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Immunotherapy, particularly immune checkpoint inhibitors, have become

widely used in various settings across many different cancer types in recent

years. Whilst patients are often treated on the basis of the primary cancer type

and clinical stage, recent studies have highlighted disparity in response to

immune checkpoint inhibitors at different sites of metastasis, and their impact

on overall response and survival. Studies exploring the tumor immune

microenvironment at different organ sites have provided insights into the

immune-related mechanisms behind organ-specific patterns of response to

immunotherapy. In this review, we aimed to highlight the key learnings from

clinical studies across various cancers including melanoma, lung cancer, renal

cell carcinoma, colorectal cancer, breast cancer and others, assessing the

association of site of metastasis and response to immune checkpoint inhibitors.

We also summarize the key clinical and pre-clinical findings from studies

exploring the immune microenvironment of specific sites of metastasis.

Ultimately, further characterization of the tumor immune microenvironment

at different metastatic sites, and understanding the biological drivers of these

differences, may identify organ-specific mechanisms of resistance, which will

lead to more personalized treatment approaches for patients with innate or

acquired resistance to immunotherapy.
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1 Introduction

Despite significant success with immunotherapy across

different cancers, the majority of patients with advanced

disease will either not respond (innate resistance) or develop

resistance after initial response (acquired resistance) to immune

checkpoint inhibitors. The presence versus absence of specific

sites of metastatic disease has been associated with differences in

both local and overall responses to immunotherapy, as well as in

progression-free and overall survival. Less frequently, patients

with multiple sites of disease may present with a heterogenous

response, where some metastases may respond whilst others

continue to progress, commonly referred to clinically as a ‘mixed

response’. These observations suggest that there are likely organ-

specific mechanisms of response and resistance to immune

checkpoint inhibitors, which should be taken into

consideration when choosing therapy for individual patients.

Advances in single-cell multi-omic technologies has allowed

for a more in-depth exploration and characterization of different

immune cell types and immune cell subsets (1, 2). These

technologies and studies unveil the inter and intratumoral

heterogeneity, and the association with immunotherapy

responses. Increased awareness of the tumor immune

microenvironment at different metastatic sites is key to better

understand the role this plays in local and systemic responses when

treated with immunotherapy. Furthermore, such understanding

will likely uncover new strategies to more effectively tailor the

application of immunotherapies and novel treatments.

This review aims to summarize data regarding the organ-

specific tumor microenvironment and the respective response

patterns to immunotherapy across different cancer types. This

review further aims to highlight opportunities to apply this

understanding to develop more effective treatment strategies

and improve outcomes for cancer patients.
2 Standard immune checkpoint
inhibitors

2.1 Mechanisms of action of standard
immune checkpoint inhibitors

The immune checkpoints, programmed cell death protein 1

(PD-1) and Cytotoxic T-lymphocyte-associated protein 4

(CTLA-4), both act to negatively regulate the immune system

and are key facilitators of immune homeostasis and prevention

of autoimmunity.
2.1.1 Anti-programmed cell death protein 1
Expression of PD-1 is typically induced by T-cell receptor

(TCR) stimulation and is expressed on a variety of immune cells,
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particularly on activated T cells and regulatory T cells (Tregs)

but has also been shown to be expressed on B cells, monocytes,

natural killer (NK) cells and dendritic cells (3–5). Chronic

exposure to antigens leads to an over-expression of PD-1 on T

cells, which has been used as an indicator of T cell exhaustion

(6). PD-1 has 2 natural ligands, PD-L1 and PD-L2. Antigen

presenting cells such as B cells, dendritic cells and macrophages,

often express both PD-L1 and PD-L2, but expression of PD-L1

and PD-L2 can also be induced on hematopoietic and non-

hematopoietic cells including endothelial cells, through pro-

inflammatory cytokines like interferon gamma (IFNg) (3).

Host tissue expression of PD-L1/PD-L2 has therefore been

shown to increase during an inflammatory response (3, 5, 7,

8). As an important immune tolerance mechanism to prevent

auto-immunity, PD-1 binding to PD-L1/PD-L2 leads to reduced

T cell proliferation, reduced cytotoxic activity, and a decreased

ability to produce cytokines (9, 10). Tumors, including

melanoma and non-small cell lung cancer (NSCLC), utilize

this PD-1/PD-L1 axis to suppress and evade the host immune

response (3, 11, 12). Some tumors express PD-L1 to varying

degrees, although the mechanism of cancer immune tolerance is

thought to primarily occur within the tumor microenvironment

via cytokine-induced expression of PD-L1 on tumor cells (3).

This local activity within the TME is thought to be the

contributor to the high efficacy of treatments (anti-PD-1 and

anti-PD-L1) in advanced cancer patients. Immune checkpoint

inhibiting antibodies, specific to either PD-1 or PD-L1, block

this interaction and have become the standard of care therapies

across various cancer types.

2.1.2 Anti-cytotoxic T-lymphocyte-associated
protein 4

Unlike PD-1, which acts at later stages of T cell activation

and typically in the tumor microenvironment, CTLA-4, another

immune checkpoint, acts earlier in the immunity cycle. CTLA-4

is thought to act during T cell priming and activation, typically

in regional lymph nodes (13–15). CTLA-4 is often expressed on

Tregs and contributes to their inhibitory function which helps

maintain immune self-tolerance. However, expression of CTLA-

4 is also induced on T cells upon early activation (16). CTLA-4

and CD28, a T cell co-stimulatory molecule, are homologs and

competitively bind to their ligands, CD80 and CD86 (B7 family),

which are expressed on antigen presenting cells (13, 17).

Recognition of antigen expression induces TCR activation and

CD28 binding to CD80/CD86, which leads to increased T cell

proliferation and IL-2 production (13). In contrast, CTLA-4 has

a greater binding affinity for CD80/CD86, and when it binds to

the ligands (instead of CD28), causes reduction of T cell

proliferation and survival, and reduced IL-2 production,

suppressing the host immune response (13, 17, 18). Therefore,

CTLA-4 blockade enhances T cell anti-tumor response and

consequently improves clinical outcomes in some cancer types.
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2.2 Clinical applications of immune
check point inhibitors for cancer patients

Immune checkpoint inhibitors such as anti-PD-1

(nivolumab, pembrolizumab, cemiplimab), anti-PD-L1

(durvalumab, atezolizumab) and anti-CTLA-4 (ipilimumab

[IPI]) were shown to significantly improve survival in

melanoma and other cancers, including non-melanoma skin

cancers (merkel cell carcinoma and cutaneous squamous cell

carcinoma), lung cancer, renal cell carcinoma, head and neck

cancer, and hepatocellular carcinoma.

2.2.1 Melanoma
In AJCC (American Joint Committee on Cancer) stage IV

melanoma patients, anti-PD-1 monotherapy or in combination

with IPI induces unprecedented long-term responses in a subset

of patients, with a 36% and 29% progression-free survival (PFS)

rate at 5 years, and with 44% and 52% overall survival (OS) rate

at 5 years, for anti-PD-1 or IPI+anti-PD-1, respectively (19).

Immune checkpoint inhibitors have become the standard of care

for patients with advanced melanoma, as well as for resected

stage III melanoma in the adjuvant setting (20–23), with an

associated reduction in the risk of recurrence (HR 0.60,

p<0.0001) (23). Moreover, immune checkpoint inhibitors have

also shown impressive results in the adjuvant setting for high-

risk stage II (stage IIB/C) and in the neoadjuvant setting for

resectable stage III/IV melanoma (24–26).

2.2.2 Lung cancer
In metastatic non-small cell lung cancer (NSCLC), anti-PD-

1 can be used as monotherapy or in combination with

chemotherapy, depending on PD-L1+ tumor expression,

patient characteristics, amongst other variables. The phase 3

trial KEYNOTE-024 showed improved OS (median OS, 30

months versus 14.2 months) and PFS (median PFS, 10.3

months versus 6 months) in advanced NSCLC patients treated

with first-line anti-PD-1 monotherapy compared to platinum-

based chemotherapy in patients with tumors with a PD-L1

tumor proportion score of 50% or greater (27, 28). In

addition, the KEYNOTE-189 (non-squamous NSCLC) and the

KEYNOTE-407 (squamous NSCLC) trials showed that the

addition of anti-PD-1 to a platinum-doublet chemotherapy

improved OS (hazard ratio [HR], 0.56; 95% CI: 0.45 to 0.70

and [HR], 0.64; 95% CI: 0.49−0.85, respectively) and PFS

(hazard ratio [HR], 0.48; 95% CI: 0.40 to 0.58 and [HR], 0.56;

95% CI: 0.45−0.70, respectively) compared to chemotherapy

alone regardless of PD-L1 expression (29, 30). Platinum-

doublet chemotherapy with anti-PD-1 is now the standard

first line treatment for metastatic NSCLC patients whose

tumor lacks an actionable mutation. In patients with PD-L1

positive (PD-L1 1% or more) NSCLC, the combination of IPI

+anti-PD-1 has also shown better OS compared to
Frontiers in Immunology 03
chemotherapy (median OS, 17.1 months versus 14.9 months)

(31), and IPI+anti-PD-1 combined with chemotherapy (2

cycles) showed superior overall survival compared to

chemotherapy alone, regardless of PD-L1 expression (median

OS, 15.6 months versus 10.9 months) (32). Whether IPI+anti-

PD-1 is also superior to chemotherapy + PD-1 in first line for

NSCLC is unknown. Anti-PD-1 monotherapy has also shown

survival advantage (PFS and OS) compared to docetaxel in

second line setting, after failing first line platinum based

doublet (without anti-PD-1), regardless of PD-L1 expression

(33–35). Also, consolidation with anti-PD-L1 after concurrent

chemoradiotherapy has significantly reduced the risk of

recurrence for locally advanced stage III NSCLC and it is

established as standard of care in this setting (36). Recent

studies have also shown promising results with the addition of

anti-PD-1 in both adjuvant (37, 38) and neoadjuvant (39, 40)

settings, but more mature data is needed to confirm these results.
2.2.3 Other cancers
In renal cell carcinoma, the combination of IPI+anti-PD-1

was associated with better response (objective response rate

[ORR] 42% versus 27%) and PFS (median PFS, 11.6 versus 8.4

months) compared to sunitinib in patients with intermediate or

poor risk renal cell carcinoma (RCC) in the first line setting (41).

Anti-PD-1 monotherapy was also associated with better survival

(PFS and OS) compared with everolimus (mTOR inhibitor) in

patients with clear-cell RCC after failing one or two lines of anti-

angiogenic agents (42). In head and neck squamous cell

carcinoma, anti-PD-1 monotherapy was associated with

superior overall survival compared to second line standard

single agent therapy (Cetuximab, docetaxel, or methotrexate)

(median OS, 7.1 months versus 5.1 months), after progressing

within 6 months of platinum-based chemotherapy (43). Also, in

patients with unresectable hepatocellular carcinoma, anti-PD-L1

in combination with anti-VEGF demonstrated improved PFS

and OS compared to sorafenib (median PFS, 6.8 months versus

4.3 months; and OS at 1 year, 67.2% versus 54.6%) (44). Anti-

PD-1 has also demonstrated activity in the second line setting in

patients with metastatic HCC progressing on sorafenib (45–48).

Anti-PD-1 monotherapy is also frequently used in thyroid

cancer. However, due to lower mutation burden of some

thyroid cancers and their immunosuppressive tumor

microenvironment, results seen in cancers such as melanoma,

lung cancer and RCC have not been matched in thyroid cancer.

Studies assessing the combination of anti-PD-1 in conjunction

with anti-CTLA-4, with BRAF inhibitors, as well as, anti-VEGF

agents are ongoing particularly for patients with advanced

thyroid cancer aiming to improve response to anti-PD-1

therapy (49, 50).

Whilst immune checkpoint inhibitors became the standard

of care for melanoma, NSCLC, RCC, head and neck, and

hepatocellular carcinoma, many other cancer types are still in
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the early stages of evaluating the efficacy of these treatments,

most of which are limited to clinical trials only or for a select

subset of patients, e.g. Triple negative breast cancer (TNBC) and

Microsatellite Instability high colorectal cancer (51–55).
3 Site specific clinical outcomes and
the tumor microenvironment

3.1 Liver metastases

3.1.1 Clinical outcomes in patients with liver
metastases treated with immunotherapy

The presence of liver metastases is a significant prognostic

factor and has been associated with reduced survival rates in

cancer patients (56, 57). Overall, across all cancers, patients with

liver metastases also have worse outcomes than those without liver

metastases when treated with anti-PD-1 based immunotherapy. A

summary of clinical studies assessing the local and systemic

response of liver metastases to immunotherapy are summarized

in Table 1.

In a retrospective study of 140 metastatic melanoma

patients, liver metastases had reduced local response rates

compared with other sites of disease including lung,

subcutaneous, soft-tissue, and gastrointestinal metastases when

treated with combination IPI+anti-PD-1 in the first line setting

(58). On multivariate analysis, it was shown that the presence of

liver metastases was significantly associated with reduced overall

response rate (ORR, 43.6% versus 76.8%), shorter progression-

free survival (6-month PFS, 43% versus 80%) and overall

survival (1-year OS, 65% versus 94%) compared to those

patients without liver metastases (58). Remarkably, this

difference in clinical outcomes between patients with and

without liver metastases was not seen in patients treated with

targeted therapy (BRAF+MEK inhibitors) (59), suggesting

resistance in the liver is specific to immunotherapy. Tumeh

et al. also demonstrated that in both the discovery (KEYNOTE-

001 trial) and validation (KEYNOTE-002 and KEYNOTE-006

trials) melanoma cohorts, patients with liver metastases had

reduced PFS (median PFS, 5.1 months in the discovery cohort

and 2.7 months in the validation cohort) compared to patients

without liver metastases (median PFS, 20.1 months in the

discovery cohort and 18.5 months in the validation cohort) (60).

A retrospective study of NSCLC patients comprised of both

squamous cell carcinoma (SCC) and non-squamous cell

carcinoma (adenocarcinoma [ADC]) treated with anti-PD-1

monotherapy showed that patients with liver metastases have

shorter PFS and OS compared with patients without liver

metastases (hazard ratio [HR] for PFS = 1.62, 95% CI, 1.11-

2.36; HR for OS = 1.62, 95% CI, 1.09-2.41) (61). In another large

retrospective study of almost 24,000 patients, including patients

with NSCLC (ADC and SCC) and small cell lung cancer (SCLC),
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for those with a solitary metastatic site, it was shown that

patients with liver metastases had significantly poorer

outcomes compared to patients with other solitary metastatic

sites, including brain and bone. In addition, a different study

which included metastatic ADC or extensive-stage SCLC with

multiple sites of disease, those with liver metastases had shorter

overall survival compared to those without liver metastases

(median OS for ADC 3 vs. 4 months, and median OS for

SCLC 4 vs. 6 months, patients without versus with liver

metastases, respectively) (57). This difference was also

observed in the KEYNOTE-001 trial, a phase 1 clinical trial

that included patients with progressive locally advanced or

metastatic carcinoma, melanoma, or NSCLC. Patients with

metastatic NSCLC with liver metastasis had reduced PFS

compared to patients without liver metastases (median PFS,

1.8 months vs. 4.0 months) (60).

A retrospective study by Lu et al. including advanced

hepatocellular carcinoma patients treated with either single

agent anti-PD-(L)1, IPI or the combination IPI+anti-PD-1, also

observed differences in organ specific response. Specifically, they

found that the primary liver lesions had the worst response

compared to any metastatic site (62). Furthermore, in the subset

of patients with multiple measurable sites of disease there was

discordant response in 75% of patients, with extra hepatic tumor

response whilst progressing in the liver. In another subgroup

analysis of patients with only dual lung and liver metastases, half

of the patients progressed in the liver whilst achieving a response

in the lung metastases, whilst there were no patients who achieved

a response in the liver but progressed in the lung (62).

Whilst immunotherapy is often used for microsatellite

instable (MSI) colorectal cancer, a study by Wang et al. in

microsatellite stable (MSS) colorectal cancer showed that no

patients with liver metastases had a response to anti-PD-(L)1

therapy versus an ORR of 19.5% in patients without liver

metastases. Furthermore, patients with liver metastases had a

shorter PFS compared to those without liver metastases (63).

Similarly, in a phase 1 study (NCT01375842) of TNBC patients

treated with PDL1, those with liver metastases had poorer

response and survival compared to those without liver

metastases (64). Likewise, the KEYNOTE-086 trial, which

included previously treated metastatic TNBC patients, showed

no objective response in patients treated with anti-PD-1 that had

liver metastases, while 7.3% of those without liver metastases

responded to treatment (65).

3.1.2 Liver-specific tumor microenvironment
The liver receives blood supply directly from the

gastrointestinal tract and is constantly exposed to various

microbes and pathogens (66). The liver is therefore one of the

first lines of immune defense against foreign pathogens, with site

specific immune cell populations tasked with maintaining

immune homeostasis and protection. Hepatocytes are the
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TABLE 1 Summary of the organ specific response and survival rates from highlighted clinical studies.

Trial/Study Trial/Study type Cancer
types

Immunotherapy
treatment

Number
of

patients

Sites of metastasis

Liver Lung Brain Bone Others

Tournoy et al. Retrospective NSCLC Nivolumab 267 ↓ OS Reduced
OS

Goldberg et al. Clinical trial NSCLC Pembrolizumab 42 ORR achieved
ORR: PD-L1+
> ORR PD-L1-
tumors

Liao et al. Retrospective NSCLC Nivolumab 70 OS benefit
OS: PD1+
WBRT > OS :
WBRT

Schmid et al. Retrospective NSCLC Nivolumab 52 LN: ↑
OSRR

Si-cong ma et al. Secondary analysis:
OAK trial

NSCLC PDL1 vs.
chemotherapy

425 Adrenal
gland: ↑ OS

Adachi et al. Retrospective NSCLC
(SCC/ADC)

Nivolumab 296 ↓ PFS and
↓ OS

Landi et al. Retrospective NSCLC
(Squamous
and non-
squamous)

Nivolumab 1588 ↓ ORR,
↓ PFS and
↓ OS

Li et al. Retrospective NSCLC
(Squamous
and non-
squamous)

Multiple ICIs 204 ↓ OS and
↓ PFS

Topalian et al. Clinical trial:
Checkmate 003

NSCLC,
Melanoma,
Renal cell
carcinoma

Nivolumab 270 ↓OS

Tumeh et al. Secondary analysis:
Keynote 001, Keynote
002, Keynote 006

Melanoma and
NSCLC

Pembrolizumab 336
(melanoma),

165
(NSCLC)

↓ ORR and
↓ PFS

↑ PFS

Yu et al. Retrospective Melanoma and
NSCLC

IPI+PD1 182
(melanoma),

279
(NSCLC)

↓ OS and ↓
PFS

Joseph et al. Secondary analysis:
Keynote 001

Melanoma Pembrolizumab 583 ↓ ORR and
1-year OS

↑ ORR
and ↑ 1-
year OS

Pires da Silva et al. Retrospective Melanoma IPI+PD1 140 ↓ OSRR, ↓
ORR, ↓ OS
and PFS

↑ ORR
and ↑
PFS

↓ ORR
and ↓ PFS

Spleen: ↓
ORR, ↓
OFS and ↓
OS.
GI and
soft-tissue:
↑ OSRR

(Continued)
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primary parenchymal cells of the liver and help activate the

innate immune response (67). Specialized liver sinusoidal

endothelial cells not only act as a barrier, but also have various

functions including metabolism and defense against invading

pathogens through antigen presentation and endocytic

capabilities (68, 69). Kupffer cells are also a unique tissue

resident liver macrophage population which play a role in

immune defense, promoting inflammation, regulating

metabolism, and directly traveling along the liver sinusoids to

phagocytose pathogens (70, 71).

Hepatocellular carcinoma (HCC), as a primary tumor arising

from the liver has been shown to harbor an immunosuppressive
Frontiers in Immunology 06
tumor microenvironment. Increased expression of pro-tumoral

cytokines and chemokines including IL-8, TGF- b and CXCL12,

infiltration of immunosuppressive cells including myeloid-derived

suppressor cells and tumor-associated macrophages, as well as,

increased expression of immune checkpoints including TIM-3

have been associated with reduced survival rates in treatment

naïve patients (72).

Liver metastases overall have been shown to be less

immunogenic compared to other sites of metastases. They are

characterized by reduced immune cell infiltration, specific

immune cell profiles and upregulation of immunosuppressive

mechanisms . An overv iew of the tumor immune
TABLE 1 Continued

Trial/Study Trial/Study type Cancer
types

Immunotherapy
treatment

Number
of

patients

Sites of metastasis

Liver Lung Brain Bone Others

Long et al. Clinical trial: ABC
trial

Melanoma PD1 or IPI+PD1 79 ORR achieved
ORR: IPI+PD1
> ORR: PD1

Tawbi et al. Clinical trial:
Checkmate 204

Melanoma IPI+PD1 165 ORR achieved
ORR:
Asymptomatic
> ORR:
symptomatic

Borgers et al. Retrospective Melanoma Multiple ICIs 168 Adrenal
gland: ↓
DCR and ↓
OS

Beer et al. Clinical trial: CA184-
095

Castrate
resistant
prostate cancer

IPI vs. placebo 399 ↓ OS

Fukuoka et al. Secondary analysis:
REGONIVO

Gastric cancer/
Colorectal
carcinoma

Nivolumab +
Regorafenib

50 ↓ ORR ↑ ORR

Wang et al. Retrospective MSS colorectal
cancer

PD1/PDL1 95 ↓ ORR and
↓ PFS

lu et al Retrospective Hepatocellular
carcinoma

PD1, PDL1, CTLA4
or IPI+PD1

75 ↓ OSRR ↑ ORR

Negishi et al. Retrospective Renal cell
carcinoma

Nivolumab 68 ↓ ORR

Escudier et al. Clinical trial:
Checkmate 025

Renal cell
carcinoma

Nivolumab +
Everolimus

146 OS benefit
OS PD1 >
OS
everolimus

Emans et al. Retrospective Triple negative
breast cancer

Atezolizumab (PDL1) 116 ↓ ORR and
↓ OS and
PFS

Adams et al. Secondary analysis:
Keynote 086

Triple negative
breast cancer

Pembrolizumab 170 ↓ ORR LN: ↑ ORR
fro
↓ = reduced/shorter, ↑ = greater/longer, > = greater than.
ntiersin.org
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microenvironment of liver metastases from reported studies has

been depicted in Figure 1.

Metastases that are established in the liver harbor a unique

tumor microenvironment. Our group has recently shown that

melanoma liver metastases had reduced numbers of CD3+ T cells

and that these cells were also further away from melanoma cells,

particularly compared to lung and lymph node metastases (73).

Furthermore, liver metastases harbored fewer T cells expressing

PD-1 whilst having a higher proportion of T cells expressing the

immune checkpoint T cell immunoglobulin domain and mucin

domain 3 (TIM-3). Liver metastases also had reduced expression

of PD-L1 on both tumor cells and macrophages despite having an

increased density of macrophages compared to other sites (73).
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Tumeh et al. also explored the tumor microenvironment of

melanoma liver metastases and, similarly, found that liver

metastases had reduced CD8+ T cells density compared to

other sites of melanoma metastasis. Moreover, a study on an in

vivomelanomamodel showed that, tumors established in the liver

had lower mRNA and protein expression of IL-8 compared to

subcutaneous and lung metastases, suggesting local modulation

within specific organ sites (74).

A study conducted by Ballas and colleagues using a C57BL/6

mouse model found that B16.F1 melanoma cell line injected

intravenously metastasized preferentially to the lung, and not to

the liver (75). However, depletion of NK cells upon PK136

injection increased the metastatic potential for the liver. The
FIGURE 1

The immune microenvironment in lung, brain, liver and bone metastases. (A) Lung metastasis showing a higher infiltration of T cells, macrophages,
dendritic cells, B cells, fibroblasts and CD11b+ NK cells compared with other sites of metastases (e.g. liver, brain, and bone). There is increased T cell
expression of PD-1 and increased tumor and macrophage expression of PD-L1 compared with other sites of metastases (e.g. liver, and brain). B) Brain
metastasis showing a higher infiltration of M2 macrophages and reduced infiltration of T cells compared with other metastases (e.g. lung). There is also
increased T cell expression of PD-1 compared with other metastases (e.g. liver) and a disrupted blood brain barrier. (C) Liver metastasis showing
reduced infiltration of T cells but increased infiltration of macrophages including M2 macrophages, and CD27+ NK cells compared with other
metastases (e.g. lung and bone) There is also reduced T cell expression of PD-1 and high T cell expression of Tim-3 compared with other metastases
(e.g. brain, lung, and bone). Increased T cell apoptosis has been observed. (D) Bone metastasis showing an increased infiltration of fibroblasts and
stromal cells compared with other metastases (e.g. liver and brain). There is also increased tumor expression of PD-L1 and VCAM-1 compared with
other metastases (e.g. liver and brain). An increase in the RANKL pathway leading to increased osteoclasts and subsequently increased osteoclast driven
bone resorption is also observed in bone metastases. ↑ = Increased cell infiltration ↓ = Decreased cell infiltration ⇧ = Increased expression
⇩ = Decreased expression TME = Tumor microenvironment. Created with BioRender.com.
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authors also observed that liver metastases in the murine model

had an increased density of CD27+ CD11b- NK cells, thought to

represent an immature subset of NK cells. Further adoptive

transfer experiments of liver NK cell subsets suggested that the

specific subset of immature NK cells, characterized as CD27+

CD11b-, may play a protective role in the development of liver

metastases but not metastases at other sites (75).

The presence of liver metastases may also modulate the

systemic anti-tumor immune response at other sites of metastasis.

In the study by Tumeh et al, patients with liver metastases also had

reduced CD8+ T cells at distant sites compared to patients without

liver metastases (60). Yu and Green et al. have generated in vivo

models with one or two concurrent sites of metastases by injecting

subcutaneously, intrahepatically or intrasplenically melanoma

(B16F10), colon adenocarcinoma (MC38) and pancreatic ducal

adenocarcinoma (KPC2) cell lines, to assess response to anti-PD-L1

treatment and changes in the tumor immune microenvironment

(59). They observed that the presence of MC38 liver tumors

reduced the ability of PD-L1 based therapy to increase the

infiltration of CD8+ T cells in concurrent subcutaneous tumors.

These findings suggest that liver metastases were able to siphon T

cells from other sites and from systemic blood circulation. A

reduced number of antigen specific T cells, as indicated by

tetramer staining, was observed in extrahepatic sites in mice with

concurrent liver metastases compared to those without liver

metastases. An increase in T cells was subsequently observed in

the respective liver tumors (59). Furthermore, there was an increase

in T cell apoptosis in liver metastases versus metastases at other

sites, suggesting that the T cells siphoned from the systemic

circulation and other organs then undergo apoptosis in the liver

(59). This study also showed that there is an increase of Cd11b+F4/

80+ myeloid cells and reduced CD4+ T cells in the subcutaneous

tumors in the presence versus absence of liver metastases.

Furthermore single-cell RNA sequencing of the normal livers in

mice with subcutaneous only MC38 tumors and of the livers of

mice with concurrent MC38 liver metastases showed an

enrichment for M2-like macrophage immunosuppressive gene

signature and a reduced M1-like macrophage inflammatory gene

signature on monocyte derived macrophages in the liver tumor

bearing mice. Lee et al. reported a similar study where C57BL/6

mice were implanted with MC38 tumors cells subcutaneously only

or subcutaneously concurrently with subcapsular or hemispleen

injection to obtain liver tumors. Mice were then treated with anti-

PD-1 monotherapy, and it was observed that those with concurrent

liver and subcutaneous tumors had reduced survival and were not

as responsive to therapy as those with subcutaneous metastases only

(76). Assessment of the tumor immune infiltrate showed that

subcutaneous tumors of mice with liver metastases had reduced

CD8+ T cell expression of activationmarkers including ICOS, PD-1

and CTLA-4, as well as expression of intracellular IFNg (76).

Subcutaneous tumors showed an increased infiltration of

CD11b+ myeloid derived suppressor cells (MDSC) in mice with
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concurrent liver metastases, but not in mice with concurrent

metastases in other anatomical sites (76). In this study,

researchers hypothesized that Tregs were responsible for the

immunosuppressive properties of liver metastases. Diphtheria

toxin administered to deplete Tregs showed an enhanced tumor

rejection in mice with liver metastases and an increase in the

expression of IFNg, ICOS and CD107a on CD8+ T cells. Further

treatment with the anti-CTLA-4 clone 9H10 to deplete Tregs in

addition to anti-PD-1 saw a complete response at both the

subcutaneous and liver tumors in mice with two-site tumor (76).

However, whilst this study was undertaken in a murine model this

mechanism of complete response in all patients has not been able to

be replicated in humans treated with combination IPI+anti-PD-

1 (19).
3.2 Lung metastases

3.2.1 Clinical outcomes in patients with lung
metastases treated with immunotherapy

Whilst there is more limited clinical data available, in

contrast to liver metastases, the presence of lung metastases

has been associated with good responses when treated with anti-

PD-1 based immunotherapy. A summary of clinical studies

assessing the local and systemic response of lung metastases

are summarized in Table 1.

The KEYNOTE-001 trial also showed that melanoma

patients with lung metastases only, had better ORR (62%) and

survival (1-year OS of 89%) compared to those patients with

other sites of disease, particularly those with liver metastases

only (ORR 22% and 1-year OS of 53%), as mentioned above

(77). In addition, we recently showed that melanoma lung

metastases had a higher organ-specific response rate (OSRR)

compared to other sites of metastases, including liver when

treated with combination IPI+anti-PD-1 in the first line setting.

Moreover, the presence of lung metastases was significantly

associated with better ORR (Odds ratio [OR] 2.68) and a

longer PFS (HR 0.46) compared to patients without lung

metastases (58). More recently, a large international multi-

center study led by our group developed a predictive tool for

anti-PD-1+/-IPI, and identified lung metastases as a predictor of

good response to these treatment in advanced melanoma

patients (78).

In a study by Lu et al. looking at advanced hepatocellular

carcinoma patients treated with single agent anti-PD-1 or

combination IPI+anti-PD-1, those with lung metastases had

the greatest response rates (62). Also, in a phase 1 trial of

advanced gastric or colorectal cancer patients treated with

Regorafenib (Anti-VEGF) plus anti-PD-1, colorectal cancer

patients with lung metastases had a higher response rate

(ORR, 66.7%) particularly compared to patients with liver

metastases (ORR, 40%) (79).
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3.2.2 Lung-specific tumor microenvironment
Similar to the liver, the lung acts as a first line of defense

against inhaled pathogens and other exogenous substances that

enter the body via the airway. Unique epithelial cells in the lung,

not only provide a physical barrier, but also aid in antimicrobial

peptide production and inflammation (80). Furthermore, like

Kupffer cells in the liver, the lung harbors unique alveolar

macrophages which help protect against pathogens and

surfactant removal. Alveolar macrophages typically act near

the epithelium where they are able to come into direct contact

with pathogens entering via the airway (81). Nevertheless,

pulmonary dendritic cells have been suggested to be the

primary antigen presenting cells helping to activate an

immune response (82).

There are several types of primary lung cancers which are

characterized by distinct immune tumor microenvironments

(83). Some lung cancers such as non-small lung cancer are

also known to harbor specific driver mutations including EGFR

and KRAS mutations (84). An immunohistochemistry-based

study of NSCLC also found that most patients are clustered

into a subtype classified as ‘immune activated’, characterized by

high CD4+ T cells, CD8+ T cells and CD20+ B cells, which

subsequently associated with longer disease-free survival in

treatment naïve early stage resected NSCLC patients. However,

they also observed 2 other clustered subsets of NSCLC patients

that had increased expression of CD133 and FoxP3, and these

were associated with shorter disease-free survival (85).

Lung metastases have been described as being more

immunogenic, with an increased immune cell infiltration, An

overview of the tumor immune microenvironment of lung

metastases from reported studies has been depicted in Figure 1.

Our previous research has shown that melanoma lung

metastases had a significantly higher CD3+ T cell density

compared to other sites of metastases, including the liver and

brain (73). Moreover, lung metastases had a higher proportion of

PD-1+ T cells and of Tim-3+ T cells compared to other sites

including the liver and brain, respectively (73). In this study, lung

metastases also had a higher density of CD68+ macrophages as

well as the highest PD-L1 expression on both tumor cells and

macrophages compared to other sites of metastases. In the study by

Ballas et al. assessing NK cells in the lung and liver melanoma

metastases, whilst liver metastases had mainly CD27+ CD11b- NK

cells, which were suggested to be protective in the development of

metastases, lung metastases had a higher concentration of mature

CD27- CD11b+ NK cells, which may not have as efficient

protective mechanisms (75). Yu and Green et al. also showed

that, in contrast to liver metastases, the presence of lung metastases

did not alter the levels of T cells in other sites (59).

An immunophenoscore (IPS) has been developed to provide a

scoring method across cancers using gene expression data which

reflects the immunogenic state of a sample utilizing the expression

and prevalence of checkpoint markers, effector and suppressor
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cells and antigen presenting cells (86). Clinical and gene

expression data from distant metastases in patients across

various cancer types including breast, colorectal, RCC, NSCLC,

prostate, and melanoma showed that lung metastases have a

higher immunophenoscore, and are more immunogenic

through increased density of B cells, T cells, endothelial cells,

myeloid dendritic cells and fibroblasts compared to other sites of

metastasis (87). Patterns of immune cells present were also shown

to remain constant in lung metastases irrespective of primary

tumor type. A separate immunohistochemistry study supported

that the number of T cells were similar in lung metastases

regardless of if the patients had renal cell carcinoma or

colorectal cancer. However, this study found that other immune

cells including NK cells and dendritic cells were discordant in lung

metastases depending on the primary cancer types (88).

Specifically, this study found that lung metastases from patients

with colorectal carcinoma had increased DC-LAMP+ dendritic

cells but reduced NKp46+ NK cells compared to lung metastases

from patients with RCC. Furthermore, this study showed that the

same immune cell type might have a distinct role in different

cancer types, as increased densities of DC-LAMP+ dendritic cells

was associated with shorter OS in RCC patients but longer OS in

colorectal carcinoma patients (88).
3.3 Brain metastases

3.3.1 Clinical outcomes in patients with brain
metastases treated with immunotherapy

In advanced cancer patients, the presence of brain

metastases has been associated with reduced OS and thus

associated with a bad prognosis. Patients with brain metastases

have often been excluded from many clinical trials due to their

poorer prognosis (89, 90). Thus, the availability of clinical

response data is much more limited compared to other sites of

metastasis. A summary of clinical studies assessing the local and

systemic response of brain metastases are summarized

in Table 1.

In melanoma, brain metastases have been associated with

reduced PFS and OS (but not ORR) in immunotherapy treated

patients (78, 91). A multicenter randomized phase 2 trial, the

ABC trial, compared the efficacy of anti-PD-1 monotherapy and

combination IPI+anti-PD-1 in melanoma patients with

asymptomatic brain metastases and showed that patients

treated with the combination achieved higher rates of response

both intracranially (ORR = 46%, and ORR = 56% for drug

treatment naïve) and extracranially (ORR = 57%, and ORR =

63% for drug treatment naive) compared to anti-PD-1 alone

(ORR = 20% intracranially, and ORR = 21% for drug treatment

naïve) and extracranially (ORR = 29%, and ORR = 29% for drug

treatment naïve)) (92). The checkmate 204 trial further supports

these data, showing that approximately half of melanoma
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patients with asymptomatic brain metastases responds to the

combination IPI+anti-PD-1 (93).

A phase 2 trial specifically assessing the impact of anti-PD-1

monotherapy in NSCLC patients with brain metastases showed

an ORR of 29.7% in the subset of patients whose tumor

expressed PD-L1, suggesting some activity in NSCLC brain

metastases (94). In a retrospective study of NSCLC patients

with brain metastases, the addition of anti-PD-1 to whole brain

radiotherapy (WBRT) showed better survival compared to

WBRT alone (median OS, 27 versus 20 months) in patients

with brain metastases (95). The extent to which brain metastases

responds compared to other sites in NSCLC patients however is

still to be explored.

Furthermore, in a small retrospective study, brain metastases

were associated with the worst local response rates compared to

other sites including lung, liver, adrenal gland, pancreas and

lymph node in advanced RCC patients treated with single agent

anti-PD-1 (96).

3.3.2 Brain-specific tumor microenvironment
The brain is typically considered an immune privileged site;

the unique blood brain barrier protects the brain from

inflammation/immune cell infiltration. Therefore, the brain

endothelial cells are uniquely packed tightly together, thus

inhibiting the movement of cells from the blood circulation to

the brain tissue (97, 98). The integrity of the blood brain barrier

can be impaired through the course of some diseases (e.g. brain

metastases), but there are brain resident cells, including

astrocytes, that play an active role in maintaining permeability

of the blood brain barrier in physiologic conditions (99). The

brain also has tissue resident immune cells such as specialized

macrophages of the brain, known as microglia, which play a

major role in the innate immune response, including

phagocytosis of cellular debris and antigen presentation (100).

Primary brain tumors have been shown to be comprised of a

wide range of cellular components, a large portion of which are

macrophages, both tissue resident and peripherally derived,

including tumor associated macrophages, which are typically

classified as pro-tumorigenic (101, 102). Neutrophils have also

been shown to be prognostic for primary brain tumors in that

increased intratumoral neutrophils are associated with high-

grade tumors (102).

Brain metastases have been characterized as being less

immunogenic with unique immune profiles compared to other

sites of metastases, however some disparity in the findings

between studies have been observed. An overview of the

tumor immune microenvironment of brain metastases from

reported studies has been depicted in Figure 1.

Davies et al. showed that melanoma brain metastases had

increased activation of the PI3K/AKT pathway, particularly

compared to unmatched liver and lung metastases. A follow-

up study by Chen and Davies et al. that assessed oncogenic
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expression between matched brain and extracranial metastases

showed that whilst oncogenic mutations and gene expression

patterns were mostly conserved between matched samples, there

was a specific increased activation of the PI3K/AKT pathway

observed in brain metastases compared to extracranial

metastases (103, 104). Our group have shown that melanoma

brain metastases, similarly to liver metastases, also have a

reduced density of intratumoral CD3+ T cells compared to

other sites, like subcutaneous, lymph node and lung

metastases (73). This is in line with previous published data by

Kluger et al, which showed that brain metastases have reduced

CD3+ T cell infiltration compared to extracranial metastases

(105). Unlike liver metastases, however, brain metastases had an

increased proportion of CD3+ T cells expressing PD-1 (73).

In a small cohort of metastatic NSCLC patients, Zhou et al.

observed fewer CD8+ T cells in brain metastases compared to

the primary lung lesions. Furthermore, they observed higher

PD-L1 expression on tumor cells but not immune cells in brain

metastases compared to primary lung lesions (106). A larger

NSCLC study compared matched primary lung lesions and

metastatic brain metastases, and whilst it supports a reduction

in T cell infiltration in brain metastases compared to primary

lung lesions, it also observed a reduction of PD-L1 expression at

the metastatic site, including brain metastases, compared to the

primary site (107). Another retrospective study comparing

primary NSCLC tumors and matched brain metastases found

that most immune cells were reduced in the brain. M2

macrophages and NK cells, however, were in higher densities

in brain metastases compared to matched primary lung tumors

(108). Kudo et al. also assessed the differences in the tumor

immune microenvironment of the primary site compared to

brain metastases in NSCLC. At the genomic level they found

high concordance in the mutations between both sites, however

differences were observed at both the transcriptomic and protein

expression levels. Specifically, reduced T cells and dendritic cells

(DCs) were observed in brain metastases compared to primary

lung cancer. Furthermore, brain metastases had reduced

extravasation signaling, DC maturation and expression of

vascular cell adhesion molecule 1 (VCAM1) compared to the

primary site, while there was an increase in arginase 1 (ARG1)

suggesting an increase in M2-like macrophages in brain

metastases compared to the primary lung tumor (109).
3.4 Bone

3.4.1 Clinical outcomes in patients with bone
metastases treated with immunotherapy

Bone metastases have been typically associated with a poor

prognosis across many cancer types including prostate, breast,

melanoma, NSCLC, colon, stomach, bladder, and thyroid cancer
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(110–113). A summary of clinical studies assessing the local and

systemic response of bone metastases are summarized in Table 1.

In patients with metastatic melanoma treated with

combination IPI+anti-PD-1, the presence of bone metastases

has been associated with reduced ORR and shorter PFS

compared to the presence of lung metastases (58). In a

secondary analysis of patients treated with single agent anti-

PD-1 on the Checkmate-003 trial, which included patients with

NSCLC, melanoma and renal cell carcinoma, the presence of

bone metastasis was associated with reduced OS (114). In

contrast, a subgroup analysis of the Checkmate-025 trial of

RCC patients randomized to either anti-PD-1 monotherapy or

everolimus showed that patients with bone metastases had an OS

benefit with immune checkpoint inhibitors compared to

everolimus (median OS 18.5 months vs. 13.8 months)

supporting the use of immune checkpoint inhibitors for bone

metastases (115). Whilst patients with bone metastases have

been included on many studies, there is limited analysis

performed comparing patients with and without bone

metastases to clearly understand the response of bone

metastases compared to other sites when treated with immune

checkpoint inhibitors, across different cancer types.

Landi et al. studied the impact of anti-PD-1 monotherapy on

bone metastases in NSCLC patients (squamous and non-

squamous). They observed that patients with metastatic

squamous cell carcinoma of the lung with bone metastases had

lower ORR (13% versus 22%) and shorter PFS (2.7 months versus

5.2 months) and OS (5.0 months versus 10.9 months), compared

to patients without bone metastases (116). Similar observations

were seen in the non-squamous NSCLC patients, also with poorer

outcomes in patients with versus without bone metastasis (ORR,

12% versus 23%; PFS, 3.0 months versus 4.0 months; and OS, 7.4

versus 15.3 months) (116). Another study by Li et al. of NSCLC

patients showed that when treated with immune checkpoints

inhibitors in monotherapy, patients with bone metastases had

shorter OS (median OS, 12.5 and 23.9 months) and shorter PFS

(median PFS, 4.2 and 6.7 months) versus patients without bone

metastases. Such a difference was not observed in patients treated

with immune checkpoint inhibitors in combination with

antiangiogenics or chemotherapy (117). Whilst bone metastases,

like liver metastases, have been associated with a poor prognosis,

the large retrospective study by Ren et al. found that patients with

bone metastases as the only site of disease had a greater median

OS compared to those with solitary liver metastases in both

adenocarcinoma (5 months versus 3 months) and in small cell

lung cancer patients (7 months versus 3 months). Overall, this

study suggests that bone metastases was still associated with a

better prognosis compared to liver metastases (57, 113).
3.4.2 Bone-specific tumor microenvironment
Two of the most notable bone specific cells are osteoclast and

osteoblasts. Osteoclasts play a major role in bone resorption
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whilst osteoblasts aid in bone formation primarily during

remodeling and bone development (118). Osteoblasts under

normal conditions are known to produce a large number of

growth factors and enzymes including type 1 collagen and TGFb
to aid in bone formation. Osteoblasts also further differentiate

into osteocytes in fully formed bone (119).

Osteosarcoma is one of the most common primary cancers of

the bone. Studies delving into the tumor microenvironment of

primary bone cancer however faces its challenges. Osteosarcoma

has a complex and heterogenous microenvironment including the

presence offibroblasts and other stromal cells, bone cells, pericytes

and vascular cells and other infiltrating immune cells including T

cells, B cells, NK cells and dendritic cells (120). The heterogeneity

of osteosarcoma has also been attributed to genomic alterations

including chromosomal aneuploidy, copy number variations and

genomic instability as a result of chromotripsis (121).

Bone metastases have been characterized as harboring a

unique tumor immune microenvironment, particularly in the

interaction between bone specific immune cells and the tumor.

Specifically, an increase in osteoclast activity and the RANKL

pathway have been shown to increase tumor cell invasion and

growth. An overview of the tumor immune microenvironment

of bone metastases from reported studies has been demonstrated

in Figure 1.

The earlier highlighted study by Garcıá-Mulero et al. showed

that, like lung metastasis, bone metastases showed an increase in

stromal cells and fibroblasts compared to other sites including

the liver and brain. While lung metastases appear concordant in

immune cell populations regardless of primary lesion type (as

described above), bone metastases differed depending on the

primary tumor location; there was an increase in antigen

presentation and effector cells in renal cell carcinoma and

colorectal cancer compared to melanoma and prostate cancer

bone metastases (87). Tumors in the bone have been shown to

shift the bone microenvironment towards being more osteoclast

dominated leading to increased bone resorption (122, 123).

Specifically, the pre-clinical murine study by Jiao et al. of

castrate resistant prostate cancer bone metastases showed that

there was increased osteoclast activation in tumor bearing bones,

with subsequent increase of TGF-b1 expression (124). Increased

excretion of mediators such as TNF-a, prostaglandin, IL-1 and

IL-6 by bone metastases have also been shown to increase

osteoclast activation via the receptor-activator of nuclear

kappaB ligand (RANKL) pathway, leading to further bone

resorption (110, 123). Increased bone resorption has also been

shown to play a role in the vicious cycle where aside from

increasing activation of the RANKL pathway, TGFb and IGF

released from increased bone resorption instead of being used by

osteoblasts in bone formation is able to increase tumor cell

growth and proliferation (119). A murine and cell culture study

by Lu et al. whereby bone metastases were established in mice by

intracardiac injections showed an increased VCAM-1

expression in tumor cells was associated with recruitment and
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activation of osteoclasts promoting osteoclastogenesis and

allowing for increased bone metastatic growth (125).

Targeted immunohistochemistry assessment by Akfirat et al.

of prostate cancer metastases showed that prostate cancer bone

metastases had increased expression of MCL-1 (myeloid leukemia

1) and BCL-2 (B-cell lymphoma 2), key contributors in cell

survival, compared to other sites of metastases (126–128). In a

murine model of lung cancer with bone metastases, Wang et al.

showed that bone metastases had an upregulation of PD-L1 and

CCL2 (chemokine ligand 2), and that this increased expression

induced the formation of osteoclasts via the RANKL pathway

(129). The study of the immune microenvironment of bone

metastases is challenging due to low sample availability, bone

destruction and difficulty in preparing samples for experiments

and analysis due to the bone structure.
3.5 Other sites of metastases

3.5.1 Clinical outcomes in patients with other
sites of metastases treated with
immunotherapy

Whilst metastatic sites such as liver, lung, brain, and bone

are some of the most common sites of metastasis for many

cancers, other metastatic sites may include lymph nodes, skin/

soft-tissue, muscle, adrenal gland, gastrointestinal tract and

peritoneum (130–133). However, there is limited data available

assessing the response of these other sites of metastasis, and the

data is generally restricted to case reports and case series. A

summary of clinical studies assessing the local and systemic

response of other sites of metastases are summarized in Table 1.

Subgroup analysis of previously treated metastatic TNBC

patients in the keynote-086 trial showed that there was an

increased ORR in patients who had lymph node only

metastases (ORR, 27.8%) versus metastases to other sites

(ORR, 2.6%) when treated with single agent anti-PD-1 (65). In

keeping with these findings, the retrospective study by Schmid

et al. of metastatic NSCLC patients treated with anti-PD-1

monotherapy also showed that the OSRR was greater in

lymph node metastases (OSRR = 28%) compared to other

sites, including liver and lung metastases (134). This study also

assessed adrenal metastases (OSRR = 33%) and soft-tissue

metastases (OSRR = 0%), however the numbers of metastases

at these sites were too small to accurately interpret the findings.

Further, another retrospective study assessed adrenal gland

metastases in melanoma patients treated with immune

checkpoint inhibitors. This study found that adrenal gland

metastases had reduced disease control rate (complete

response [CR] + partial response [PR] + stable disease [SD];

DCR = 29%) compared to other sites including liver, lung and

brain (DCR = 46%). It was shown that, in melanoma patients

treated with anti-PD-1, those with adrenal gland metastases had

reduced overall survival (median OS, 2.7 years) versus those
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without adrenal gland metastases (median OS, not reached; HR

3.12) (135). In contrast, a separate retrospective study of

previously treated NSCLC patients enrolled onto the phase III

OAK trial aimed at comparing anti-PD-L1 therapy versus

chemotherapy, showed that in site-specific pair wise

comparisons, adrenal gland metastases were associated with

greater overall survival in immunotherapy treated patients

compared to those with other sites of metastasis including

liver and bone (136).

3.5.2 Other site-specific tumor
microenvironments

Whilst non-metastatic lymph nodes are areas of high

immune cell infiltration, understanding the immune

microenvironment once metastases are established may play a

key role in helping dissect their response to immune checkpoint

inhibitors. A study by Popeda and colleagues comparing

transcriptional changes between breast cancer primary tumors

and lymph node metastases found that the metastases had an

upregulation of ATG10 (autophagy related 10), S100B (S100

calcium-binding protein B), and GATA3 (GATA binding

protein 3), whilst a decrease in the expression of 33 genes was

found, most of which were associated with innate immunity and

the complement cascade (137). An immunohistochemistry

study by Kim et al. comparing primary squamous cell

carcinoma of the lung and respective lymph node metastases

found that the expression of PD-L1 and PD-L2 on tumor cells

were, in most cases, conserved between primary tumors and

lymph node metastases. PD-L1 and PD-L2 expression also

positively correlated with CD8+ T cells and PD-1+ T cell

density in this cohort suggesting the number of CD8+ T cells

and PD-1+ T cells were also conserved between primary tumors

and lymph node metastases (138). Studies undertaken by our

own group also observed that in treatment naïve advanced

melanoma patients, lymph node metastases had higher CD3+

T cell density compared to other sites, particularly liver and

brain metastases. Further, whilst making up a small proportion,

lymph node metastases, along with subcutaneous metastases,

had increased FoxP3+ T cells compared to other sites (73). In

this same study, subcutaneous metastases, however, were

observed to have the highest proportion of CD103+ T cells.

Wang et al. performed genomic sequencing of matched

gastric cancer primary tumors and peritoneal metastases, and

observed that inactivating TAF1 and CDH1 mutations were

more prevalent in the peritoneal metastases compared to the

primary lesions. Further transcriptomic data also showed a

subset of peritoneal metastases termed as “T-Cell exhausted”

as being characterized by increased expression of Tim3,

Galectin-9 and VISTA (139).

Whilst studies into the tumor immune microenvironment of

adrenal metastases is limited, a small study of matched primary

lung cancer lesions and adrenal metastases observed an increased

expression of CCR6, chemokine responsible for the recruitment of
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immune cells (e.g. DCs, effector T cells and B cells) in the

metastatic lesions compared to the primary lesion (140).
4 Concluding remarks

Traditionally, treatment regimens have been selected based

on tumor type, staging and other prognostic factors. The pattern

of metastases has not been a major factor in therapy choice for

most cancers and largely overlooked. However, as highlighted in

this review, the presence or absence of specific sites of metastasis

is not only prognostic but also impact response in patients

treated with immune checkpoint inhibitors. Whilst recent

studies have highlighted the influence of specific sites of

metastasis on the response to immune checkpoint inhibitors,

the biological mechanisms underlying these clinical observations

is still unknown. In this review, we have highlighted organ-

specific responses to immune checkpoint inhibitors, particularly

focusing on the lung, liver, bone and brain, with the latter three

sites associated with a poor response across multiple primary

cancer types. This further highlights the importance of

considering the site of metastasis when choosing treatment

options and not just the cancer type.

Metastases at various sites present distinct tumor immune

microenvironment, not only between different organ sites, but also

between the primary tumor and the metastatic sites. Whilst data is

still somewhat limited, further studies into the tumor immune

microenvironment may provide insights into novel organ specific

mechanisms of resistance that can be targeted with new

therapeutic options. Nevertheless, assessing and comparing

specific tumor immune microenvironments in humans faces

challenges. Obtaining pre-treatment tissue samples from

multiple sites from the same patients is a notable limitation.

Matched patient samples are often obtained from autopsy

programs when patients have already been heavily treated.

In summary, whilst the differences in organ-specific

response to immune checkpoint inhibitors and the tumor

immune microenvironment is emerging as an important factor

in therapy efficacy, there is still limited data and a lack of

understanding of the biological mechanisms. Further research

into this emerging important area is urgently needed. Larger

focus on assessment of these differences may help elucidate

organ-specific resistance mechanisms and is crucial in providing

more personalized treatment approaches.
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