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Charité Universitätsmedizin Berlin,
Germany
Joanna Kirman,
University of Otago, New Zealand
Yan Chun Li,
The University of Chicago,
United States

*CORRESPONDENCE

Marta Szydlowska
marta.szydlowska@astrazeneca.com

SPECIALTY SECTION

This article was submitted to
Molecular Innate Immunity,
a section of the journal
Frontiers in Immunology

RECEIVED 26 August 2022
ACCEPTED 09 November 2022

PUBLISHED 30 November 2022

CITATION

Kulle A, Thanabalasuriar A, Cohen TS
and Szydlowska M (2022) Resident
macrophages of the lung and liver:
The guardians of our tissues.
Front. Immunol. 13:1029085.
doi: 10.3389/fimmu.2022.1029085

COPYRIGHT

© 2022 Kulle, Thanabalasuriar, Cohen
and Szydlowska. This is an open-access
article distributed under the terms of
the Creative Commons Attribution
License (CC BY). The use, distribution
or reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Review
PUBLISHED 30 November 2022

DOI 10.3389/fimmu.2022.1029085
Resident macrophages of the
lung and liver: The guardians of
our tissues

Amelia Kulle1, Ajitha Thanabalasuriar1, Taylor S. Cohen2

and Marta Szydlowska3*

1Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada, 2Late
Stage Development, Vaccines and Immune Therapies (V&I), BioPharmaceuticals R&D, AstraZeneca,
Gaithersburg, MD, United States, 3Bacteriology and Vaccine Discovery, Research and Early
Development, Vaccines and Immune Therapies (V&I), BioPharmaceuticals R&D, AstraZeneca,
Gaithersburg, MD, United States
Resident macrophages play a unique role in themaintenance of tissue function.

As phagocytes, they are an essential first line defenders against pathogens and

much of the initial characterization of these cells was focused on their

interaction with viral and bacterial pathogens. However, these cells are

increasingly recognized as contributing to more than just host defense.

Through cytokine production, receptor engagement and gap junction

communication resident macrophages tune tissue inflammatory tone,

influence adaptive immune cell phenotype and regulate tissue structure and

function. This review highlights resident macrophages in the liver and lung as

they hold unique roles in the maintenance of the interface between the

circulatory system and the external environment. As such, we detail the

developmental origin of these cells, their contribution to host defense and

the array of tools these cells use to regulate tissue homeostasis.

KEYWORDS
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Introduction

Tissue resident macrophages are long-lived innate immune cells that persist within

various tissues in the body. These cells play many roles in health and disease and are

unique when compared to more transient innate immune cells not just in function but

also genetic profile. Herein we explore the origins and functions of tissue-resident

macrophages, with a focus on those populations found in the lung and liver. Moreover,

we define the role tissue resident macrophages play in maintaining tissue homeostasis

and the ability of these cells to drive disease when improperly regulated.
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Macrophages are a type of innate immune cells known for

their ability to phagocytose debris and pathogens and present

antigens to direct adaptive immunity. The discovery of

macrophages is credited to Ilya Metchnikoff, a French-Russian

zoologist who identified the cell population while studying

phagocytosis (1). Shortly thereafter, macrophages were

designated as tissue phagocytes within the reticuloendothelial

system which proposed that endothelial cells and reticulocytes,

otherwise known as phagocytes, shared a common origin (2).

However, with the identification of morphological and

functional differences between phagocytes and endothelial

cells, this theory did not accurately depict cell lineage. Until

recently, the prevailing belief was that all macrophages are

terminally differentiated cells derived from circulating

macrophages and monocytes (3). This belief was first proposed

by Ralph van Furth in the 1960s and led to the establishment of

the mononuclear phagocyte system (4). Although contradictory

evidence has been published for many years, recent

technological advances have allowed the definitive rejection of

the mononuclear phagocyte system and the recognition of

tissue-resident macrophages as unique populations

independent of monocyte differentiation (5–7).

Herein we review the current understanding of resident

macrophage populations in two major organs: the lung which

is constantly exposed to the external environment and the liver

which acts to filter the blood as it circulates through the body. In

addition we cover the origin and maintenance of these cell

populations, their role in maintaining tissue homeostasis and

defense against invading pathogens. Finally, we discuss the

implications of resident macrophage dysfunction in

various diseases.
Origins

Evidence of long-term persistence and proliferation in

tissues led researchers to investigate the origins of tissue-

resident macrophages. Several studies provided this evidence

through the analysis of macrophages in organ transplant

patients which demonstrated long-term maintenance of the

donor macrophage population years after surgery (8–10).

From there, evidence of macrophage populations in the yolk

sac before the establishment of monocyte precursors suggested

an embryonic origin for some macrophages (11). Indeed, further

studies elucidated that tissue-resident macrophage populations

in most organs of both mice and humans are established during

embryogenesis and maintained through self-renewal (12).

Classically, mature fully differentiated cells lose the capacity to

proliferate as differentiation coincides with cell cycle withdrawal.

Therefore, tissue-resident macrophages are unique in their

ability to re-enter the cell cycle as fully differentiated cells (13).

It must be noted that most findings on tissue-resident

macrophage origins were established in mice as the study of
Frontiers in Immunology 02
tissue-resident macrophage ontogeny in human organs is

limited (14).

Most mammalian organs have populations of tissue-resident

macrophages. Some of the most well-known include Langerhans

cells in the skin, alveolar macrophages in the lung, Kupffer cells

in the liver, microglia in the brain, and red pulp macrophages in

the spleen. These cells take on a number of different functions,

that at first were defined by M1 or M2 polarization (15, 16). M1-

macrophages are defined by a pro-inflammatory polarization as

they secrete higher levels of pro-inflammatory factors and

expression of the surface marker CD86. The second

population, M2-macrophages, were thought to be immune-

suppressive, support tissue repair, and characterized by the

surface marker CD206 (17). More recently, it became clear

that this paradigm does not mirror the high level of plasticity

in the polarization of these cells, that often show a spectrum of

features typical of M1 or M2 cells. For example, four different

subtypes of M2 polarization were recognized: M2a-M2d,

together with M4, Mox and M(Hb) polarization types based

on the activating factors and function of each of mentioned

populations (18). Resident cells respond to several different

stimuli by modifying both function and surface marker

expression, and as such are referred to as plastic.

Based on mouse studies, tissue resident macrophages, are

generated in three waves. The first wave referred to as the

primitive wave begins on embryonic day 6.5 (E6.5) in the yolk

sac (19). This wave establishes a population of macrophage-

exclusive progenitors which then differentiate into erythroid and

myeloid progenitors (EMPs) between E8.5 and E10.5 during the

pro-definitive wave (20). An intermediate pre-macrophage

population (p-Macs) are derived from EMPs without first

becoming monocytes (21). The population of EMPs and p-

Macs expand for several days in the yolk sac and migrate to the

fetal liver by E14.5. Between E12.5 and E17.5, p-Macs in the fetal

liver migrate and seed other tissues to establish life-long

populations of tissue-resident macrophages. The third wave of

hematopoiesis, the definitive wave, begins around E17.5 and

involves the establishment of hematopoietic stem cells in the

bone marrow. Although all tissue-resident macrophages

originate from fetal liver p-Macs, bone marrow derived

macrophages are found to replace the fetal population in the

intestines, spleen, skin, and heart (22). However, it must be

noted that these hematopoietic stem cell derived macrophage

populations are maintained through self-renewal with minimal

contribution from circulating monocytes following their

colonization of the tissue (23).

Once seeded, tissue-resident macrophage mobility is

restricted to their colonized tissue. Intriguingly, during the

process of seeding embryonic tissues they are highly mobile.

Therefore, researchers have wondered whether early

macrophages are committed to a specific tissue before leaving

the fetal liver, or if all tissues are seeded blindly and local cues

guide tissue-specification? As mentioned, p-Macs begin to
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colonize embryonic tissues around E12.5. The migration of p-

Macs is dependent on the expression of the chemokine receptor

CX3CR1, which is not expressed by EMPs (24). In a study by

Mass et al., single cell sequencing found that p-Macs lack tissue-

specific signatures, thus suggesting that tissue-resident

macrophages gain their specialized phenotype after

colonization (21). Macrophage development is known to be

regulated by the transcription factor PU.1 and is involved in

tissue-resident macrophage specification by acting as a scaffold

for histone modifiers that can induce chromatin remodeling

(25–27). Once p-Macs seed a tissue, tissue-specific signals

initiate the enrichment of transcriptional regulators to

generate tissue-resident macrophages with specialized

functions (Figure 1) (28). For example, the tissue-specific

signals required for Langerhans cell development include IL-

34 and TGF-b which induce the expression of the transcription

factors RUNX3 and ID2 (29). In the lung, alveolar macrophages

develop in response to granulocyte-macrophage colony-

stimulating factor (GM-CSF) causing the upregulation of the

transcription factor PPARg. In addition, the transcription factors

BACH2 and CEBPb have been implicated in alveolar

macrophage development (24, 30). Kupffer cell development in

the liver has been found to be dependent on the transcription
Frontiers in Immunology 03
factor ID3 which is regulated by TGF-b (21). In the central

nervous system, SALL1 is a microglia-specific transcription

factor involved in their development (31). Finally, splenic red

pulp macrophage development is induced by the presence of

heme causing an upregulation in the transcription factor SPIC.

The remainder of this review will highlight the roles of

tissue-resident macrophages in the liver and lung at steady-state

and in disease. However, a comprehensive list of all tissue-

resident macrophages, their origin, and functions is detailed in

Table 1. The importance of the liver in our understanding of

tissue-resident macrophages begins with its role as the reservoir

of p-Macs to seed other tissues. In addition, during homeostasis

it also maintains its own population of tissue-resident

macrophages. In addition to the liver, the lung and brain are

the only other tissues in which the population of tissue-resident

macrophages is not replaced by hematopoietic stem cell derived

macrophages following the initial colonization by fetal liver p-

Macs. As such, these tissues have unique embryonic macrophage

populations unlike the rest of the body. However, we will not be

discussing tissue-resident macrophages in the brain as the

blood-brain barrier isolates these macrophages from the

external environment. In contrast the liver and lungs act as an

interface between our circulatory systems and the external
FIGURE 1

Tissue seeding. Signals and transcription factors involved in seeding of well-known tissue-resident macrophages from fetal liver p-Macs.
Migration from the liver occurs in a CX3CR1 dependent manner. In the skin IL-34 and TGF-b induce the transcription factors RUNX3 and ID2 to
generate Langerhans cells. In the lung GM-CSF induces the transcription factors PPARg, BACH2, and CEBPb to produce alveolar macrophages.
In the brain/central nervous system, microglia are generated in response to the induction of the transcription factor SALL1. Red pulp
macrophages in the spleen are produced in response to Heme and the transcription factor SPIC. Finally, in the liver Kupffer cells are generated
in response to TGF-b and the transcription factor ID3.
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environment. Therefore, the tissue-resident macrophages in

these organs play an essential role in host defense at steady-

state as pathogens that enter circulation can cause

systemic complications.
Tissue-resident macrophages in
the liver

The fetal liver acts as a reservoir of tissue-resident

macrophages, which then seed the organs during development,

including the liver. It was long suspected that the population of

macrophages in the liver consists of different subsets. So far,

mostly thanks to preclinical studies performed on mice,

researchers were able to characterize a few subpopulations

based on origin and a high degree of phenotypic and

functional specificity (Figure 2) (Table 2). In addition to the

heterogeneity of the population, these cells are highly plastic and

adapt to the dynamically changing liver microenvironment (66,

73–75). Classically, we would refer to two main subpopulations

of macrophages in the liver, Kupffer Cells (KCs) and monocyte-

derived macrophages (MoMFs). Kupffer cells (KCs) represent

the major fraction of phagocytic cells in the liver at steady state
Frontiers in Immunology 04
(76, 77). The half-life of KCs in mice is estimated to be 12.4 days,

while in humans transplanted donor-derived macrophages can

be detected for as long as 1 year after surgery (78–80). Under

physiological conditions, this population is replenished by self-

renewal and does not depend on bone marrow-derived

progenitors. The second subset, MoMFs, are not established

embryonically, but serve to repopulate KCs during liver injury

and/or chronic inflammation, where increased death of KCs, in

most of cases apoptotic, can be observed (81–83). These newly

recruited cells differentiate and acquire some of the phenotypic

and functional features of KCs to replenish their population (67,

84). An additional population of hepatic macrophages reside in

the capsule surrounding the whole organ referred to as liver

capsular macrophages (LCMs), in mice expressing F4/80, CD11c

and CX3XR1 and particularly enriched in CD207 in humans.

This subset originates from adult circulating monocytes and are

phenotypically distinct from other two populations, although

further studies are needed to fully understand their role in liver

homeostasis (55, 76).

Liver macrophage populations can be distinguished from

each other, and from infiltrating monocytes, by the differential

expression of protein surface markers. Murine macrophages

express CD11b and macrophage marker CD68, while a
TABLE 1 Summary of tissue-resident macrophage subsets, origins, and functions.

Tissue Subset Origin Functions References

Skin Langerhans Cells Fetal Immunosurveillance
Present antigens to T cells
Aid in hair follicle regeneration and tissue repair

(32–34)

Dermal Macrophages Adult Immunosurveillance
Aid in local nerve regeneration

(35, 36)

Central Nervous System Microglia Fetal Immunosurveillance
Neuronal development and synapse formation

(37–39)

Lung Alveolar Macrophages Fetal Immunosurveillance
Clearance of surfactant and inhaled pathogens

(40–42)

Interstitial Macrophages Adult Immunoregulation (43, 44)

Spleen Red Pulp Macrophages Fetal Immunosurveillance
Erythrocyte and iron recycling

(45, 46)

Marginal Zone Macrophages Requires further research Immunosurveillance
Clearance of pathogens in circulation and apoptotic cells

(47–49)

Liver Kupffer Cells Fetal Immunosurveillance
Iron, bilirubin, and cholesterol metabolism
Clearance of gut-derived pathogens and damaged erythrocytes

(50–54)

Capsular Macrophages Adult Immunosurveillance (55)

Bone Osteoclasts Fetal/Adult Resorption of bone matrix for bone remodeling (56)

Intestine Intestinal Macrophages Fetal/Adult Immunosurveillance
Regulate smooth muscle contraction

(57, 58)

Peritoneum Peritoneal Macrophages Fetal Immunosurveillance (59)

Heart Cardiac Macrophages Fetal Immunosurveillance
Sustain myocardial conduction
Stimulate angiogenesis

(60–62)

Adipose Adipose Tissue Macrophages Fetal Control insulin sensitivity
Sustain thermogenesis
Regulate adipogenesis and angiogenesis

(63–65)
fr
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combination of other markers e.g., F4/80 and Clec4F (KC

markers) or Ly6C (monocyte marker) help identify

subpopulations (68). KCs can be identified by high expression

of F4/80 and Clec4F, negative or low expression of Ly6C

(CD11bloCD68+F4/80hiClec4F+Ly6C) and expression of

scavenger receptors TLR4 and TLR9 (85). MoMFs are positive

for CSF1R and Ly6C and express increasing levels of F4/80 as

they differentiate into KC-like cells (CD11bhiCSF1R+ F4/

80intLy6Chi/lo). In parallel, levels of Ly6C decrease as they

become KC-like (67, 69). LCMs residing in hepatic capsule

share some of the surface antigens with both KCs (F4/80) and

MoMFs (CSF1R), while also expressing the dendritic cell marker

CD11c (55). Non-resident monocytes are also found in the liver

and can be separated from resident cells based on negative

expression of F4/80 or Clec4F and high expression of Ly6C (86).

In addition to these classical populations, recent data

obtained using single-cell RNA sequencing (scRNA seq) and

further corroborated by flow cytometry, proteomics and

mechanistic studies led to a discovery of two distinct
Frontiers in Immunology 05
populations of KCs in the liver: KC1 (consisting of 85% of

KCs) and KC2 (15%). While both share all markers typical for

KCs, they can be distinguished by their differential expression of

CD206 and ESAM with KC1 cells identified as CD206lo and

ESAM- and KC2 as CD206hi and ESAM+. The ratio between

both populations in the hepatic tissue remains stable in the

steady state, with similar localization in sinusoids and zonation.

On the other hand, in-depth transcriptomic analysis revealed

particular enrichment of KC2 cells in genes involved in

carbohydrate and lipid metabolism, what suggested their role

in liver metabolic disorders (87).

The definition and characteristics of different human hepatic

macrophage populations are less clear due to the limited

availability of appropriate samples, although recently published

scRNAseq data shed more light into that topic and discovered

multiple novel markers allowing identification of cell subsets

(Table 2). The main subsets of monocytes and macrophages are

identified by expression of CD68, MARCO, TIMD4, CCR2,

CD14 and CD16 (67, 69–71) . KCs are defined as
FIGURE 2

Heterogeneity of hepatic macrophages. In mice, liver-resident macrophages known as Kupffer cells (KCs) are classically defined by positive
expression of CD11b, CD68, F4/80, Clec4f and negativity for Ly6C. They are located in liver sinusoids, where they adhere to liver sinusoid
endothelial cells (LSECs). KCs thanks to their particular location remain in close contact with blood stream, which allows them to detect a
variety of antigens. During homeostasis the pool of KCs is being replenished by cell renewal. During acute or chronic liver injury KCs get
activated and secrete cytokines and chemokines that can recruit other immune cells from the circulating blood. Some of the secreted cytokines
or chemokines thanks to fenestrae present between LSECs can reach liver parenchyma and directly affect hepatocytes and other immune cells
located there. Haptic injury and/or chronic inflammation increases apoptotic rate of KCs and when self-renewal does not suffice to maintain
their population, we can observe increased recruitment of monocytes, characterized by positivity for CD11b and Ly6C, with concomitant
negativity to CD68, F4/80 and Clec4f. Once they enter parenchyma through endothelial fenestration, they differentiate into KC-like cells called
monocyte-derived macrophages (MoMFs), that resemble the phenotype and function of KCs. These highly pro-inflammatory cells can be
recognized by positivity for some markers typical for both KCs and monocytes: CD11b, F4/80 and Ly6C, while they remain negative for Clec4f.
They also repopulate hepatic macrophages niche after increased death of KCs due to injury.
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TABLE 2 Basic markers of hepatic mononuclear phagocytes in mice and humans (55, 66–72).

Mice

Marker KC1 KC2 MoMFs Monocytes LCMs cDC1 cDC2 pDCs

CD11b low low high high + – + +

CD11c – – – – low + + –

CD68 + + – – – – – –

F4/80 high high int – low – – –

Clec4F + + – – – – – –

Tim4 + + – – – – – –

MARCO + + – – – – – –

CD5L + + – – – – – –

VSIG4 + + – – – – – –

Ly6C – – high/int high – – + –

CSFR1 + + + + + – – –

CD206 low high – – – – – –

ESAM – + – – – – – –

CD103 – – – – – +/- – –

CD8a – – – – – +/- – –

CX3CR1 – – – – high – + –

XCR1 – – – – – + – –

MHC II – – – – + + – –

Siglec-H – – – – – – – +

CD317 – – – – – – – +

Human

Marker Pro-inflammatory KCs Anti-inflammatory KCs Intermediate Monocytes Classical Monocytes Non-classical Monocytes pDCs cDC1 cDC2

CD11b + + + + + + – +

CD11c – – – – – – + +

CD68 + + – – – – – –

TIMD4 + + – – – – – –

MARCO – + – – – – – –

CD5L + + – – – – – –

VSIG4 – + – – – – – –

CD163 – + – – – – – –

HMOX1 – + – – – – – –

CD14 – – + high – – – –

CD16 – – + – high – – –

CCR2 – – +/- – – – – –

HLA-DR – – – – – + + +

CD123 – – – – – + – –

XCR1 – – – – – – + –

CLEC9A – – – – – – + –

CD1c – – – – – – – +

SIRPa – – – – – – – +

CD172a – – – – – – – +

CD303 – – – – – + – –

CD85g – – – – – + – –
Frontiers in
 Immunology
 06
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KCs, Kupffer Cells; MoMFs, Monocyte-Derived Macrophages; LCM, Liver Capsular Macrophages; cDCs, Conventional Dendritic Cells; pDCs, Plasmocytoid Dendritic Cells; +, positive; -,
negative; int, intermediate.
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CD68+TIMD4+ cells and some, MARCO+KCs, in addition

express VSIG4, CD163 and HMOX1 that suggest an immune-

tolerogenic or immunosuppressive role. scRNAseq revealed that

apart from mentioned markers, these cells show as well enriched

expression of e.g. CD5L, VCAM1 or KLF4 (66). Meanwhile

CD68+MARCO- macrophages produce IL-18 and have a

transcriptomic profile associated with more pro-inflammatory

polarization, as they are enriched in LYZ, CSTA or CD74 genes

(66, 67, 69, 88). CD14hiCD16- are defined as classical monocytes,

CD14+CD16+ as intermediate and CD14-CD16hi as non-classical

monocytes, with CD14+CD16+/-CCR2+ cells most likely

corresponding to pro-inflammatory murine MoMFs (70). All of

mentioned populations and markers for both murine and human

liver macrophages, monocytes and dendritic cells are summarized

in the Table 2.
Macrophages in the liver during
homeostasis and inflammation

Six main functions of hepatic macrophages have been

observed. As immune cells they carry immune surveillance

while maintaining immune tolerance (I) but also serve as a

first line of anti-microbial defense (II) (89–91). Moreover, they

perform the clearance of the cellular debris and metabolites (III),

maintain the iron homeostasis through phagocytosis of red

blood cells (RBCs) (IV) and regulate cholesterol metabolism

(V) (50–54, 92, 93). Lastly, through the interaction with other

cell types in the liver they are important players in hepatic tissue

repair (VI) (94, 95). The liver is exposed to the nutrients,

metabolites and bacteria absorbed in the digestive tract (96).

Hepatic macrophages serve an essential role in monitoring the

gut-liver axis for invading pathogens and toxins (90). KCs are

the most abundant immune cell population in the liver, residing

in hepatic sinusoids (97). KCs express classic pattern recognition

receptors to identify pathogen-associated molecular patterns

(PAMPs) and damage-associated molecular patterns

(DAMPs), including LPS, bacterial wall parts, DNA and

lipoproteins. Moreover, they express CRig receptor that are

able to effectively catch bacteria from the blood stream (55,

98–105).

Although KCs play a crucial role in the activation of an

inflammatory response, they are equally important players in

immunotolerance. They are capable of not only suppressing

activity of effector T cells, but they are able to activate regulatory

T cells (106). Liver macrophages can recognize, digest, and

dispose of apoptotic and necrotic bodies. Immediate reaction

from phagocytes and removal of necrotic bodies is particularly

important, as cell contents released during necrosis are potent

activators of immune response, therefore could sustain

inflammation and delay tissue regeneration (107). Apart from

removing the cellular debris from the hepatic parenchyma, liver
Frontiers in Immunology 07
macrophages also play an important role in iron homeostasis

through the removal of damaged or aged RBCs and vesicles

containing hemoglobin (Hb). Their involvement in this process

depends on their expression of scavenger receptors which

recognize polyinosinic acid or phosphatidylserine. In addition,

KCs take up Hb-containing vesicles which helps to prevent the

undesired loss of iron that could lead to its deficiency, or excess

release of iron to extracellular matrix that could cause iron-

induced toxicity (52, 108). Lastly, KCs play a crucial role in the

modulation of cholesterol metabolism. KCs ingest and transfer

LDL-derived cholesterol to hepatocytes and maintain HDL and

VLDL levels through the surface receptor cholesteryl ester

transfer protein (CETP) (109, 110).
Tissue-resident macrophages in
the lung

Tissue resident macrophages in the lung make the biggest

journey in their life shortly after birth and are seeded from fetal

liver macrophages within the first 3 days following birth (111,

112). The average person inhales more than 10,000 liters of air

daily (113). As such, the lungs are constantly exposed to foreign

particulates and pathogens from the external environment.

Tissue-resident macrophages in the lung play a major role in

filtering inhaled air and maintaining tissue homeostasis, to

protect the host from airborne pathogens. Our lungs have two

main populations of tissue-resident macrophages with

specialized functions based on their anatomical compartment

(Figure 3) (114). Alveolar macrophages (AMs) are found within

the alveolus, while interstitial macrophages (IMs) are found in

the surrounding tissue (115). Macrophages located within the

upper airways have been proposed as a third population but are

generally grouped with AMs (116). Our understanding of AMs is

far more advanced than IMs as they are more accessible through

bronchoalveolar lavage compared to tissue digestion required to

isolate IMs. Recent technological advances have shed light on the

importance of both subsets in maintaining the integrity of our

lungs. We will explore the roles of AMs and IMs during

homeostasis, infection, injury, repair, and disease.
Lung resident macrophages in
homeostasis and inflammation

Alveolar macrophages

AMs are the most abundant tissue-resident macrophages in

the respiratory tract (8, 113). Shortly after birth, the AM

population is established in response to the production of

GM-CSF by alveolar epithelial cells (14). GM-CSF upregulates

the transcription factor peroxisome proliferator-activated g
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(PPARg) in embryonic precursors triggering the terminal

differentiation into AMs. The establishment of the AM

population coincides with alveologenesis – the process by

which the alveolar space is created. As such, AMs interact with

alveolar epithelial cells to contribute to alveologenesis (115, 117).

Maintenance of the population is dependent on GM-CSF from

alveolar epithelial cells and transforming growth factor b (TGF-

b) which is released by AMs themselves (Figure 4) (116).

Although AMs are generally considered to be anti-

inflammatory in nature, they are highly adaptable, and their

phenotype is dependent on the surrounding microenvironment

(115). Under homeostatic conditions, murine AMs can be

identified by the high expression of Siglec F and the dendritic

cell marker CD11c, and low expression of CD11b (Figure 3)

(112). As different subsets of mononuclear phagocytes express

similar markers, additional information on their defining

markers and the differences between subsets in both mice and

humans can be found in Table 3. Until recently, AMs were

considered to be sessile like most other tissue-resident

macrophages (122). However, in vivo intravital imaging has

revealed that populations of AMs are motile and move

between alveoli through pores of Kohn (123). The ability of

AMs to move through the airways and between alveoli makes
Frontiers in Immunology 08
them one of the most unique tissue resident macrophages, who

are classical static after being seeded.

Often referred to as housekeeping cells, AMs patrol the

alveolar lumen phagocytosing debris to maintain homeostasis.

AMs are also essential for the catabolism of surfactant proteins

(113). By cleaning up the airways, AMs prevent unwarranted

inflammatory responses to harmless particulates and maintain

gas exchange . At s teady s tate , AMs have severa l

immunosuppressive functions. The release of TGF-b by AMs

prevent their activation through an autocrine loop and convert

naïve or activated T cells into regulatory T cells which are also

immunosuppressive. In addition, AMs can release vesicles that

suppress cytokine secretion from alveolar epithelial cells.

Overall, AMs maintain tissue homeostasis by removing debris

and preventing excess inflammation.

As mentioned, AMs are located within the airways making

them the first immune cell to encounter inhaled pathogens. This

localization enables AMs to control the intensity of the

inflammatory response. Under states of infection or injury,

AMs detect PAMPs and DAMPs through pattern recognition

receptors including toll-like receptors (113). These signals are

integrated with other stimuli to determine the strength of the

resulting response. AMs then release either pro-inflammatory
FIGURE 3

Macrophages in the lung. Location of tissue-resident macrophages in the lung and their distinguishing surface markers at steady-state. Alveolar
macrophages located within the alveolar lumen express high levels of SiglecF and CD11c, and low levels of CD11b. Interstitial macrophages
located in the alveolar interstitium express low levels of Lyve1, high levels of MHCII, and are CD206 negative. Interstitial macrophages located in
the bronchial interstitium express high levels of Lyve1, low levels of MHCII, and are CD206 positive. Both interstitial macrophage subsets express
low levels of CD11c and high levels of CD11b.
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mediators such as IL-1b, IL-6, and tumor necrosis factor alpha

(TNF-a), or anti-inflammatory mediators including IL-10 and

TGF-b (Figure 4). Both pro- and anti-inflammatory AMs can

exist at the same time and can be differentiated based on the

expression of CXCL2 (124). Additionally, pro-inflammatory

AMs are essential for recruiting other immune cells (Figure 4)

(115). In the case of severe infection, injury, or inflammation

tissue-resident AMs are depleted and can be supplemented by

circulating monocytes. These recruited monocytes can gradually

transition to resemble and act like AMs while the tissue-resident

population is replenished by self-renewal. Although AMs play a

role in the initiation of inflammation, they also contribute to

inflammation resolution. The phagocytic properties of AMs are

essential in clearing apoptotic cells to reduce tissue injury.

Additionally, AMs release several repair mediators including

resolvin, protectin, and amphiregulin which enhance healing.
Interstitial macrophages

Previously, IMs were thought to be an intermediate subtype

between recruited and tissue-resident AMs. However, recent

advances such as single cell RNA sequencing have allowed

researchers to gain a better understanding of their phenotype

and function (125). IMs differ from AMs as the embryonically
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derived IMs present in the lungs before birth are gradually

replaced by circulating monocytes and have a shorter life span

(126). Two distinct populations of IMs have been identified in

mice based on their location and expression of several surface

markers at steady state, mainly hyaluronan receptor (Lyve1),

major histocompatibility complex II (MHCII), and lung

macrophage mannose receptor (CD206) (Figure 3). IMs

residing in the bronchial interstitium express high levels of the

receptor Lyve1, low levels of MHCII and are CD206 positive.

IMs located in the alveolar interstitium express low levels of

Lyve1, high levels of MHCII and are CD206 negative. Unlike

AMs, both subsets of IMs express high levels of CD11b and low

levels of CD11c. In addition, IMs express monocyte-specific

markers, further proving that the population is replenished by

circulating monocytes (43). Each subset has specific roles based

on their location. IMs within the alveolar interstitium are

involved in antigen presentation while those within the

bronchial interstitium play a role in healing and repair (125).

However , both subse ts const i tut ive ly express the

immunosuppressive cytokine IL-10, and thus contribute to

immunoregulation. Although our understanding of IMs is not

as advanced as AMs, some key functions and characteristics have

been uncovered.

As with our knowledge on the function of IMs during

steady state, our knowledge of their role during inflammation is
FIGURE 4

Homeostasis and inflammation in the lung. Roles of tissue-resident macrophage subsets in the lung during homeostasis and inflammation.
Homeostasis: Alveolar macrophage maintenance relies on autocrine TGF-b and epithelial cell release of GM-CSF. Interstitial macrophages
constitutively release IL-10. Inflammation: Activated alveolar macrophages release cytokines to recruit other immune cells and promote an
inflammatory response. Interstitial macrophages upregulate their release of IL-10.All figures were created with BioRender.com.
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not well understood. Upon encountering unmethylated CpG

regions of bacterial DNA, the IM population expands and a

subsequent increase in IL-10 is seen (Figure 4). These newly

differentiated IMs express higher levels of the classic pro-

inflammatory macrophage markers CD40, CD80, and CD86,

compared to steady state IMs (127). IMs located within the

bronchial interstitium can regulate the permeability of

surrounding blood vessels to control the influx of immune

cells into the lung. In addition, IMs have been found to possess

greater antigen-presentation capabilities compared to AMs.

Overall, in response to injury, IMs are anti-inflammatory in

nature to maintain tissue homeostasis. One way in which this

phenotype is mediated is through the release of Rspondin3 by

endothelial cells, which promotes inflammation resolution

(128). These functions are likely only the tip of the iceberg,

and more work is needed to uncover further functions

in inflammation.
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Tissue resident macrophages
and diseases

Tissue resident macrophages make up a small portion of

tissues cells but their effect on tissue homeostasis is mighty. If the

function of tissue-resident macrophages is impaired, several

disease states can develop (129). Diseases such as non-

alcoholic steatohepatitis, alcoholic steatohepatitis, autoimmune

hepatitis, and toxic liver injury worsen as a result of the

overactivation and necroptosis of KCs (Table 4). However,

KCs are also found to play protective roles in viral hepatitis

and liver cancer such that their depletion results in a worse

prognosis. In the lung, defective phagocytosis by AMs results in

pulmonary alveolar proteinosis, an inflammatory condition

caused improper catabolism of surfactant (14). In addition,

dysfunctional phagocytosis is also seen in asthma, chronic

obstructive pulmonary disease (COPD), and cystic fibrosis
TABLE 3 Defining markers of pulmonary mononuclear phagocyte subsets in mice and humans at steady state (118–121).

Mice

Marker AMs Alveolar
IMs

Bronchial
IMs

Ly6C+ Monocyte
Derived Cells

Ly6C- Monocyte
Derived Cells

CD103+
Dendritic Cells

CD11b+
Dendritic Cells

CD11b – + + + + – +

CD11c + + + – int + +

CD24 – – – – – + +

CD64 + + + int int – –

CD103 – – – – – + –

CD206 + – + – – – +

Ly6C – – – + – – –

Lyve-1 n/d low high n/d n/d n/d n/d

MARCO + – – n/d n/d n/d n/d

MHCII int + – – – + +

SiglecF + – – – – – –

Human

Marker AMs IMs CD14+
Monos

CD1a+ Monocyte Derived
Cells

CD1a- Monocyte Derived
Cells

CD1c+ Dendritic Cells CD141+ Dendritic Cells

CD1a – – – + – – –

CD1c – – – + + + –

CD11b + + + – + – +

CD11c + + + + + + +

CD14 – + + – + – –

CD16 + + + – – – –

CD36 + + + – – – –

CD64 + + + – – – –

CD141 + – – – – – +

CD163 + + + – – – –

CD169 + – n/d – – – –

CD206 + + + + + – –

HLA-DR + + + + + + +

MARCO + + + – + – –
AMs, Alveolar Macrophages; IMs, Interstitial Macrophages; Monos, Monocytes; +, positive; -, negative; int, intermediate; n/d, not determined.
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(Table 5). We will now explore how the tissue-resident

macrophages in the liver and lungs are implicated in these

disease states.
Non-alcoholic steatohepatitis (NASH)

NASH is a liver condition characterized by hepatic steatosis

(intrahepatic lipid accumulation in >5% hepatocytes),

accompanied by inflammation and fibrosis in the absence of

excessive alcohol consumption (130). To date, multiple analyses
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of human, biopsy-derived liver samples have shown reduced

numbers of KCs and increased MoMFs correlating with severity

of inflammation, level of liver damage, and stage offibrosis (131–

134). NASH development and progression are associated with

altered gut microbiome composition (dysbiosis) and increased

intestinal permeability leading to increased levels of DAMPs and

PAMPs reaching the liver. These molecules are one of the main

activators of KCs through TLR4 and TLR9 signaling (135, 136).

Moreover, lipid accumulation in liver parenchyma over time

causes increased cell death and oxidative stress due to lipid

peroxidation, that leads to the activation of an immune response
TABLE 5 Effects of disease on tissue-resident macrophages in the lung.

Asthma and Allergies COPD Cystic Fibrosis Influenza

Impaired phagocytosis
Increased release of IL-10 and IL-27 to dampen
inflammatory response
Promote production of regulatory T cells

Impaired phagocytosis
Dysfunctional toll-like receptors prevent recognition
of DAMPs and PAMPs
Increased release of IL-8, TNF-a, and reactive
oxygen species

Impaired phagocytosis
Increased lysosomal pH
Increased release of IL-10, TNF-a,
IL-8, and IL-1B

Release of interferons, IL-
6, and IL-12
Impaired antibacterial
properties
Premature apoptosis
TABLE 4 Effects of disease on tissue-resident macrophages in the liver.

Liver
disease

Exacerbating Protective

NASH - Increased activation and apoptosis of KCs
- Increased recruitment of MoMFs
- Increased production of pro-inflammatory (IL-1b, TNF-a, IL-6, IL-8 MCP-1) or pro-
fibrogenic (TGF-b, PDGF-b) factors
- Increased recruitment of other immune cells
- Orchestrating immune response to PAMPs and DAMPs

- Removal of apoptotic, necrotic or senescent cells
- Clearance of translocating from the gut bacteria

ALD - Increased activation and apoptosis of KCs
- Increased recruitment of MoMFs
- Increased production of pro-inflammatory (IL-1b, TNF-a, IL-6, IL-8 MCP-1) or pro-
fibrogenic (TGF-b, PDGF-b) factors
- Increased recruitment of other immune cells
- Orchestrating immune response to PAMPs and DAMPs

- Removal of apoptotic, necrotic or senescent cells
- Clearance of translocating from the gut bacteria

Viral
hepatitis

- Increased activation of KCs
- Decreased expression and responsiveness of TLR2 and TLR3 in cells infected with
HCV
- Increased IL-10 and decreased IL-1b production in cells infected with HBV leading to
immune tolerance

- Orchestrating recruitment and immune response from NK and
NKT cells to limit infection

AIH - Activation and necroptosis of KCs
- Increased production of pro-inflammatory factors

- No data available

Toxic
injury

- Increased activation and apoptosis of KCs
- Increased recruitment of MoMFs
- Increased production of pro-inflammatory factors (IL-1b, TNF-a, IL-6, IL-8 MCP-1)
- Increased expression of immunosuppressive PD-L1

- Removal of apoptotic and necrotic cells

Liver
fibrosis

- Increased activation and apoptosis of KCs
- Increased recruitment of MoMFs
- Increased production of pro-fibrogenic TGF-b and PDGF-b

- Production of MMP-9, -12 and -13 supporting fibrosis
resolution

Liver
cancer

- Increased production of pro-inflammatory factors creating pro-tumorigenic
environment
TAMs and MDSCs:
- Increased production of IL-10 and expression of PD-L1 limiting cancer recognition by
T cells
- Increased production of TGF-b and PDGF-b promoting tumor proliferation and
neoangiogenesis

- Clearance of hepatocytes that underwent oncogene-induced
senescence at early stages
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in the liver (137, 138). In NASH, platelets and KCs are the first

immune cells affected by lipid peroxidation. Activated KCs

orchestrate recruitment of other immune cells to the liver and

secrete pro-inflammatory cytokines and chemokines e.g., IL-1b,
TNF-a, IL-6, IL-8, or MCP-1. Moreover, activated KCs also

produce TGF-b and PDGF-b, both chemokines known for their

pro-fibrogenic proprieties (139–143). In NASH, dietary lipids

and cholesterol induce pro-inflammatory transcriptomic

changes in KCs e.g., increased expression of Macrophage

scavenger receptor 1 (MSR1) (144). Reversing some of

mentioned changes could potentially provide some therapeutic

benefit, as shown by the example of MSR1-blocking Ab, that

attenuated the disease progression in experimental animal

model (145). The crucial role of KCs in the development and

progression of NASH was further demonstrated by cell depletion

experiments (143, 146).

In addition to well-established changes in KCs during liver

injury, recent discovery of their two new subpopulations: KC1

and KC2 shed a new light into particular roles of these cells in

metabolic changes in the liver in NASH. KC2 (described in more

detail above) show enrichment in genes involved in lipid and

glucose regulation in steady state, which get further upregulated

in metabolic disorders, e.g. hepatic steatosis. One of the most

upregulated genes was CD36 known for its role in lipid uptake

and oxidative stress. Indeed, experimental data showed that mice

lacking KC2 macrophages in their hepatic tissue were protected

from obesity, showed decreased oxidative stress and liver

steatosis. This interesting finding requires further investigation,

although the data collected so far suggests KC2 cells might

become one of the important potential targets for the therapy of

liver steatosis and/or NASH (87).

Constant activation of KCs during NASH results in the

exhaustion and apoptotic death of these cells (81). In chronic

inflammation self-renewal of the KC population is severely

impaired, therefore MoMFs are recruited from the peripheral

circulation to repopulate the tissue. MoMFs are able to acquire

some of the features of KCs but show a highly pro-inflammatory

phenotype that maintains liver inflammation and prevents its

resolution (81, 143). Since the recruitment of inflammatory

Ly6Chigh MoMFs to liver parenchyma occurs in CCR2-

dependent manner, its pharmacological inhibition by

cenicriviroc could be a potential therapeutic strategy, since its

use in mouse model of NASH significantly improved liver

inflammation and fibrosis (88).
Alcohol-associated liver disease

Alcohol-associated liver disease (ALD) is a spectrum of liver

pathologies related to excessive alcohol consumption, ranging

from simple steatosis, through alcoholic hepatitis (AH) or

alcoholic steatohepatitis (ASH), to alcohol-associated cirrhosis

(AC) potentially resulting in development of HCC. In addition,
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we can distinguish a more acute AH showing characteristics of

acute-on-chronic liver failure (147). ASH is characterized by the

same pathophysiological features as in NASH driven by

excessive alcohol consumption (148). As observed in NASH,

AH or ASH are both characterized by increased numbers and

activation of macrophages in both human liver biopsies and in

animal models, which translates to higher levels of produced

pro-inflammatory cytokines and pro-fibrogenic factors (149,

150). Similarly, activation of liver macrophages in ASH results

from steatosis-related lipotoxicity, increased gut permeability,

and endotoxemia (151–153). In both conditions, KC activation

by LPS is induced through TLR4, although it was shown that it

occurs in a slightly different manner. In NASH, MyD88 is crucial

for KC activation, while in ASH this occurs in MyD88-

independent manner that involves type I interferon signaling

through the IRF3-dependent pathway (154). The crucial role of

liver macrophages in the pathogenesis of ASH was ultimately

confirmed by results of KC depletion by Clodronate, which

reduced liver damage in chronic-binge ethanol-feeding mouse

model of ASH (155).
Viral hepatitis

Hepatitis B and hepatitis C are chronic liver infections

caused by the hepatitis B virus (HBV) and hepatitis C virus

(HCV), respectively (156). Despite vaccine preventing HBV

infection and available treatment for hepatitis C, both diseases

have high prevalence putting numerous patients in risk for

development of fibrosis/cirrhosis and HCC (157). The

chronicity of viral hepatic diseases depends on ability of

immune system to clear the virus and its persistence (158,

159). Since both HBV and HCV pose high-risk for laboratory

personnel and these viruses do not infect rodents, most of the

data about hepatic viral infections come from studies performed

on mice infected with lymphocytic choriomeningitis virus

(LCMV) or in vitro experiments with primary hepatocytes

(160). In the early stages of infection, KCs recognize viral

particles through TLR2 and present viral antigens to T cells.

Additional KC activation occurs in response to IFNg which is

secreted by activated CD8+ cytotoxic T cells (161).

Simultaneously, activated KCs secrete pro-inflammatory

factors IL-1b, IL-6, TNF-a and CXCL8 that recruits NK and

NKT cells to help limit the infection (162). The role of KCs in

control of infection was further confirmed by increased viral

dissemination and enhanced liver damage following KC

depletion (161, 163).

Surprisingly, some data suggest KCs also play an important

role in immune tolerance against the virus. It was shown that

primary monocytes differentiated to M1- or M2-like phenotypes

and treated ex vivo with HBV decreased production of the pro-

inflammatory cytokine IL-1b and increased release of anti-

inflammatory IL-10 (164). The decreased production of IL-1b
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resulted from inhibition of NLRP3 inflammasome activation by

viral antigen HBeAg (165). Apart from limited cytokine

production, monocytes and macrophages from patients with

chronic hepatitis C have altered TLR responsiveness

corresponding with reduced expression of TLR2 and TLR3

(163, 166). Altogether these data suggest that role of liver

macrophages in viral hepatitis is complex and more studies are

needed to better understand their role in these pathologies.
Auto-immune hepatitis

Auto-immune hepatitis (AIH) is characterized by liver

necro-inflammation with lymphoplasmacytic infiltrates in

hepatic tissue and a presence of circulating autoantibodies.

Immune cell driven inflammation is a central mechanism in

the development and progression of AIH, and targeting this

inflammation with immunosuppressive therapies is an effective

treatment. Among the few reports discussing the role of KCs in

AIH, most focused on the finding of hyaline droplets in the

cytoplasm of these cells (167, 168). In adults this histological

feature was shared between samples with AIH and primary

biliary cholangitis (PBC). In pediatric patients it was a key

indicator of diagnosis of AIH versus other pediatric liver

diseases, although the exact function of these cells is unknown

(167–169). One of the recent studies focusing on the role of KCs

in AIH suggest that AIH is associated with dysbiosis and leaky

gut, resulting in activation of necroptosis signaling through

receptor interacting protein kinase 3 (RIPk3) in hepatic

macrophages. Induction of necroptosis in KCs leads to the

release of pro-inflammatory cytokines and chemokines

resulting in the aggravation of inflammation (170). These first

reports suggest liver macrophages might have an important role

in pathogenesis of AIH, although further studies are needed to

shed some light on mechanism of its development.
Toxic liver injury

Acute liver injury usually results from an overdose of

hepatotoxic agents, e.g., acetaminophen (known as APAP) or

carbon tetrachloride (CCl4), resulting in extensive and

irreversible hepatocyte damage with a high-mortality risk (171,

172). Necrosis occurring in the liver parenchyma leads to high

levels of oxidative stress, together with DAMPs released from

dying hepatocytes, stimulate KC activation. One of the recent

studies showed, using scRNAseq, that APAP-induced liver

failure leads to activation of around 51% of KCs. Further

transcriptome analysis revealed that activated KCs differed

from quiescent ones by upregulation of genes involved in not

only immune response, but also in chemotaxis, cell migration, as

well as interferon response (173). The latter is not surprising,

since it was observed in all major liver pathologies, that activated
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KCs secrete a variety of pro-inflammatory factors that recruit

and activate other cell types leading to acute inflammation (174).

One of the key factors involved in the process of KC activation in

APAP-induced liver injury is macrophage-inducible C-type

lectin (Mincle). Mincle recognizes spliceosome-associated

protein 130 (SAP130) released by necrotic hepatocytes. KCs

are the main source of Mincle, and Mincle KO mice subjected to

APAP overdose were less prone to liver injury. These animals

showed fewer necrotic lesions, lower levels of alanine

aminotransferase and aspartate aminotransferase in their

plasma, and decreased production of IL-1b (175).

Interestingly, recent evidence suggest that KCs can also

exhibit an immune-suppressive role during APAP-induced

liver injury. In acute injury KCs and intrahepatic T cells

express high levels of PD-1 and PD-L1, which suppresses the

anti-bacterial function of liver macrophages. These data suggest

that check-point inhibitors could restore anti-bacterial function

of KCs by targeting PD-1/PD-L1 signaling (176). Additionally,

IL-10 secreted by KCs directly affected surrounding hepatocytes,

which express higher levels of CXCR2 in response. Mice lacking

KCs, treated with high doses of APAP and a CXCR2 inhibitor

were more susceptible to liver damage and had impaired liver

regeneration, implicating role of hepatic macrophages in organ

recovery in CXCR2-dependent manner (177, 178). Acute liver

injury and inflammation observed during hepatotoxicity results

in the cell death of large numbers of hepatic macrophages,

resulting in dramatically increased recruitment of MoMFs and

monocytes from the circulation, like the liver repopulation

process observed in NASH or ASH (179).
Liver fibrosis

Liver fibrosis is a process of pathological scarring occurring

within liver parenchyma, as a result of sustained activation of

hepatic stellate cells (HSCs) due to chronic hepatic injury

occurring e.g. in NASH, ALD or viral hepatitis (180).

Activation of HSCs leads to excessive deposition of

extracellular matrix (ECM) consisting mainly of collagen,

which affects hepatic architecture and flow of oxygen and

nutrients, that can further accelerate the injury causing

progression of fibrosis towards cirrhosis (181, 182).

Although HSCs are responsible for ECM deposits, multiple

other cell types are involved in fibrogenesis, including damaged

hepatocytes and activated immune cells. Among them, activated

during injury KCs play an important role through the

production of pro-fibrogenic cytokines and chemokines,

including PDGF-b and TGF-b. At the same time cytokines

and chemokines released from injured hepatocytes, activated

HSCs and immune cells (e.g. CCl2, CCl5), lead to increased

recruitment of CCR2+Ly6Chi monocytes that further

differentiate towards Ly6Chi MoMFs with highly pro-

inflammatory and pro-fibrogenic proprieties (179, 183, 184).
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In turn, these cells can, through PDGF-b, TGF-b and CTGF,

further stimulate ECM production by HSCs and promote their

survival by IL-1 b and TNF-a (182, 185). On the other hand,

after the peak of fibrogenesis process, MoMFs start to

differentiate towards more restorative cells that are a source of

matrix metalloproteinases MMP-9, -12 and -13 that were

associated with fibrosis resolution (186–188). Unfortunately,

the latter can be counteracted by tissue inhibitors of matrix

metalloproteinases (TIMPs) produced by activated HSCs,

preventing resolution of fibrosis during chronic pathologies

(186, 189). Indeed, dual role of liver macrophages in liver

fibrosis largely depends on the stage of fibrogenesis. In the

mouse model of liver fibrosis induced by treatment with CCl4
depletion of hepatic macrophages during the progression of the

disease reduced scarring. On the other hands depletion of the

same cells during the phase of resolution limited ECM

degradation and hepatic recovery, making liver macrophages a

complicated target for therapy of liver fibrosis (190).
Liver cancer

Hepatocellular carcinoma (HCC) and intrahepatic

cholangiocarcinoma (iCC) are the two most frequent primary

liver malignancies, with HCC consisting of 70% of the cases

(191). Tumors develop due to sustained injury of hepatocytes or

cholangiocytes leading to continuous cell death and

compensatory proliferation, increasing the risk of genetic

mutations. Some of these mutations lead to cell cycle arrest

and apoptosis, while others initiate the process of

hepatocarcinogenesis increasing the growth rate of these cells

(192, 193). Chronic inflammation due to higher levels of

cytokines, chemokines, and growth factors present in liver

parenchyma create a microenvironment that promotes liver

cancer onset and progression (194, 195). In the context of

HCC, KCs play a protective role in the early phases of tumor

initiation. Upon liver injury, senescent hepatocytes secrete

CCL2, which in turn recruits CCR2+ macrophages. These cells

remove hepatocytes that underwent oncogene-induced

senescence from liver tissue and prevent initiation of

carcinogenesis (76, 196, 197). Conversely, increased levels of

CCL2 and recruitment of CCR2+ macrophages correlate with

increased tumor burden and poor prognosis, suggesting that

these cells might play pro-tumorigenic role. This hypothesis was

confirmed by studies in which a CCR2 antagonist, RDC018,

suppressed the development of liver cancer (198, 199).

Non-resident macrophages, such as tumor-associated

macrophages (TAMs), induce immune tolerance against

tumors by producing high levels of IL-10 and increasing the

expression of PD-L1, thus limiting the immune response of T

cells to cancer cells (200, 201). Another subset of macrophages

with similar proprieties are called myeloid-derived suppressor

cells (MDSCs) and an increase in both TAM and MDSC
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numbers was associated with increased tumor burden and

higher metastasis rate in both preclinical models and human

patients (202). Moreover, multiple factors released by TAMs,

TNF-a, IL-1b, and IL-6 support tumorigenesis by maintaining a

pro-inflammatory environment (203). Others, like TGF-b or

PDGF-b promote fibrogenesis and act as growth factors

promoting tumor proliferation or neoangiogenesis in fully

formed tumors that increases the supply of nutrients and

oxygen within the tumor (204, 205).

Considering the important role of liver macrophages in the

maintenance of immune tolerance against tumors, targeting

these cells to reverse their M2 phenotype or use of anti-PD-L1

antibodies might be a potential therapeutic strategy for the

treatment of liver cancer. Preventing liver macrophages from

inducing immune tolerance could activate T and NK cells and

provoke anti-tumor immunity leading to inhibition of tumor

growth. This approach, together with therapeutic strategies that

are already in place, could increase the efficacy of treatment

leading to the increased survival and a better quality of life

for patients.
Chronic obstructive pulmonary
disease (COPD)

Patients with COPD have increased numbers of

macrophages within their airways and interstitium. However,

the function of these macrophages is highly impaired. To begin,

AMs in COPD show impaired expression of toll-like receptors

that are essential for detecting DAMPs and PAMPs (206). In

addition, these AMs have dysfunctional phagocytic abilities

which can lead to increased inflammation (207). Increased

levels of IL-8, TNF-a, reactive oxygen species, and matrix

metalloproteinase 12 are produced by AMs in COPD patients

(129). These factors exacerbate inflammation and cause tissue

damage. As for IMs, little is known about their role in COPD.

However, murine studies suggest that they contribute to the

release of the pro-inflammatory factors TNF-a and IL-6 (208).

Current therapeutic options focus on reducing the symptoms of

COPD in lieu of reversing disease progression. Therefore,

researchers have looked at targeting lung macrophages to

restore lung function. Shifting macrophage polarization

towards an anti-inflammatory phenotype by reducing

oxidative stress and supressing pro-inflammatory mediators

release have been found to restore the phagocytic function of

lung macrophages thus improving disease pathogenesis

(209, 210).
Asthma

Asthma and allergic reactions are attributed to the

dysfunctional response of T helper 2 (Th2) cells, and tissue-
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resident lung macrophages play an important role in the

regulation and maintenance of these T cells in the lung (211,

212). Th2 cells secrete the cytokines IL-4, IL-5, and IL-13 and

stimulate a type II immune response. As the primary immune

cell responsible for responding to allergens and pathogens in the

airway, AM dysfunction can by linked to the development of T-

cell mediated pathologies such as asthma. As such, pathways

more commonly linked to macrophage function, such as the

inflammasome, have been demonstrated to influence Th2 and

regulatory T-cell development (213). In a mouse model of

allergic asthma, loss of NLRP6 prevented development of Th2

mediated lung inflammation (214). In response to inflammation

AMs release IL-27, an essential regulator of airway

hyperresponsiveness known to be reduced in individuals with

asthma (114, 215–217). When AMs are depleted, the lack of IL-

27 production delays inflammation resolution exacerbating

allergic inflammation (218). The intrinsic expression of TGF-b
by AMs and IL-10 by IMs aid in controlling responses to inhaled

allergens through influence on regulatory T-cells (219). Resident

macrophages also play a central role in the clearance of dead and

dying cells, which if left in the lung can be a driver of

inflammation. In murine models, the efferocytosis of apoptotic

cells by AMs prevented development of asthma (220, 221).

Defective efferocytosis in AMs is in part due to altered

expression of Axl receptor kinase (222). Blocking this pathway

has been shown to prevent pathology during viral asthma

exacerbation, suggesting that targeting macrophage function

could be a therapeutic opportunity for the treatment or

prevention of asthma (223).
Cystic fibrosis

Cystic fibrosis (CF) is a genetic disease caused by mutations

in the cystic fibrosis transmembrane conductance regulator

(CFTR), which results in exaggerated airway inflammation,

airway edema and impaired host defense (224). Due to the

primary function of CFTR as an epithelial ion pump, the role of

macrophages in CF is somewhat understudied. In patients,

macrophage derived factors including IL-10, IL-8, TNF-a, and
IL-1b were increased (225, 226). In addition, macrophages in

these patients show impaired phagocytosis and bactericidal

killing due to an increased lysosomal pH (227, 228). Murine

studies have further demonstrated that loss of CFTR influences

macrophage function. AMs and bone marrow-derived

macrophages from mice lacking CFTR produced higher

amounts of inflammatory cytokines ex vivo following

simulation with LPS, in part due to altered trafficking of TLR4

in these cells (229, 230). Interestingly, defects in phagocytosis or

phagolysosome maturation have not been confirmed, suggesting

that while the inflammatory response of the AM is altered in CF,

their ability to eliminate bacteria may not be impacted

(231, 232).
Frontiers in Immunology 15
Influenza

Influenza is a highly prevalent viral infection affecting an

estimated 1 billion people every year. As with bacterial

infections, AMs play a critical role in host defense. In response

to the detection of PAMPs by TLRs, AMs release cytokines

including interferons, IL-6, and IL-12 (233). The importance of

AMs in combatting influenza has been shown through depletion

experiments resulting in uncontrolled viral infection (234, 235).

However, influenza can also have deleterious effects on the AM

population. Verma et al., found that influenza activates IFNgR
signaling in AMs resulting in reduced antibacterial abilities

(236). This deficient antibacterial activity leaves the host

vulnerable to secondary infections. In addition, influenza

infections induce premature apoptosis and depletion of AMs

(237). Impaired AM function can cause surfactant accumulation

leading to respiratory distress. Overall, AMs can play a critical

role in both the defense and pathogenesis of influenza infections.

As such, AMs could be therapeutic target to lessen disease

severity. The primary way in which AMs have been targeted

has been to downregulate the release of pro-inflammatory

cytokines from dysregulated macrophages to prevent lung

injury (238, 239).
Conclusion and future perspectives

Tissue resident macrophages are a unique sub-arm of the

innate immune system. These cells guard our organs from

infection and play pivotal roles in tissue homeostasis. Resident

macrophages seed the major organs, such as liver and lung,

during embryonic development, and they stay with the organ

throughout life. These cells direct organ development, regulate

the phenotype of other immune cells and protect the tissue from

microbial infection. With such an essential role in directing

organ function and protecting from infection, it is

understandable that a number of diseases are associated with

macrophage dysfunction. Our understanding of tissue resident

macrophages is still limited, particularly chronic respiratory

disease. Due to the myriad of functions driven by

macrophages, they are an attractive target for therapeutic

intervention. Additional research is required to more deeply

understand the molecular signaling regulating macrophage

function and to safely develop therapies directed at this

essential cell type.
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