cells, B cells, and etc.

1. Immunosuppressive drugs (eg. azathioprine,
corticosteroids).
2. Matching MHC protein alleles between recipient
and donor.

(4, 5)

Chronic
Transplant
Rejection
(Type III and IV
hypersensitivity)

Months
to Years

The recipient T cells become alloreactive to recognize major
histocompatibility complex (MHC) antigens on the donated organ,
and promote local immune and inflammatory.

1. The treatment of complications induced by organ
rejection depends on the type of injury and
underlying etiology.
2. Tolerance induction, including mesenchymal stem
cell (MSC), regulatory T cell (Treg) or CAR Treg
therapy, and thymic transplantation.

(6–10)

Chronic Graft
vs. Host Disease
(Type IV
Hypersensitivity)

Donor T Cells in the graft proliferate and attack the recipient’s
tissue (most commonly seen in bone marrow transplantation, liver
transplantation, and blood transfusion)

1. Enduring immunosuppressive therapy (eg. post-
transplant cyclophosphamide, anti-thymocyte
globulin).
2. Tolerance induction.

(9, 11, 12)
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Complement targeting

The pigs also havec omplement-regulating proteins (pCRPs)

but these are not able to protect the endothelial cells of pigs from
Frontiers in Immunology 03
complement-mediated injury due to molecular incompatibilities

between the donor’s and host’s species. Since the 1990s,

researchers have introduced transgenes encoding hCRPs into

pigs, such as the decay‐acceleration factor (DAF, also known as
TABLE 2 Obstacles and relevant genetic modifications in pig-to-primate xenotransplantation.

Obstacle Target Full name Function Reference

Hyperacute rejection hCD46 Transgenic human membrane cofactor protein Inactivating of C3, C5, and membrane attack
complex (MAC)

(13–16)

hCD55 Transgenic human decay-accelerating factor

hCD59 Transgenic human membrane inhibitor of reactive lysis

GGTA1-/- a-1,3-galactosyltransferase knockout Deleting the xenoantigen galactose-a-1,3-
galactose (a- Gal)

(17, 18)

Acute humoral xenograft
rejection

CMAH-/- Cytidine monophosphate-N-acetylneuraminic acid
hydroxylase knockout

Deleting the xenoantigen N-
glycolylneuraminic acid (Neu5Gc) and
xenoantigen DBA-reactive glycans (Sda)

(19)

b4GalNT2-/- b-1,4N-acetylgalactosaminyltransferase 2 knockout (20)

Innate cellular
xenograft
rejection

Macrophages hCD47 Transgenic human integrin-associated protein Regulating macrophage- mediated xenograft
rejection

(21)

hCD200 Transgenic human OX-2 membrane glycoprotein (22)

ha2,6-ST Transgenic human a-2,6-sialyltransferase (23)

NK cells hHLA-E Transgenic human leukocyte antigen-E Inhibiting NK cell-mediated cytotoxicity (24)

hB2M Transgenic b-2-microglobulin gene (24)

hHLA-G1-/- Transgenic human leukocyte antigen-G1 knockout (25)

CIITA-/- Class II transactivator gene knockout (26)

B2M-/- b-2-microglobulin gene knockout (26)

Innate-like
T cells

hFasL Transgenic human Fas ligand Regulating xenograft rejection of NK T cell
and gd T cell

(27)

Neutrophils hCD31 Transgenic human platelet endothelial cell adhesion
molecule-1

Inhibiting NETosis (28)

Dendritic
cells

hTRAIL Transgenic human TNF-related apoptosis-inducing ligand Inhibiting immune effect of pig dendritic cells
to human T cell

(29)

Adaptive
cellular
xenograft
rejection

T cells hCIITA-DN Transgenic human class II transactivator dominant
negative

Reducing swine leukocyte antigen class II
(SLA-II)

(30)

B2M-/- b-2-microglobulin gene knockout Reducing swine leukocyte antigen class I
(SLA-I)

(26)

pCTLA4-Ig An expression vector containing the extracellular coding
region of porcine CTLA4 fused to the hinge and CH2/
CH3 regions of human IgG1

Inhibiting CD80/CD86-CD28 axis (31)

hCTLA4-Ig Transgenic human cytotoxic T-lymphocyte-associated
protein 4-immunoglobulin

Inhibiting CD80/CD86-CD28 axis (32)

hLEA29Y Transgenic human variant of CTLA4-Ig Inhibiting CD80/CD86-CD28 axis (33)

hPD-L1 Transgenic human programmed cell death ligand 1 Inhibiting PD-1-PD-L1 axis (34)

Coagulation disorder hTBM Transgenic human thrombomodulin Targeting molecular incompatibilities, and
correcting imbalance between procoagulant
and anticoagulant activity

(35)

hTFPI Transgenic human tissue factor pathway inhibitor (36)

hCD39 Transgenic human Ectonucleoside triphosphate
diphosphohydrolase

(37, 38)

hEPCR Transgenic human endothelial protein C receptor (35, 36)

h*pVWF Replace pig von Willebrand Factor gene region with
human cDNA orthologs

(39)

ASGR1-/- Asialoglycoprotein receptor 1 knockout (40, 41)

Systemic inflammation hHO-1 Transgenic human heme oxygenase-1 Inhibiting inflammation and apoptosis (42)

hA20 Transgenic human TNF Alpha Induced Protein 3
(TNFAIP3)

(42)

shTNFRI-Fc Transgenic soluble human tumor necrosis factor- a
receptor inhibitor-Fc

(43)

Cross-species infection PERV-/- Porcine endogenous retrovirus knockout Elimination of the cross-species transmission
risk of PERVs

(44)
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CD55) (47), membrane cofactor protein (MCP, also known as

CD46) (48), and membrane inhibitor of reactive lysis (MIRL, also

known as CD59) (13). For example, a hCD46 transgene alleviated

hyperacute kidney graft rejection in non-immunosuppressed

baboons by controlling both classical and alternative pathway

complement activation (median > 50 h survival, n = 9), and

postponed the time before appearance of endothelial swelling,

polymorph granulocytes adherence, and lymphocyte infiltration

in transgenic kidneys at least until day 3 post-transplant, while

baboons receiving wilde-type pig kidneys survived a median of

3.5 h (n = 7) (14). Also, compared with wild-type hearts that

survived for 20-80 min, hCD59/hCD55 transgenic pig hearts
Frontiers in Immunology 04
survived and functioned for 85–130 h in baboons (n = 4) by

improved protection from HAR, although IgM deposition was

similarly visible both in wild-type and transgenic hearts (15).

Recently, Martinez-Alarcon et al. collected organs and tissues

from five hCD55 transgenic commercial Landrace–Large White

pigs (Sus scrofa) to assess their ability to overcome HAR by

classical complement pathway hemolysis assays (16). They

observed that the specimens with higher hCD55 mRNA

expression (heart > liver > lung > intestine) performed better in

terms of showing lower cytolysis and hemolysis in vitro, which

enabled researchers to accurately predict the protection level from

xenorejection for specific organs.
A

B

C

FIGURE 1

Mechanisms of antibody-mediated xenograft rejection and related genetic targets (A) Hyperacute rejection (HAR). In the classical complement
activation cascade, the Fc regions of antibodies contact C1q, causing C1r and then C1s to autoactivate. Afterward, C4 and C2 are cleaved by
activated C1s, resulting in the production of C4b2a (also known as C3 convertase). C3 convertase then cleaves C3 into C3a and C3b, with C3b
binding to C4b2a to generate C4b2a3b (also known as C5 convertase). C5 convertase cleaves C5 into C5a and C5b, and then C5b is attached
to C6, C7, C8, and multiple molecules of C9 to create the membrane attack complex (MAC), which ultimately causes cytolysis. (B) Acute
humoral xenograft rejection (AHXR). AHXR can be induced by low levels of natural and elicited xenoreactive antibodies directed at non-a-Gal
antigens (predominantly anti-Neu5Gc and -SDa), which also lead to complement activation via the classical pathway. The histopathology of
AHXR is characterized by progressive destruction of the microvasculature (glomeruli and peritubular capillaries) and formation of fibrin-platelet
thrombi. (C) Gene modifications. To prevent HAR, CD59, CD55, hCD46 and GGTA1 were modified. To shun AHXR, CMAH-/- and b4GalNT2-/-

knockout pigs were produced. Notably, these target genes were not edited individually, but in combination to obtained better tolerized pig
xenograft.
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Strategies combining GGTA1
knockout and hCRP transgenic pigs

The a,3-galactosyltransferase (a,3GT or GGTA1) is an

enzyme present in most mammals except man, apes, and Old

World monkeys (49). Preformed xenoreactive antibodies from

primate serum recognize and bind the xenoantigen galactose-a-
1,3-galactose (a-Gal) on porcine endothelium, which causes the

formation of a membrane attack complex and cytolysis via

complement activation cascade (Figure 1A) (50–52). Initial

studies of organ transplantation from GGTA1 knockout

(GGTA1-/-) pigs in baboons showed protection from HAR,

with significantly prolonged survival of pig grafts (17, 18, 53, 54).

Different studies validated that combining GGTA1-/- and

hCRP expression is much more effective in preventing early graft

failure of a pig organ transplant (55, 56) (Figure 1C). Further,

Mohiuddin et al. transplanted GGTA1-/-/hCD46 hearts into

baboons and used anti-CD154 mAb-based immunosuppression

to extend heterotopic cardiac xenograft survival to 236 days (57).

Despite avoiding HAR, this xenograft developed thrombotic

microangiopathy, and coagulation dysregulation was the greatest

hurdle to reaching extended survival rates. Similarly, Iwase et al.

found that thrombocytopenia and fibrinogen reduction occurred

within 21 days in GGTA1-/-/hCD46/hCD55 hearts, indicating the

emergence of thrombotic microangiopathy (58). After

immunosuppression therapy including anti-thymocyte globulin

(ATG) with anti-CD154 mAb, the recipient baboon survived for

33 days and died from delayed xenograft rejection (DXR). In brief,

the expression of hCRPs and the knockout of pig GGTA1 confers

longer survival owing to preferable protection from HAR.
Shunning AHXR by deleting the
genes CMAH and b4GalNT2

Although the histopathologic features of AHXR are similar to

those of HAR, AHXR occurs within a few days or weeks, and the

accompanying vascular antibody and complement deposition is

more variable (59). The non-Gal xeno-antigens can bind to

antibodies on endothelial cell surfaces of hosts, which causes

complement activation, endothelial activation, cytotoxicity

mediated by Natural Killer (NK) cells and macrophages, and

other complications, all eventually leading to AHXR (60).
Removing Neu5Gc and SDa non-Gal
antigens

Non-Gal antigens include sialic acid N-glycolylneuraminic

acid (Neu5Gc), synthetized by the product of the cytidine

monophospho-N-acetylneuraminic acid hydroxylase (CMAH)

gene, and a carbohydrate antigen (SDa), synthetized by the
Frontiers in Immunology 05
product of the porcine b1,4-N-acetylgalactosaminyltransferase

2 (b4GalNT2) gene (Figure 1B) (61, 62). Owing to a divergent

evolution approximately 3 million years ago, which was

accompanied by the loss of the CMAH hydroxylase activity

required to convert Neu5Ac into Neu5Gc, humans do not

produce Neu5Gc (63). However, CMAH is functional in all

mammals (e.g., pigs and Old World monkeys) except humans

and New World monkeys (64). As the great majority of humans

were exposed to dietary Neu5Gc since childhood, natural anti-

Neu5Gc antibodies (with a preponderance of IgG) have been

found in approximately 80% of humans at similar levels (65, 66).

Although the SDa antigen is not antigenic for all humans, the

sera of 90% of humans showed antibodies that are directed

against antigens produced by b4GalNT2 activity in pigs (67).

Adams et al. transplanted kidneys from GGTA1-/-/

b4GalNT2-/- pigs into Rhesus monkeys (n = 6) who had

received an immunosuppressive regimen consisting of anti-

CD4 and ant i -CD8 T-ce l l deple t ion , ant i -CD154,

mycophenolic acid, and steroids (20). Three kidney grafts,

therein, were rejected early by IgM antibody-mediated

rejection at 5 and 6 days after transplantation, and presented

with interstitial hemorrhage. Moreover, one 435-day kidney

graft was rejected by IgG antibody-mediated rejection,

characterized by advanced glomerulopathy rather than

significant proteinuria (20).

To further characterize glycan-based species incompatibilities,

Estrada et al. created GGTA1-/-/CMAH-/-/b4GalNT2-/- pigs and

found that the peripheral blood mononuclear cells (PBMCs) from

these pigs exhibited reduced human IgM and IgG reactivity

compared to cells lacking GGTA1 and CMAH (19). Because

Neu5Gc is expressed on porcine aortic and pulmonary valves and

pericardium, removing this antigen through CMAH knockout

could reduce antibody response and cardiac valve calcification in

pig-to-human heart tissue xenotransplantation (68, 69). In

addition to the binding of IgM/IgG antibodies from primates to

pigs, Li et al. investigated the binding of natural preformed and

elicited IgE/IgA antibodies from primates against the erythrocytes

from GGTA1-/-/CMAH-/-/b4GalNT2-/- pigs and found IgE/IgA

deposition in rejected pig xenografts (Figure 1C) (70). Moreover,

Martens et al. found that in renal transplant-waitlisted patients,

serum IgM/IgG reactivity against PBMCs from GGTA1-/-/

CMAH-/-/b4GalNT2-/- pigs was decreased compared to that

against PBMCs from other donor pigs (71).
Cellular xenograft rejection in pig-
to-nonhuman primate
transplantation and related gene
modifications

Unlike HAR and AHXR, cellular xenograft rejection is

relevant to both whole organ grafts and cellular grafts, and
frontiersin.org
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rejection occurs within days to weeks after xenotransplantation

(72). As the HAR/AHXR-mediated complement response

occurs more rapidly and strongly than cellular response,

research on the role and pathological features of cellular

xenograft rejection in xenotransplantation is more difficult to

identify. Yet, all mechanistic studies are required for the eventual

success of xenotransplants, and no immune mechanisms should

be less explored.
Avoiding innate cellular xenograft
rejection via genetic modifications

The phagocytic cells (monocytes/macrophages and

neutrophils), natural killer (NK) cells, and cells producing

inflammatory mediators (basophils, eosinophils, and mast

cells) are engaged in the innate cellular response (73, 74). If

the HAR caused by antibody-mediated complement activation is

avoided, the innate cellular response contributes to the

development of a delayed form of rejection described as acute

humoral xenograft rejection, acute vascular rejection, or

DXR (75).
Macrophages

Abundant cellular infiltrate, composed of polymorphonuclear

leukocytes and CD68+ macrophages, was observed in GGTA1-/-

pig kidneys (n = 7, pig-to-baboon xenotransplantation) during the

early post-transplantation period, which suggests the involvement

of macrophages in innate cellular xenograft rejection (76).

Activated macrophages may exert direct toxic effects on

xenografts through production of proinflammatory cytokines,

such as interleukins, tumor necrosis factor alpha (TNF-a), and
interferon gamma (IFN-g) (77). Macrophages mediate robust

rejection of donor hematopoietic cells in a variety of xenogeneic

settings, through the combined effects of CD47-signal regulatory

protein a (SIRP-a) inhibitory receptor signaling, CD200-CD200R
signaling, IFN-g, and danger associated molecular pattern

(DAMP)-toll-like receptor (TLR) signaling from damaged

porcine cells (78).

SIRP-a, a key inhibitory receptor on the surface of

macrophages, binds to CD47, which effectively prevents

phagocytosis (Figure 2A) (79). However, the cross-species

incompatibility between porcine CD47 and human SIRP-a
leads to the elimination of xenografts by host macrophages

upon SIRP-a engagement (80). Remarkably, baboon

macrophages phagocytose pig endothelial cells and podocytes

in a similar manner as human macrophages. Zeng et al.

generated the GGTA1-/-/hCD47 transgenic Bama miniature pig

to avoid hyperacute rejection and weaken the phagocytosis by

host macrophages (81). In relation to lungs, the most difficult
Frontiers in Immunology 06
xenotransplantation, Watanabe et al. found that transgenic

expression of hCD47 could mitigate diffuse hemorrhagic

changes and antibody/complement deposition in pig-to-

baboon lung xenotransplantation (21). The authors also

published the first evidence of lung graft survival beyond 7

days (maximum survival to 10 days) in baboons. Moreover,

Zhang et al. transplanted liver grafts from the GGTA1-/-/hCD47

pig (Bama n = 3, Wuzhishan n = 3) to Tibetan macaques with

the modified Sur II (HA-abdominal aorta + HV-inferior vena

cava) procedure, and found that Tibetan macaques that had

received liver xenografts exhibited a high level of inflammatory

cytokine and leukocyte infiltration rather than severe

coagulation disorders or immune rejection (survival to 14

days) (82). Nevertheless, further investigations on the function

of hCD47 in other organ transplantations are needed because

the function of macrophages varies by organ.

The CD200 binds to the CD200 receptor (CD200R) on

macrophages, causing less secretion of pro-inflammatory

cytokines and more secretion of anti-inflammatory cytokines

(Figure 2A) (83). Sakai et al. observed that human CD200

expressed by swine endothelial cells suppressed xenogeneic

rejection by CD200R+ human macrophages in vitro (84). In

vivo, Yan et al. uncovered that hCD200 decreased human peri-

graft macrophage infiltration and improved porcine xenograft

survival in humanized mice to a greater extent than hCD47 (22).

Furthermore, swine cells also express other inhibitory ligands,

such as sialic acid-binding Ig-like lectins (Siglecs) (85),

surfactant protein D (an oligometric C type lectin) (86), T-cell

immunoglobulin and immunoreceptor tyrosine-based

inhibitory motif domain (TIGIT) (87), HLA-G1 (an MHC Ib

molecule) (88), and HLA class I histocompatibility antigen alpha

chain E (HLA-E) (89), all capable of suppressing macrophage-

mediated cytotoxicity and proinflammatory cytokine

production. Although overexpression of human a-2,6-
sialyltransferase (a2,6-ST) in swine endothelial cells has been

found to prevent macrophage-mediated cytotoxicity in vitro,

there is no in vivo evidence for the function of a2,6-ST
(Figure 2A) (23).
NK cells

NK cell infiltration was found in rejected xenografts beyond

the hyperacute period, leading to adhesion and cytotoxicity in

human NK cell-porcine endothelial cell interactions (90).

Experiments in vitro demonstrated that human NK cells may

induce pig endothelium lysis via two main immune

mechanisms: antibody-dependent cytotoxicity (ADCC) and

direct NK cell cytotoxicity. In the ADCC pathway (Figure 2B),

natural and elicited antibodies in primate blood bind to a-Gal or
non-Gal antigens on pig endothelium. The NK cells recognize

and bind to the Fc region of these deposited antibodies through
frontiersin.org
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FIGURE 2

Innate cellular xenograft rejection (A) Macrophage-mediated rejection. Macrophages mediate robust rejection of donor hematopoietic cells in a
variety of xenogeneic settings; this potent xenoreactivity results from the combined effects of CD47-SIRPa inhibitory receptor signaling,
CD200-CD200R signaling, CD33-Siglecs signaling, and DAMPs from damaged porcine cells. The relevant genetic modifications of
macrophage-mediated rejection are hCD47, hCD200, and ha2,6-ST transgenes. (B) NK-cell-mediated rejection. NK cells may induce pig
endothelium lysis via two main immune mechanisms of antibody-dependent cytotoxicity (ADCC) and direct NK cell cytotoxicity. During ADCC,
the NK cells recognize and bind to the Fc region of antibody deposits through their CD16 and then release cytotoxic granules. In the direct NK
cells’ cytotoxicity pathway, the inhibitory receptors on human NK cells, including KIR, ILT2, and CD94/NKG2A, poorly recognize the SLA-I and
pig HLA-E ortholog, thus disabling inhibitory signals for NK cell activation. In addition, the upregulation of pULBP1-NKG2D and pCD58-CD2
activating signals could lead to direct NK cell cytotoxicity. The relevant genetic modifications of NK-mediated rejection are HLA-E/hB2M
transgene and B2M-/-/CIITA-/- knockout. (C) Innate-like T cell-mediated rejection. The gd T cells trigger rapid immune responses and are
cytotoxic for porcine endothelial target cells. The strategies of hFasL transgene targeted at these innate-like T cells may reduce their
cytotoxicity. (D) Neutrophil-mediated rejection. The hCD31 transgene on porcine endothelial cells can suppress neutrophil-mediated xenogenic
cytotoxicity via the inhibition of NETosis (histones, antibacterial peptides, and serine proteases). (E) DC-mediated rejection. Inflammatory
cytokines-activated human DC is cytotoxic to porcine aortic endothelial cells by controlling human NK cell responses and pig CD8+ T
lymphocytes. The hTRAIL transgene on pig DCs can decrease human T cell proliferation.
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CD16 (an Fc receptor, also called FcgRIIIa), and then release

granzyme- and perforin-containing cytotoxic granules that

trigger pig endothelium apoptosis (91). The ADCC can be

abolished by removing IgG via immune absorption and

blocking with an anti-CD16 antibody (92). In the direct NK

cells cytotoxicity pathway (Figure 2B), the downregulation of

inhibitory signals and stimulation of activating signals result in

the release of lytic granules. The major ligands recognized by

inhibitory NK cell receptors are MHC class I (MHC-I) molecules

(93). When the human NK cell receptor recognizes intraspecific

MHC-I ligands (HLA class I, HLA-I), their toxicity would be

inhibited (94). However, the MHC-I ligand (swine leukocyte

antigen class I, SLA-I) on pig endothelium cannot effectively

transmit inhibitory signals to the human NK cell, leading to their

activation and the release of lytic granules (95). Moreover, the

inhibitory receptors on human NK cells, such as KIR, ILT2, and

CD94/NKG2A, also poorly recognize the SLA-I and pig HLA-E

ortholog, consequently disabling inhibitory signals for NK cell

activation (96). In addition, the upregulation of activating signals

could also lead to direct NK cell cytotoxicity. Kim et al. tested a

broad array of NK receptors including NKp46, 2B4, CD49d,

CD48, CD2, and NKG2D, and found that only CD2 and

NKG2D were involved in both cytotoxicity and cytokine

(TNF-a and IFN-g) production against porcine targets (97).

The pig CD58 ortholog interacts with CD2 and interruption of

this interaction through a monoclonal antibody inhibits lysis of

porcine targets by human peripheral blood mononuclear cells

(98). The porcine UL16-binding protein 1 (pULBP1) serves as a

functional porcine ligand for human NKG2D to trigger human

NK cell cytotoxicity (99). Thus, the modification of potential

ligands on porcine tissues presents an attractive target to protect

porcine xenografts from human NK cell cytotoxicity.

HLA-E, a heterodimer consisting of an a heavy chain and a

light chain (b-2 microglobulin [B2M]), binds to the inhibitory

receptor CD94/NKG2A of human NK cells. To inhibit direct NK

cell cytotoxicity, Weiss et al. generated hHLA-E/hB2M transgenic

pigs and found that pig endothelium derived from these animals

was protected against human NK cytotoxicity and inhibited NK-

secreted IFN-g (24). Rao et al. inserted an HLA-G1 transgene,

encoding a non-classical MHC-I protein, to the porcine ROSA26

locus, and created GGTA1-/-/hHLA-G1 pigs (25). In fibroblasts,

transplantable organs, and islets, the positive expression of HLA-

G1 plays a central role in immune suppression by lowering IFN-g
production via T cells and proliferation of CD4+ and CD8+ T cells,

B cells, and NK cells (25). To reduce xenoantigen expression and

thus reduce the recipient’s immune response, Fu et al. generated

GGTA1-/-/B2M-/-/major histocompatibility complex class II

transactivator (CIITA-/-) triple-knockout pigs, named GBC-21,

by CRISPR/Cas technology and found that the resulting

elimination of swine leukocyte antigen class I could effectively

alleviate xenogeneic immune responses and prolong pig organ

survival (26). Although there is still not enough in vivo evidence to

fully support the relevance of these strategies to protect pig
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xenografts from human NK cell-mediated injury, the generation

of HLA-E transgenic pigs is a promising approach.

Progress in xenotransplantation research relies on

nonhuman primate models; therefore, differences in NK cell

biology between humans and monkeys should be considered

when analyzing immune responses. Human NK cells are

characterized by the expression of the neuronal-cell adhesion

molecule N-CAM (CD56) and the absence of CD3 (CD56+,

CD3−) (100). Depending on CD56 expression level, human NK

cells are divided into two subgroups, CD56dim and CD56bright

(101). CD56dim NK cells, accounting for more than 90% of NK

cells, are mainly cytotoxic, expressing high levels of CD16 with

stronger killing activity, while CD56bright NK cells, producing a

large spectrum of cytokines, mainly play an immunomodulatory

role, with a high expression of the IL-2 receptor rather than

CD16 (101). Moreover, baboon NK cells are IL-2-responsive and

thus exert low spontaneous cytotoxicity against both human

(leukemic cell line K562) and pig (endothelial cell line J2) target

cells. They exhibit a CD3 (–)NKp46(+)CD8(dim)CD16(+/-) or

CD3 (–)CD8(dim)CD16(bright) phenotype (102). Currently,

NKp46 is a preferred NK cell marker, with evident expression

in humans, numerous mouse strains (including BALB/c mice),

and three common monkey species (i.e., baboon, rhesus

monkey, and cynomolgus) (103, 104). Furthermore, other

receptors such as NKp30, NKp44, NKG2A, NKG2D, and KIR/

CD158 were found on baboon NK cells, while KIR, CD94/

NKG2A, and NKp80 were found on rhesus monkey NK cells

(105, 106). In summary, these results can help to identify NK

cells more precisely in nonhuman primates and to better use

nonhuman primates as preclinical models for studying the role

of NK cells in porcine xenograft rejection.
Innate-like T cells

The gd T cells (about 2% of total T cells) are not MHC-

restricted and seem to be able to recognize native proteins rather

than require peptides to be presented by MHC molecules on

antigen-presenting cells (APCs) (107). Gago et al. studied the

xenoreactivity of human gd T cells against xenogenic porcine

endothelial cells in vitro and found that 38.9% of human gd T

cells were cytotoxic towards porcine endothelial target cells,

while porcine endothelial cells engineered to produce hFasL

were less susceptible to lysis (Figure 2C) (27). Specific strategies

targeted at these innate-like T cells may be important in

controlling the innate cellular response to xenografts and

facilitating graft survival.
Neutrophils

The histopathological features of AHXR in a GGTA1-/- heart

are similar to those seen in HAR (interstitial hemorrhage and
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edema), but include also a significant cellular infiltrate, mainly of

polymorphonuclear neutrophils that account for 40–70% of

white blood cells in humans (108). Neutrophils induce

inflammation in xenografts through a unique form of cell

death termed NETosis (Figure 2D) (109). Wang et al. unveiled

that hCD31 on porcine endothelial cells suppressed neutrophil-

mediated xenogenic cytotoxicity via the inhibition of NETosis in

vitro (28). Although neutrophil-mediated immune rejection is

not as strong as T lymphocyte-mediated immune rejection,

neutrophil infiltration and aggregation can be found in all

transgenic pigs, necessitating further research.
Dendritic cells

Manna et al. substantiated that IL-15 activated human

peripheral blood DCs and promoted the secretion of granzyme

B from DCs, as well as observed that DCs are cytotoxic to

porcine aortic endothelial cells (Figure 2E) (110). A human

TNF-related apoptosis-inducing ligand (hTRAIL) transgene was

inserted into a GGTA1-/-/hCD46 transgenic pig, and it was

observed that hTRAIL was mainly expressed in the spleen and

lymphoid tissues in this GGTA1-/-/hCD46/hTRAIL transgenic

pig (29). In vitro, hTRAIL-expressing porcine DCs were co-

cultured with human PBMCs or isolated T cells, which

demonstrated that transgenic DCs decreased human T cell

proliferation, suggesting that they can possibly attenuate T cell

responses against pig-to-primate xenografts (Figure 2E) (29).

Human monocyte-derived DCs induced with IL-10 in vitro

controlled human NK cell responses by reducing IFN-g
production, and inhibited cytotoxic CD8+ T lymphocytes

(CTL) response against porcine endothelial cells (111).

Because both DC subsets and maturation stages affect immune

responses, further study should be executed on the complexity of

DCs’ biology under the physiological and pathological

conditions of xenotransplantation.
Avoiding adaptive cellular xenograft
rejection via genetic modifications

The APCs transport antigens from the xenotransplant to the

peripheral lymph nodes, where they mediate initial T and B

lymphocyte activation. The resulting T and B effector

lymphocytes eventually migrate to the engraftment site and/or

produce anti-graft high affinity antibodies, thereby enhancing

immune rejection (112).

T cells. In xenotransplantation, recipients T cells can

recognize graft antigens by two main distinct pathways: via

the direct pathway as intact MHC xenoantigens on the surface of

donor cells (pig APCs), and via the indirect pathway as self-

restricted processed xenoantigens (pig-derived peptides on

primate APCs) (113) (Figure 3A). A donor organ can only
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transport a finite number of passenger APCs, thus, the direct

pathway’s significance in xenograft rejection reduces over time.

Notably, the indirect pathway is available for antigen

presentation for as long as the graft is in place, making it the

long-term dominant mode of xenorecognition.

In the direct pathway, T cell receptors (TCRs) of CD4+ and

CD8+ T cells in primates interact with SLA-II and SLA-I peptide

complexes on pig APCs (porcine endothelial cells and passenger

dendritic cells) (Figure 3A) (114). After constructing a human

dominant-negative mutant class II transactivator (CIITA-DN)

transgene, Hara et al. found that the expression of SLA-II on

APCs from CIITA-DN pigs was significantly reduced (30). The

absence of SLA-I in pigs was implemented by abrogating the

porcine B2M gene, which negatively impacted the viability of the

deficiency pigs (survival times < 4 weeks) (Figure 3A) (115).

Recently, it was reported that PBMCs from GGTA1-/-/B2M-/-/

CIITA-/- triple-knockout pigs were significantly less effective

than wild-type in inducing human CD4+ and CD8+ T cell

activation and proliferation (26). In fact, SLA molecules are

involved in protective immune responses in pigs; therefore,

inactivating them may decrease the human immune system’s

ability to monitor transplanted pig organs for infectious disease.

However, the elimination of SLA-II-contributed humoral

xenoantigenicity can be carried out by modifying epitopes in

SLA proteins (116).

In the indirect pathway, TCRs of CD4+ and CD8+ T cells in

primates interact with MHC-II and MHC-I peptide complexes

on primate APCs (Figure 3A) (37). Unlike the TCRs of CD8+ T

cells, the paired immunoglobulin-like receptor-A (PIR-A) on

monocytes and macrophages can directly bind to MHC-I

antigens and promote graft rejection (Figure 3A) (117). In

humans, PIR-A relates to other leucocyte immunoglobulin-like

receptor family members (LILRs, also termed immunoglobulin-

like transcripts, leucocyte immunoglobulin-like receptors, and

monocyte/macrophage immunoglobulin-related receptors)

(118). Recently, it was demonstrated for the first time that

both macrophages and monocytes in mice lose their antigen-

specific immune memory by blocking PIR-A with antibodies or

by genetic deletion (117). This finding may shed light on chronic

immune rejection, which has perplexed the xenotransplantation

research community for more than 60 years.

The antigen-specific signals of xenotransplantation are

delivered to the T cell through TCRs-CD3 and a second

costimulatory signal (119). Amongst many costimulatory

signals, we discuss the following three groups: (1) the B7

family (CD80/CD86) on APCs, binding the T cell

costimulatory molecules CD28 (120); (2) The TNF/TNF

receptor family, the prototype receptor–ligand pair of which is

CD40–CD154 (121); (3) and the programmed cell death 1 (PD-1

or CD279) and programmed cell death ligand 1 (PD-L1 or

CD274) receptor system (122) (Figure 3A). The CD80/CD86–

CD28 axis can be blocked by the cytotoxic lymphocyte-

associated molecule-4 (CTLA-4 or CD152) that has homology
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FIGURE 3

Adaptive cellular xenograft rejection (A) T cell response in xenograft rejection. In the direct pathway, T cell receptors (TCRs) of CD4+ and CD8+

T cells in primates interact with SLA-II- and SLA-I-peptide complexes on pig APCs, respectively. Human dominant-negative mutant class II
transactivator (CIITA-DN) transgene and porcine beta-2-microglobulin knockout (B2M-/-) can reduce T cell direct immune response. In the
indirect pathway, TCRs of CD4+ and CD8+ T cells in primates interact with MHC-II and MHC-I peptide complexes on primate APCs,
respectively. The paired immunoglobulin-like receptor-A (PIR-A) monocytes and macrophages can also directly bind to MHC-I antigens to
promote graft rejection. Three important costimulatory signaling axes have been identified in xenotransplantation, namely CD80/CD86-CD28,
CD40-CD154 and PD-1/PD-L1 axis. Drugs targeting these costimulatory signals have been administrated, such as CTLA4-Ig, aCD154mAb, and
aCD40mAb. Moreover, the hCTLA4-Ig, LEA29Y, and hPD-L1 transgenes can also inhibit these costimulatory signals. (B) B cells’ response in
xenograft rejection. As antigen-presenting cells, B cells present antigen on MHC-II, CD40, or CD20 the receptor–ligand axis to helper T cells.
Some drugs, such as anti-CD83 Ab, anti-CD20 mAb, and anti-CD40 mAb, can control B cells’ function and infiltration of inflammatory cells. (C)
Regulatory immunological cells response in xenograft rejection. Regulatory T cells (Treg) and regulatory dendritic cells (DCreg) are
immunological cells with a negative regulation function. The hPD-L1 transgenic on pig iliac endothelium cells (PIEC) can increase proliferation
and suppressive potency of Tregs.
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with the T cell antigen CD28 and serves as a ligand for CD80/

CD86 (123). Treatment with soluble recombinant CTLA4-Ig

was shown to extend islet graft survival after allotransplantation

of pancreatic islet grafts in monkeys (124). Based on this result,

Phelps et al. created pCTLA4-Ig and GGTA1-/-/pCTLA4-Ig

transgenic pigs that exhibited robust expression of the

pCTLA4-Ig protein in all organs and circulating in the blood

(31). Vabres et al. transplanted the corneas from hCTLA4-Ig

transgenic pigs to cynomolgus monkeys (Macaca fascicularis),

and could establish that the expression of hCTLA4-Ig prolonged

the final rejection time to 70 days (21 days in the wild-type

group) (32). In addition, Bahr et al. established a genetically

modified pig line with ubiquitous expression of LEA29Y, a

human CTLA4-Ig derivate that binds human CD80/CD86

with high affinity. They found that LEA29Y expression

blocked T cell co-stimulation without affecting sexual

reproduction (33). The CD40–CD154 axis is effectively

blocked by anti-CD154 mAb and anti-CD40 mAb, which

prevents T cell response and extends the xenograft’s survival

significantly (35, 125, 126). In the PD-1–PD-L1 axis, hPD-L1

transgenic pigs are characterized by the expression of hPD-L1 in

the kidney, heart, and pancreas, as well as a reduced capacity to

stimulate proliferation of human CD4+ T cells (34).

The treatment approaches for immunosuppressive regimens

in xenotransplantation were initially derived from regiments

used in allotransplantation, such as treatments with tacrolimus

(FK506, FK) that blocks T cell cytokine production (54),

cyclosporine (CsA), MMF, ATG/ALG that induce Fas-

mediated T cell apoptosis (127), and corticosteroids (Cs).

Moreover, the monoclonal antibodies (mAbs) introduced

subsequently, such as CTLA-4Ig, anti-CD40 mAb, anti-CD4/8

mAb that depletes CD4+/CD8+ T cells (128), anti-CD154 mAb,

and anti-CD20 mAb that depletes B cells (129), substantially

improved the acceptance of xenografts. An alternative to

reconstitute tolerized host T cells is the transplantation of the

donor thymus in thymectomized and T cell-depleted

immunocompetent host (130). The newly developing T cells

are similarly exposed to both host and donor tissues and lead to

loss of reactivity to both host and donor, inducing deletional T

cell tolerance (131). Transplantation of porcine thymus as a

composite “ thymokidney “ or a single vascular thymus lobe can

support early primate thymopoiesis, which in turn induces

T-cell tolerance to solid organ xenografts (18, 132). The

approaches discussed above, combined with developments in

immunosuppressive therapies, especially costimulatory blockers,

have allowed long-term organ graft survival in NHPs.

B cells. It was demonstrated that costimulation blockade with

an anti-CD40 antibody and anti-CD20 antibody prolonged the

survival time of a heterotopic xenograft by controlling B cells

function and infiltration of inflammatory cells (129, 133, 134).

Wong et al. found that the anti-CD20 antibody rituximab
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depleted over 80% of recipient B cells, and further added the

inhibitory effect of anti-CD83 Ab for CD83+ human dendritic

cells and B cells They observed that anti-CD83 Ab only depleted

activated (not resting) B cells and dendritic cells and therein

reduced CD4+ T cell responses (135). In summary, B cells are

essential in eliciting anti-non-Gal antibodies and targeting these

cells allows the delay of xenograft rejection (Figure 3B).

Regulatory immunological cells. The use of host T regulatory

cells (Tregs) contributes to the prevention or delay of xenograft

rejection by controlling the activation and expansion of donor-

reactive T cells (136). Herein, Ding et al. observed the significant

proliferation of human CD4+/Foxp3+ Tregs and CD4+/Foxp3- T

effector cells in a co-culture system of pig iliac endothelium cells

(PIECs) and human blood, and found that hPD-L1 transgenic

PIECs inhibited Teff proliferation, while increasing the

proliferation and suppressive potency of Tregs (Figure 3C)

(137). Ezzelarab et al. observed that using regulatory dendritic

cells (DCregs) in a model of allogeneic kidney transplantation

these allowed a prolonged median graft survival up to 56 days,

when compared with allotransplants receiving only

costimulation blockade (CTLA4 Ig) and tapered rapamycin

(median graft survival 39 days) (138). Madelon et al.

differentiated human monocytes into DCregs via rapamycin or

IL-10 in vitro, and uncovered that both rapamycin- and IL-10-

induced DCregs caused significantly less IFN-g production and

human NK cell degranulation in response to porcine endothelial

cells (Figure 3C) (111). Thus, DCregs can be a useful tools to

promote xenograft tolerance.
Coagulation dysfunction in pig-to-
nonhuman primate transplantation

When the HAR, AHXR, and T cell responses are prevented,

coagulation dysregulation becomes more obvious following

xenograft transplantation (46). Antibodies and complement

cause the endothelial cells of the graft to change from an

anticoagulant state to a procoagulant state, and induce

immune cell infiltration and destruction of the blood vessel

wall. Owing to the damage of the blood vessel wall, the

sub-endothelial cells expressing tissue factor (TF) become

exposed to the lumen of the blood vessels, thus initiating the

extrinsic coagulation pathway regulated by calcium ions

(139) (Figure 4A).

In order to overcome coagulation dysfunction, several

coagulation-related pivotal factors, such as thrombomodulin

(TBM), endothelial protein C-receptor (EPCR), tissue factor

pathway inhibitor (TFPI), ectonucleoside triphosphate

diphosphohydrolase-1 (CD39) that is an anti-thrombotic and

cardiovascular protective mediator, and ecto-5’-nucleotidase
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(CD73), can be overexpressed to extend graft survival (140).

Cardiac-specific expression of hCD39 in pigs can reduce

myocardial dysfunction and the infarct size following

ischemia-reperfusion injury (38). When GGTA1-/-/hCD46/

hTBM was used as the donor pig and the pig heart was

transplanted into the nonhuman primate model, the survival

time was extended to 945 days (35). Although the survival time

of the pig cardiac xenograft with six-gene modifications

(GGTA1-/-/hCD46/hCD55/hTBM/hCD39/hEPCR or GGTA1-/-/
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hCD46/hCD55/hEPCR/hCD47/hTFPI) in the baboon was only

200 days, no significant coagulopathy or consumptive

thrombocytopenia was observed in the six-transgene cohort

(36). The recipient baboon succumbed to septic shock without

consumptive coagulopathy or protein-losing nephropathy.

To control thrombocytopenia and consumptive

coagulopathy even further, the pig von Willebrand factor

(VWF) and asialoglycoprotein receptor 1 (ASGR1) genes can

be edited (Figure 4B). The pig vWF activates primate platelets
A

B

FIGURE 4

The coagulation cascade relating to pig-to-primate xenotransplantation (A) Coagulation cascade in primates. Coagulation factor VII (FVII) in the
blood is the promoter of the intrinsic coagulation pathway. Damage to the blood vessel wall exposes the sub-endothelial cells expressing tissue
factor (TF) to the blood stream, initiating the extrinsic coagulation pathway regulated by calcium ions. Additionally, in response to shear stress,
von Willebrand factor (vWF) interacts with glycoprotein Ib (GPIb), VI, and Ib-V-IX on platelets, which results in platelet activation and adhesion.
The clot formation is regulated by several anticoagulant molecules, such as tissue factor pathway inhibitor-1 (TFPI1), antithrombin (AT), Protein
C (pC)/protein S (pS), and thrombomodulin (TBM). (B) Mechanisms of coagulation dysfunction after pig-to-primate xenotransplantation. The
molecular incompatibilities between primate and pig coagulation–anticoagulation systems exaggerate the coagulation cascade. The pTFPI, pig
endothelial protein C-receptor (pEPCR), pTBM, and pvWF are not sufficient to inhibit the blood coagulation factor of primates ineffectively shuts
down coagulation (dashed lines indicate inadequate inhibition). Thus, the associated gene modification sites are identified as ① to ⑤.
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via their GPIb receptors, and this molecular incompatibility

spontaneously aggregates primate platelets even without shear

stress (141). Connolly et al. created the GGTA1-/-/hCD46/

h*pVWF modified pig by replacing a pig VWF (pVWF)

gene region-encoding glycoprotein Ib-binding site with human

cDNA orthologs (39). After pig-to-baboon lung transplantation,

organs from pigs with h*pVWF demonstrated reduced

platelet sequestration during lung and liver perfusion ex vivo

with human blood (39). Primate platelets were bound and

phagocytosed by the ASGR1 on pig sinusoidal endothelial

cells, which led to lethal thrombocytopenia in liver

xenotransplantation (142). Livers from ASGR1-/- pigs exhibited

decreased human platelet uptake both in vivo and in vitro (40,

41). Therefore, a graft from a specific genetically engineered pig

and an effective immunosuppression has great potential to

prevent immune injury and delay coagulation dysfunction.
Systemic inflammation in
xenotransplantation

The use of transgenic pigs expressing human heme

oxygenase-1 (hHO-1) or human A20 (hA20) seems to be

helpful in reducing systemic inflammation in xenograft

recipients, because both hHO-1 and hA20 have anti-

inflammatory and anti-apoptotic effects (42). Transgenic hA20

expression protects pig cells against human TNF-a-mediated

apoptosis and partially against CD95(Fas)/CD95(Ligand)

pathway-mediated cell death (143). The porcine kidney from

GGTA1-/-/hHO-1/hA20 transgenic pigs can successfully be

perfused with diluted human AB-pooled blood for a maximum

of 240 min (blood flow ceased after∼60 min in wild-type kidneys)

(42). A soluble human TNF-a receptor 1-IgG1 Fc chimeric

protein (shTNFRI-Fc) could inhibit the binding of human TNF-

a to pig TNF receptors and prevent human TNF-a-mediated

inflammation and apoptosis, prompting researchers to generate

shTNFRI-Fc/hHO-1 and CMAH-/-/GGTA1-/-/shTNFRI-Fc/hHO-1

transgenic pigs (43). In spite of the lack of in vivo xenotransplant

data to confirm the superiority of these multigene-edited pigs, it is

speculated that they are suitable for xenotransplantation owing to

their ability to overcome hyperacute, acute, and anti-

inflammatory rejection.
Porcine endogenous retroviruses as
a potential risk in
xenotransplantation

Before the emergence of the CRISPR-Cas9 technology, the

most appropriate method to reduce PERV expression was RNA
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interference. Transgenic pigs were produced by transfecting

porcine fibroblasts with lentiviral vectors expressing the

corresponding short hairpinRNA (144, 145). In addition,

antiretroviral drugs, such as integrase inhibitors, have proven

effective in inhibiting PERV infection in vitro (146). However, now

that researchers have completely inactivated the pig endogenous

retroviruses through CRISPR-Cas9 to produce pigs that cannot

release infectious PERVs, antiretroviral drugs no longer seem

necessary (44). Although it is still unclear whether PERVs can

infect human, PERVs inactivated by CRISPR-Cas9 are currently

the onlyway to ensure the inhibitionof PERVs transmissionduring

pig-to-human xenotransplantation (147).
Recent clinical experiments using
genetically modified pig organs

Montgomery et al. successfully performed two cases of

GGTA1-/- thymokidney in brain-dead human recipients, and

given 1000 mg of methylprednisolone (daily) and 1000 mg of

mycophenolate mofetil (intravenous, two times a day) until the

kidney was explanted to induce immunosuppression. They

observed no inflammation in renal tubules, arteries, glomeruli,

capillaries in the subsequent 24 and 48 hours, but detected focal

C4d deposition at 54 h in the xenograft for one recipient (148).

Additionally, Porrett et al. published the results of a

transplantation of bilateral kidneys from ten-gene modified pig

(GGTA1-/-/CMAH-/-/b4GalNT2-/-/GHR-/- (growth hormone

receptor gene knockout)/hCD46/hCD55/hCD47/hTBM/

hEPCR/hHO-1) into a brain-dead human recipient (149).

The GHR-/- is a reasonable approach to reduce the rate of

growth and ultimate size of organ-source pigs, which is

reviewed comprehensively by Iwase et al. (150). For the

induction of immunosuppression, daily methylprednisolone

taper, 6 mg/kg ATG and anti-CD20 antibodies were

administered. Subsequently, mycophenolate mofetil ,

tacrolimus, and prednisone were given for the maintenance of

immunosuppression for 74 h. Histological examination on day 1

and day 3 post-transplantation showed tubular injury with mild

to extensive acute tubular necrosis, but no evidence of

hyperacute rejection, cellular rejection, or deposition of

antibody or complement proteins. These pig kidneys produced

some urine, but did not process creatinine, suggesting that they

weren’t functioning properly. Although this preclinical human

model is useful to answer important logistical questions about

the feasibility of xenotransplantation, the possible immune

rejection and physiological dysfunction that would appear

after several weeks of the transplant are not ascertainable.

On January 7, 2022, the first successful transplant of a heart

from a 10-gene edited pig into a 57-year-old man with life-

threatening heart disease, and life support was withdrawn on day
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60 (151). For the depletion of B-cells, Rituximab was used and

for the depletion of T cells, ATGs were infused pre-transplant.

Complement C1 esterase inhibitor was also used to inhibit the

complement. To inhibit CD40-CD154 mediated B cell activation

and Type 1 immune responses, humanized monoclonal

antibody KPL-404, which blocks CD40 co-stimulation, was

administered. 1000 mg methylprednisolone was given on the

day of xenotransplantation. To maintain immunosuppression,

mycophenolate mofetil, KPL-404, and a rapid taper of

methylprednisolone (from 125 mg daily to 30 mg daily) was

administered. In contrast to a typical a transplant rejection, the

final histology examination of the heart, which gained twice its

initial weight, showed scattered myocyte necrosis, endothelial

cell swelling, interstitial edema, and red-cell extravasation (151).

Furthermore, infection with the porcine cytomegalovirus

(pCMV) was detected starting on day 20 using plasma

mcfDNA PCR testing. In nonhuman primate recipients,

pCMV has been previously shown to be associated with

shortened survival time of the transplant by increasing levels

of inflammatory factors such as IL-6 and TNFa (152). It is

obvious that highly sensitive detection methods combining PCR

and serologic tests and strategies for the complete elimination of

pCMV from donor herds are required.
Conclusions

The current consensus regarding the initiation of clinical

trials of xenotransplantation proposes that it is necessary to use

genetically modified pigs with deletion of the major

carbohydrate antigens reacting with the human natural

antibodies, and with the addition of transgenes preventing

complement and coagulation activation. Further specific

transgenes modulating innate or adaptive immune responses,

might be used depending on the organ or tissue transplanted.

Slower types of rejection might be difficult to detect in these early

human models because of the insufficient duration of the studies.

Thus, a more thorough understanding of the immunological

barriers, especially delayed innate/adaptive cellular xenograft

rejection, will be the next groundbreaking process.

Regarding the immunosuppressive regimen, the blockade of

the co-stimulatory pathway CD40-CD154 is essential to prevent

the formation of new anti-pig antibodies. Initial trials with anti-

CD154 mAb showed promising results in attenuating T cell

response in pig to NHP models (153), yet further research

showed that it had thrombogenic effects and has been

discontinued in clinical use due to the presence of CD154

molecules on human platelets, or the IgG receptor FcgRIIA
activation on platelets via immune complexes between anti-
Frontiers in Immunology 14
CD154 mAb and CD154 (154, 155). It is therefore necessary to

use anti-CD40 mAb, as it has been shown to be equally effective

in blocking the CD40-CD154 interaction (35). In recent trials of

pig to human transplant, anti-CD40 mAb (KPL-404) was used

as a part of the immunosuppressive regimen along with other

immunosuppressants, including Rituximab (anti-CD20 mAb)

and ATG, and had been preliminary shown to be safe for use in

humans. Ultimately, optimizing genetically engineered organ-

source pigs and advanced immunosuppressive regimen

strategies potentially offer hope to patients with failing organs.
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