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T cells rapidly transition from a quiescent state into active proliferation and

effector function upon exposure to cognate antigen. These processes are

tightly controlled by signal transduction pathways that influence changes in

chromatin remodeling, gene transcription, and metabolism, all of which

collectively drive specific T cell memory or effector cell development.

Dysregulation of any of these events can mediate disease and the past

several years has shown unprecedented novel approaches to understand

these events, down to the single-cell level. The massive explosion of

sequencing approaches to assess the genome and transcriptome at the

single cell level has transformed our understanding of T cell activation,

developmental potential, and effector function under normal and various

disease states. Despite these advances, there remains a significant dearth of

information regarding how these events are translated to the protein level. For

example, resolution of protein isoforms and/or specific post-translational

modifications mediating T cell function remains obscure. The application of

proteomics can change that, enabling significant insights into molecular

mechanisms that regulate T cell function. However, unlike genomic

approaches that have enabled exquisite visualization of T cell dynamics at

the mRNA and chromatin level, proteomic approaches, including those at the

single-cell level, has significantly lagged. In this review, we describe recent

studies that have enabled a better understanding of how protein synthesis and

degradation change during T cell activation and acquisition of effector

function. We also highlight technical advances and how these could be

applied to T cell biology. Finally, we discuss future needs to expand upon our

current knowledge of T cell proteomes and disease.
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Introduction

An effective immune response involves the clonal expansion

of antigen specific T cells into effector cells, which is

fundamental to adaptive immunity. The programs that

underlie this response require the combined actions of

multiple signaling pathways that activate metabolic pathways

and transcription factors to initiate a series of events leading to

massive changes in cell size, proliferation, and differentiation.

Activated T cells can, at a minimum, double in size over the

course of 1-2 days (1). Following this change, T cells undergo

rapid proliferation, doubling every 6-12 hours (2). Further,

depending on the environmental milieu, antigen specific CD4+

T cells can differentiate into any number of T helper lineages

(i.e., TH1, TH2, TH17, etc.). Alternatively, antigen specific CD8+

T cells can expand and develop into “effector” and “memory”

populations, acquiring differences in their life spans and effector

functions as infection persists or is cleared. Advances in genomic

and transcriptomic techniques have significantly advanced our

understanding of the transcriptional regulation of T cells during

immune responses, in some instances, down to the single cell

level (3). While there is clearly more to be done on those fronts,

central to all these processes are protein synthesis. Proteins are

the building blocks of the cell and fundamental to the execution

of the genetic code. Protein expression is often inferred from

mRNA expression, but these correlations are not always

accurate, nor do they account for post-translational

modifications (PTM), cellular localization, cleavage events, or

various isoforms (4–6). Thus, our basic understanding of the T

cell proteome during immune responses is considerably lacking

when compared to the recent advances in genomics and

transcriptomics. Importantly, subtle changes in protein

structure, folding, or PTM status can have significant

consequences to our health, changes that may not be observed

at the mRNA level. Therefore, proteins can be the cause (i.e.,

Alzheimer’s disease) or the cure (i.e., use of antibodies as

therapeutics) for disease. In this review, we describe our

current toolbox of techniques to study proteins in T cells, the

importance of proteomics, and recent studies that have given us

a better understanding of how the protein landscape changes

during T cell activation and acquisition of effector function. We

also discuss technical advances in proteomics and future needs

to expand upon our current knowledge of T cell proteomes and

make this a more mainstream application for T cell biology.

An immunologist’s current toolbox
to measure proteins

Immunologists utilize several techniques to analyze proteins

in T cells, some down to the single cell level. Protein profiling

techniques include, but are not limited to, enzyme-linked

immunosorbent assays (ELISA), immunohistochemistry,
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western blotting, flow cytometry-based techniques, and cellular

indexing of transcriptomes and epitopes by sequencing (CITE-

seq). ELISA’s, immunohistochemistry, and western blotting are

low-throughput techniques and rely on the availability of

specific antibodies, but antibodies are expensive and limited by

the number of antigens they probe. ELISA’s can probe one factor

at a time or be multiplexed (i.e., Luminex technology), but these

assays can be costly. Single-cell western blotting (scWesterns)

applications were introduced several years ago and enabled the

measure of cell-to-cell heterogeneity on a microscope slide (7).

However, this method is also low throughput and limited to the

number of antibodies available to your protein(s) of interest.

Several flow cytometry-based techniques have evolved to

enable quantification of proteins at the single-cell level.

Traditional flow cytometry, also referred to as polychromatic

cytometry, relies on a series of bandpass filters to isolate a small

spectral window that favors the specific fluorophore being

analyzed. Up to 30 subsets can be defined based on this

method (8). The introduction of spectral flow cytometry has

expanded upon the limitations of traditional, polychromatic

flow cytometry to enable visualization of up to 40 parameters

on immune cells (8). Cytometry time of flight (CyTOF) is a

variation of flow cytometry in which antibodies are labeled with

heavy metal ion tags in lieu of fluorophores (9). CyTOF is a

powerful tool to quantify labeled targets with simultaneous

visualization of up to 60 individual parameters at once and is

particularly useful for in-depth analysis of immune populations

with limited samples. CyTOF was particularly useful in

diversifying subsets of T cell exhaustion states from patients

with HIV and cancer (10). CyTOF was also used in conjunction

with metabolic assays to define the metabolic states of human

naïve and memory cytotoxic T cells to establish a more robust

understanding of functional states in T cells (11). Used in

conjunction with other approaches, CyTOF as well as other

flow cytometry-based techniques have given us significant

mechanistic insight into T cell biology both in normal and

disease states. However, much like techniques outlined above,

these methods are limited to availability of antibodies to your

protein(s) of interest and number of parameters that can be

analyzed per sample.

CITE-seq is a more recently described method to perform

concurrent measurements of both RNA and protein transcripts at

the single cell level. CITE-seq uses a combination of

oligonucleotide-labeled antibodies to integrate protein profiling

with single-cell droplet RNA-sequencing to collate RNA levels and

amount of antibody present (as a proxy for protein levels) per cell.

Multiple antibodies can be used per cell to gain qualitative and

quantitative information on surface proteins. This method was

recently used to characterize age-associated alterations in immune

cells. Using this method, the authors of this study identified a sub-

population of age-associated CD8+ T cells that had hallmarks of T

cell exhaustion and tissue homing (12), suggesting these cells

could be a potential target for age-associated immune dysfunction.
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Another study used a combination of CITE-seq with TCR

sequencing to identify a neoantigen-reactive T cell signature for

CD4+ and CD8+ T cells in non-small cell carcinoma (13). This

approach could enable rapid identification of neoantigen-reactive

TCRs and expedite personalized medicine through engineering of

patient, neoantigen-specific T cells. Finally, using a combination

of CyTOF, CITE-seq, and scRNA-seq to resolve immune diversity

in atherosclerotic plaques from patients with cardiovascular

disease (CVD), authors from this study uncovered significant

diversity in the CD4+ T cell subsets. The authors identified subsets

of T cells that were activated, some differentiated, whereas some

expressed markers of exhaustion (14). Data generated from these

techniques may enable the design of more precise therapeutics for

CVD. These approaches are extremely useful, particularly when

used in combination. While they clearly have major advantages

over the use of single-cell RNA-seq alone, similar to flow

cytometry-based approaches, CITE-seq is limited by the number

of markers that can be used for cellular detection. These

approaches are incredibly powerful systems to interrogate T cell

functionality, but they do not provide a holistic overview of

protein expression or changes within a cell population in

response to various stimuli. Other approaches need to be

implemented for this visualization.
Proteomics

In the study of biological systems, we have genomics,

transcriptomics, and proteomics. In its most rudimentary

form, proteomics is the study of proteins, specifically, how

different proteins interact with each other. Multiple

subcategories of proteomics exist with the purpose to broaden

our understanding of protein composition within a cell or target

tissue: expression proteomics – the quantitative study of proteins

between samples; functional proteomics - the assessment of

protein-protein interactions elucidating biological function;

structural proteomics – determination of three-dimensional

protein structures on a genome-wide scale; chemoproteomics

– assessment of protein-small molecule interactions. While there

are multiple techniques that can measure protein/protein

interactions in cells, mass spectrometry (mass-spec, MS) is one

that is central to these applications. It is a comprehensive tool

capable of not only identifying proteins, but also characterizing

protein structure, protein isoforms, protein post-translational

modifications (PTMs), and protein-protein interactions both

quantitatively and qualitatively. Mass-spec is also a powerful

tool to identify lipid species and metabolites. While all

subcategories and species identification are worth in-depth

discussion, for the purposes of this review, we focus on

expression proteomics and protein identification.

Mass spectrometry largely uses two major workflow

approaches to identify proteins: a bottom-up approach, also
Frontiers in Immunology 03
called “shotgun” proteomics, and a top-down approach. The

conventional bottom-up proteomics involves enzymatic trypsin

digestion of proteins into peptides suited for separation by high-

performance liquid chromatography (HPLC), ionization, and

fragmentation-based sequencing in the tandem mass

spectrometer. Proteins are digested into peptides of 5-20 amino

acids in length (15). Alternatively, liquid chromatography-MS

(LC-MS) can be used if samples have been treated with chemicals

to separate compounds before ionization which is conveyed to the

mass-spectrometer (16). Bottom-up proteomics has become a

routine procedure due to high performance instrumentation,

improvements in enrichment tools, availability of high-

resolution mass-spectrometers, and innovative data acquisition

methods. However, since protein is digested into small peptides,

sensitivity can be compromised (17, 18). For example, the ability

to map PTMs, truncations, mutations, and polymorphisms in

individual proteins is limited by the analysis of the peptides, often

leaving gaps and blurring context (19). Peptide masses are

correlated with known databases using search engines, including

Mascot or Sequest, and if a database is incomplete or amino acids

have identical masses (i.e., leucine and isoleucine), only a limited

number of fragments may be identified.

Top-down proteomics is a method to characterize and

identify intact proteins. This method presents with distinct

advantages as well as its own challenges. The most compelling

advantage is that it has the potential to quantify intact protein

and its modifications, including PTMs. However, due to

limitations in instrumentation, this approach is approximately

100-fold less sensitive than bottom-up MS (15) and is limited to

proteins on average of 50kDa due to difficulties producing gas-

phase fragmentation of proteins (15). Additionally, those

proteins of low abundance, including transcription factors,

may also be missed using this method. Nevertheless, this

technique offers the potential to map protein sequences and

localize multiple PTMs on each protein, providing a

comprehensive overview of the protein in the cell (19). Using

both bottom-up and top-down-MS, recent proteomic studies

have provided unprecedented insights into both human and

mouse T cell function.
Applying proteomics to study
T cell function

Transcriptional profiling and downstreamnetwork analysis has

been instrumental to our understanding of T cell function in the

immune system. However, T cell activation is dynamic inducing a

series of signaling events that cannot be captured by transcriptomics

alone. These events include rapid protein translation, PTMs, and

changes in cellular metabolism, all of which are key regulators of T

cell activation and function. Recent advances inmass-spectrometry,

using techniques such as tandem mass tag (TMT), has enabled
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sample multiplexing, which supports identification and

quantification of proteins from multiple samples or tissues. Using

this approach, one group set out to capture key T cell activation

events by activating naïve mouse T cells with anti-CD3 and anti-

CD28 for 2, 8, and 16h, and subjected these cells to both whole

proteome analysis and phosphoproteome profiling (20). Consistent

with their initial hypothesis, there was weak correlation between the

proteomeand transcriptome inducedbyTCRsignalingwithmRNA

expression significantly lagging behind changes in protein

expression. TCR signaling led to distinct phases of activation.

Initial TCR activation led to a rapid induction of phosphorylation

events (within 2h) with limited changes in overall protein

abundance (early phase). Between 8-16h (late phase), extensive

reprogramming of the proteome and phosphoproteome occurred,

leading to changes in protein translation and mitochondrial/

metabolic functions. Application of a comprehensive analysis

pipeline led to predictions about naïve T cell exit from quiescence

into activation, including downregulation of DNA-damage

responses and MAPK signaling pathways. This study identified

molecular circuitry involved in the exit from T cell quiescence with

important implications in T cell maintenance and survival.

Importantly, this T cell circuitry could not have been established

without global proteomic and phosphoproteomic analysis.

PTMs clearly play a significant role regulating T cell activation

and downstream responses. However, there are a number of PTMs

outside of phosphorylation that can influence T cell activation,

including ubiquitination. Ubiquitin can regulate protein

abundance and activity following TCR-CD28 engagement (21–

23). Ubiquitin is covalently attached to lysine residues and is often

associated with proteasomal or lysosomal degradation and most

reports associate ubiquitin-mediated degradation with regulation

of T-cell activation (24). However, increasing evidence indicates

non-degradative outcomes of ubiquitylation influenced T cell

signaling responses, including ubiquitylation of the p85 subunit

of PI3K which impacts its recruitment to CD28 and TCRz (25).

Therefore, onegroupperformedproteomics and transcriptomics in

primary mouse CD4+ T cell to establish degradative vs. non-

degradative outcomes of ubiquitylation (26). This group

identified 5,500 proteins in primary CD4+ T cells. Similar to the

findings by Tan et al., TCR-induced transcriptional changes

correlated poorly with protein abundance (20, 26). To interrogate

ubiquitylation events, they designed an approach using di-glycine

remnant profiling. Di-glycine remnants results from cleavage

events within ubiquitin when attached to its lysine substrate. This

generates a ubiquitin remnant that can be enrichedwith antibodies

and subjected to mass spectrometry. Using this approach,

approximately 1,200 substrates of ubiquitylation in CD4+ T cells

was identifiedhelping todetermine thatTcell activationdrives both

degradative and non-degradative ubiquitylation. Proteins

undergoing ubiquitin-mediated degradation events included

NFKB1, ZAP-70, and LAT. In contrast, proteins that were

ubiquitylated but not degraded included CD3ϵ, CD3g, CDC42,
RAC1, RHOA, and GRAP. Combining whole cell proteomics, di-
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established a framework to predict TCR-stimulation dependent

ubiquitylation events in rested vs. stimulated CD4+ T cells. This

study provides a valuable resource to probe non-degradative TCR-

dependent ubiquitylation events and their effects on T cell

activation and function, a resource that would not be available

with genomic and transcriptomic techniques alone.

Post-translational modifications of transcription factors play

key roles in transcription factor function.However, identificationof

these PTMs is challenging. Proteomics has played a significant role

identifying key PTMs in this regard. Mass-spec analysis of

immunoprecipitated RORgt from TH17 cells identified two key

phosphorylation sites important for TH17 cell development; one

phosphorylation site was critical for TH17 cell development

whereas the other inhibited it (27). A separate study identified

several acetylation sites on RORgt that became deacetylated by

Sirtuin 1 (SIRT1), promoting autoimmunity (28). Quantitative

phosphoproteomics has been used to characterize IL-23 signaling

in TH17 cells (29). Data from these studies identified 168

phosphorylation sites occurring via IL-23 signaling leading to

phosphorylation of the myosin regulatory light chain (pRLC-

S20), a key regulator of actomyosin cytoskeleton contraction and

cell migration. Their studies uncovered a key role for IL-23 in the

regulation of cell motility. Alternatively, one group used high-

resolution phosphoproteomic mass spectrometry to identify IL-2-

mediated phosphorylation events in cytotoxic CD8+ T cells (CTLs)

(30). IL-2 is critical for the clonal expansion of both CD4+ and

CD8+ T cells, but prior to this study a global understanding of IL-2

signaling was lacking. Using phosphoproteomics, the authors

provide a thorough characterization of the IL-2-regulated

phosphoproteome, uncovering a SRC-family kinase-controlled

phosphorylation network in CTLs and a separate coordinated

phosphorylation cascade regulated by IL-2-JAK signaling.

Specifically, they found that SRC kinases regulated a large

component of the CTL phosphoproteome, controlling events

distinct from other IL-2-JAK1/3-mediated events. SRC kinases

were required to sustain the activity of critical metabolic kinases,

including mTORC1 and AKT whereas IL-2-JAK signaling

coordinated phosphorylation of transcription factors, chromatin

regulators, mRNA translation, GTPases, etc. These data uncovered

the complexity of protein phosphorylation inCTLs and established

that future work identifying cellular phosphorylation kinetics is in

order to determine how signaling pathways are coordinately

regulated. Finally, biochemical and mass-spectrometric analysis

of purified Foxp3 complexes from T regulatory cells (Tregs)

revealed that Foxp3 exists in multiprotein, heterogenous

complexes of 400-800kDa or larger (31). While over 350

associated proteins were identified, many were associated with

transcription, including Cbfb, Bcl11b, Ikzf3, and Chd4.

Interestingly, Foxp3 bound to and regulated a number of genes

that serve as its own cofactors, includingRunx, NFAT, andGATA-

3. As GATA-3 was previously described to play a role in Treg

function and homeostasis (32, 33), mass-spec analysis confirmed
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1028366
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Solt 10.3389/fimmu.2022.1028366
this regulatory role and further identified a subset of genes co-

regulated by Foxp3 and GATA-3 important for Treg cell fate and

function, including Ets2, Satb1, and Klf3. These studies are clear

examples ofhowmass-specbasedproteomics can identifykeyTcell

regulatory events and aid in understanding of T cell biology.

Protein turnover in mammalian cells, including T cells, is

regulated by many cellular processes, with mammalian target of

rapamycin complex 1 (mTORC1), playing a significant role (34).

Since a basic molecular understanding of its function at the

protein level in T cells had yet to be established, one group used

quantitative mass spectrometry to compare CD4+ vs. CD8+ T

cell proteome restructuring upon antigen encounter to

determine how mTORC1 regulated these events (1). Over

9,000 proteins were identified, demonstrating how

environmental signaling pathways integrated with antigen and

cytokine signaling to ensure specific and appropriate immune

responses. The authors identified key differences between CD4+

and CD8+ T cells, including CD8+ T cells ten-fold increase in the

amino acid transporter SLC1A5 relative to CD4+ T cells. They

also found that CD8+ T cells also have higher concentrations of

protein-translational machinery and nutrient transporters which

could account for their enhanced proliferative capacity. While

no major differences were observed with mTORC1 between

CD4+ and CD8+ T cells, naïve CD4+ T cells have a unique

dependence on mTORC1, particularly for cell-cycle regulation.

This same group used a similar approach to better understand

how the transcription factor, Myc, controls CD4+ and CD8+ T

cell activation and metabolism following stimulation through

the TCR (35). Data from this paper demonstrated Myc controls

proteome restructuring in T cells, regulating amino acid

transporters critical for T cell bioenergetic and biosynthetic

programs the cel l requires for proper growth and

development. While both Myc-dependent and independent

functions were uncovered in T cell metabolic processes,

upregulation of amino acid transporters was part of a feed-

forward loop sustaining Myc expression in T cells. These data

shed light on why Myc is so important for specific T cell

metabolic functions, including glutamine metabolism and

glycolysis. To further pursue metabolic regulation in T cells, in

a separate study this group used high-resolution mass-spec to

map the proteome of CTLs to better understand mTORC1 and

mTORC2 activity in CTL function (36). The authors mapped

~6800 proteins in CTLs and discovered that CTLs have high

mTORC1 activity, playing a dominant role in CTLs over

mTORC2. Despite this, only a small subset of the CTL

proteome was controlled by mTORC1 activity; mTORC1

controlled expression of metabolic, effector, and adhesion

molecules. When comparing the CTL transcriptome to the

proteome, they found a discordance between mRNA and

protein abundance. For example, while the mRNA expression

of T-bet and Eomesodermin (EOMES) was comparable in CTLs,

T-bet protein expression was significantly greater than EOMES.

There was also a significance discordance between mRNA and
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protein expression of the IL-2 receptor. mRNA indicated a 3:1:2

stoichiometry of receptor chains (a:b:g) whereas the

corresponding ratio of protein was 92:1:2, respectively.

Further, through use of mTORC1 and mTORC2 inhibitors,

this study demonstrated the power of unbiased proteomics on

understanding the effects of drugs in cells. Collectively, these

studies highlight the power of quantitative untargeted analysis of

protein content in understanding T cell function and

metabolic regulation.

In contrast to the murine studies, human T cell proteomic

studies have been a bit more confounding. For example, unlike

mouse studies, there was strong correlation between proteomic

and transcriptomic data depending on cell type and time points

assessed. One group used a combination of proteomics and

transcriptomics to study the effects of cytokines on human naïve

(TN) and memory (TM) CD4
+ T cell responses in an effort to

better understand cytokine responses in memory cells, which to

that point had not been studied in-depth (37). TN and TM cells

were polarized towards four different CD4+ T helper subtypes

(TH1, TH2, TH17, and iTreg), collected at 16h and 5 days post

activation, and subjected to proteomic and transcriptomic

analysis. Similar to the mouse studies, the authors found

variation between the proteome and transcriptome during

initial T cell activation. However, downstream of initial

activation, there was high correlation between RNA and

protein expression in all populations evaluated. One finding

that was surprising was that while TN could differentiate into any

T helper population, TM cells could not acquire a TH2

phenotype. Interestingly, TM acquired a TH17 phenotype in

response to iTreg signals, perhaps due to reliance on TGFb
signaling (38). When used in combination with transcriptomics,

proteomics revealed a progression of T cells from naïve to

central memory to effector memory T cell phenotypes.

Progression was accompanied by increases in expression of

effector molecules which enabled enhanced responsiveness to

activation and cytokine signals from the environment.

In a separate study, evaluation of the proteome vs.

transcriptome in human TH17 cells revealed a high correlation

between datasets (39). However, when compared to a

corresponding published mouse dataset (40), the authors

found very little overlap between proteins expressed between

human and mouse TH17 cells. This discrepancy could be due to

the fact that the authors only compared their human TH17 data

to one mouse data time point. Alternatively, activation

conditions could also affect the overall proteome. A recent

paper by Revu et al. demonstrated that anti-CD28 signaling is

not required for human TH17 cell development in vitro (41).

Rather IL-23 signaling is sufficient as the second signal and these

cells produce a more robust amount of IL-17A than traditional

human TH17 in vitro differentiation conditions, amounts more

consistent with mouse TH17 cells. In this particular study, it is

unclear to what extent IL-17A was expressed in human TH17

cells relative to the ~45% IL-17A expressed in the mouse TH17
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cells being compared to (40). Further, the authors saw little

upregulation of key TH17 proteins, including IL-17A, IL-17F,

and RORgt, in their proteomics data from human TH17 cells,

suggesting the differentiation may not have been ideal. While it

is important to perform parallel studies between mouse and

human samples to understand the translational aspect of the

work performed, when comparing datasets, particularly between

two species, one should take caution when interpreting data. Cell

types should not only be verified, their activation and

differentiation states should be comparable for a fair and

accurate comparison to occur.

There are other clear examples demonstrating differences

between proteomic and transcriptomic datasets, which inevitably

defined unique T cell subsets and signatures. One example stems

from a study that set out to address how human Foxp3+ T

regulatory (Tregs) cells resist acquisition into T effector or

conventional cells. The authors used a combination of

proteomics and transcriptomics on human blood derived naïve

CD4+T cells and effector Tregs (eTregs) and identified functionally

distinct Foxp3+CD4+ T cells in human blood, defined a common

Treg signature, and one specific for effector Tregs (eTregs) (42).

These signatures comprised proteins involved in diverse cellular

functions. The common Treg signature included Foxp3, Helios,

metabolic proteins (GK, SHMT2), iron storage proteins, and

lysosomal proteins. The eTreg signature included proteins

involved in apoptosis, mitosis, DNA replication, etc. (42). Similar

to what had been described with mouse samples, the proteomic

Treg signatures defined had little overlap with transcriptomic

signatures. The authors hypothesized the discrepancy may be due

to the cellular state of the Tregs (i.e., steady state vs. activated) since

stability of mRNA may be an issue (43). These differences may be

less obvious in cycling cells where there is a need for protein

synthesis. Regardless, the Treg signatures could not have been

predicted based on transcriptomics alone. Collectively, these

studies indicate the need to be careful with analysis and

interpretation of proteomic data in T cells and consider cellular

state and/or couple this approach with transcriptomic data to

generate a full view of the T cell.
Challenges with proteomics and
future prospects: Single-cell mass
spectrometry and beyond

While apowerful system,proteomics isnotwithout its challenges

keeping it from becoming a mainstream application. Unlike

genomics and transcriptomics-based approaches, where one can

sequence thousands of genes quickly, proteomics is not as high

throughput. Additionally, the Core infrastructure for genomics and

transcriptomics work is far more advanced than proteomics cores.

For example, sample processing, instrumentation, and separation

science involved with proteomics is not asmainstream as that which
Frontiers in Immunology 06
has been honed for Genomics. Data analysis is also technically

demanding, requiring a level of expertise that are often only found

in academic labs that perform proteomics on a routine basis. Thus,

there is a significant need to develop pipelines for data analysis that is

readily available to circumvent this issue. Perhaps one place to start

would involve adapting pipelines currently used for transcriptomics

towards proteomics.

Outside of these limitations, there are basic issues that

hinder the mainstream use of proteomics. For example, unlike

RNA and DNA, proteins can’t be amplified, so low abundance

proteins, including transcription factors, are often missed.

Another challenge is that data is sparse. In theory, all peptides

should be “read” by the mass-spectrometer. However, this is not

always the case and full coverage of the proteome is not acquired.

Sample amount poses another obstacle for making proteomics

more mainstream. The advent of single-cell RNA-sequencing

(scRNA-seq), Assay for Transposase-Accessible Chromatin

(ATAC)-seq and CUT&RUN has enabled the interrogation of

small numbers of cells to address biological questions. These

assays require low cell numbers and are particularly useful when

trying to determine how certain cell-types drive disease.

However, the number of cells currently needed for proteomics

far outpaces that of assays like scRNA-seq, limiting our ability to

interrogate ex vivo isolated T cells frommouse models of disease.

Finally, while methodology for phosphoproteomics has

significantly advanced, there are multiple types of PTMs which

regulate cellular function, including sumoylation and

glycosylation. Further, a deeper understanding of the

subcellular localization of PTMs, down to the organelle level,

is needed to better understand molecular signaling events in

cells. While several methods have been developed in an attempt

to do this, including enzyme proximity labeling methods like

APEX/APEX2 (44, 45) and BioID/TurboID (46–48), they are

not without their caveats. APEX, which utilizes hydrogen

peroxide can affect cellular metabolism and consequently,

PTM status (49). TurboID and similar methods are subject to

pervasive biotinylation of endogenous proteins, not only

generating an over estimation of PTMs in the cell but may

also lead to cell toxicity and perturbations in normal cellular

responses (50). Recent advances using uncaging-assisted

biotinylation and mapping of phosphoproteome (SubMAPP)

(51) may help alleviate some of these promiscuity and toxicity

issues. However, it is clear that we need better methodology to

interrogate PTMs, both globally and at the organelle level, to

gain a better understanding of how they affect T cell function.

While measuring changes in protein abundance is of critical

importance to understand cell fate decisions, structural

remodeling of proteins is equally so. Several methods exist to

measure protein structure at the atomic level, but few methods

can directly observe protein structure in functioning cells.

Recent developments have started to tackle this issue. The

release of AlphaFold, an artificial intelligence (AI) system that

predicts the 3-dimensional structure of proteins based off its 1-
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dimensional amino acid sequence, has significantly advanced

our understanding of static protein structure (52). However,

there are still some limitations to this software (i.e., disordered

protein regions cannot be accurately resolved), the proposed

structures still need validation, and proteins are not static, rather

always in motion. However, this software can predict biological

insights and fuel hypothesis driven research into protein

function and interactions in live cells that can be tested

experimentally. Use of approaches like limited proteolysis

coupled to mass-spectrometry (LiP-MS), which identifies

protein structural changes in their biological context on a

proteome-wide scale, is a step above AlphaFold, enabling

observations of structural changes. The idea behind this

approach is that residues in a protein structure may be

shielded from proteolytic digestion by PTMs, interactions with

other molecules, or other parts of the protein. Using timed

proteolytic digestion, which results in peptides that reflect

protein/structure accessibility, coupled with mass-spec, one

can predict protein structure in a complex biological setting

(53, 54). These approaches may potentially be used to

complement protein abundance readouts in order to maximize

detection of alterations of cellular biological states. Regardless,

advances in methods sensitivity and data analysis pipelines,

similar to the deep machine learning algorithms developed for

genomics-based research, is required to advance structural

proteomics and uncover significant insights into functionality,

helping uncover “hidden” information in the peptide/peptide-

fragment data that comes off the mass-spectrometer.

While still in its infancy, recent advances in instrumentation

andmethodologies has enabled themeasure of lipids, proteins, and

small molecules in a single cell using mass spectrometry (55).

(Table 1; Figure 1) The implementation of microfluidic chip

systems, facilitating reactions to occur in a small volume, has

greatly accelerated this approach. ProteoCHIP and nanodroplet

processing in one pot for trace samples (nanoPOTS) are two such

designs (61, 68). For example, nanoPOTS uses a chip-based
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processing and sample analysis for small cell populations.

nanoPOTS reduces the processing volumes (<200nL, down from

hundreds of microliters), while maintaining parameters deemed

essential for optimal bulk proteomic sample preparation. Reduced

processing samplevolumeminimized absorptive lossof the sample,

which had previously been the bottleneck of sample loss during

preparation. Using nanoPOTS, the group was able to achieve

reproducible coverage of over 3000 proteins from approximately

10-100 cells or clinical samples. Specifically, they were able to

quantify ~2400 proteins from single human pancreatic islet cross-

sections, isolated by laser microdissection, from a patient with type

1 diabetes vs a healthy control (61). The authors indicated that their

platform could interface with cell sorting via flow cytometry,which

would be an ideal workflow for immunologists wishing to perform

similar experiments. Optimizing on this platform, another group

developed an “all-in-one” proteomic sample preparation and data

acquisition for single-cell proteomics called SciProChIP-DIA. This

methodmultiplexes samples, automates cell isolation, preparation,

cell counting, imaging, and sample processing coupled with a data-

independent acquisition mass-spectrometry approach in a single

device. Essentially, they developed a fully automated workflow for

low-input samples thatminimizes sample losswhile achieving high

reproducibility and sensitivity. Using this automated approach,

researchers were able to characterize up to 1,500 proteins per cell,

with a false discovery rate of 1% in both human adenocarcinoma

cells (PC-9) and chronic B cell leukemia cells (MEC-1) (69).

Compared to other studies using single-cell proteomic profiling,

SciProChIP-DIA demonstrated more sensitive coverage than

others tested, including nanoPOTS. The authors postulated that

SciProChIP-DIA was versatile and scalable in order to fit various

applications, including the study dynamic proteomic alterations

upon cell stimulation.

Recent advances from the Mann lab have pushed the

boundaries of single-cell mass spec. In a recent publication, they

highlight a new technique called Deep Visual Proteomics (DVP)
TABLE 1 Recent Single-cell Proteomic Studies.

MS Approach Number of proteins identified Cell type References

nanoPOTS 731 MCF10A (56)

nanoPOTS 874 HeLa (57)

nanoPOTS 1056 HeLa (58)

nanoPOTS ~1600 Mouse epithelial, endothelia, immune cell lines (59)

nanoPOTS ~700 FM1-43 (60)

nanoPOTS ~1500-3000 HeLa, human islet sections (61)

nanoPOTS ~1600 Rat brain sections (62)

SCOPE-MS 767 Jurkat, U-937 (63)

SCoPE2 ~3000 U-937, HEK293 (64)

FUNpro/SCOPE-MS >1000 U20S (65)

DVP >500 U20S (66)

T-SCP >550 HeLa (67)
fr
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(66). This method combines imaging technologies with unbiased

proteomics to quantify the number of expressed proteins in a cell,

map tissue or cell-type specific proteomes, or to identify drug targets

in a cell. Using this approach, they uncovered cellular phenotypes

and dysregulated pathways with automated single cell laser

microdissection coupled with ultra-high sensitivity mass-spec in

melanoma progression. This system is applicable to any biological

system that can be imaged and similar to another application

recently described, called FUNpro (65). FUNpro also uses a

microscopy-based method, coupled with SCOPE-MS, to perform

functional single-cell proteomic-profiling in order to link the

proteome to cellular phenotype. Both methods can identify and

characterize rare cell states and interactions. The Mann lab has also

recently developed a workflow that enables higher sensitivity in

single cell proteomics. Using FACS-isolated cells, they injected

single cells one by one into the mass-spec, which they call true

single-cell-derived proteomics (T-SCP) (67). Using their improved

automated workflow, they demonstrated increased sensitivity up to

two orders of magnitude greater than previous methods and were

able to dissect arrested cell cycle states in cancer cells (HeLa cells).

These works have increased the sensitivity of scMS. Unfortunately,

most of these studies have been performed using cell lines or cells

isolated from fixed tissue. Future work will need to entail single cell

proteomics of primary cells, including T cells, from freshly isolated

ex-vivo samples (i.e., murine or PBMCs) to generate the most

robust visualization of the proteomics landscape in vivo.

Given the sensitivity between approaches, single-cell proteomics

tends to use a ‘bottom-up’ approach to identify proteins rather than

looking for intact proteins. (Figure 1) Therefore, key challenges for

improvement are similar to those described above, including

analyte coverage and depth of analyte characterization.

Regardless, advances in single-cell mass-spec has rapidly

improved over the last 5 years (55). Should this rate continue,
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address questions to better understand T cell heterogeneity and

exhaustion in tumors. This knowledge could identify novel

therapeutic approaches for immune-oncology. Single-cell mass-

spec could also be used to gain a better understanding of events

dysregulated at the protein level in autoreactive T cells – events that

are not likely captured by transcriptomics alone. Like cancer

therapeutics, this information could lead to potential novel

therapeutic options for various autoimmune diseases. Regardless,

use of proteomics, whether bulk or at the single cell level, is

imperative to characterize the molecular signatures of normal vs

aberrantly activated T cells, information that is currently lacking

but clearly needed to further advance our understanding of the

mechanisms of biology and disease.
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FIGURE 1

Basic overview of single-cell mass spectrometry workflow. Single-cell proteomics tends to use a “bottoms-up” approach. (1) Single cells are
sorted into multi-well plates (one cell/well), lysed and digested via trypsin. Peptides in each well are labelled with barcodes, or tags, so
researchers can determine how much of a given protein is present in each cell. One commonly used tag, tandem mass tag (TMT) can
differentiate up to 18 samples in a single mixture. (2) TMT requires samples to be labeled individually then mixed for multiplexing. (3) Mixed
samples are injected into the LC-MS. (4) Individual peptide species are ionized, isolated, and fragmented. (5) Analysis of the peptide fragments
and barcodes allows for peptide sequence and protein quantification at the single-cell level, respectively. (6) Proteome profiling revealing
protein expression of single cells is obtained. Image developed using BioRender.
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