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Osteopontin contributes to virus
resistance associated with type
I IFN expression, activation of
downstream ifn-inducible
effector genes, and
CCR2+CD115+CD206+

macrophage infiltration
following ocular HSV-1
infection of mice

Adrian Filiberti 1†, Grzegorz B. Gmyrek1†, Amanda N. Berube1

and Daniel J. J. Carr1,2*

1Department of Ophthalmology, University of Oklahoma Health Sciences Center,
Oklahoma City, OK, United States, 2Department of Microbiology and Immunology, University of
Oklahoma Health Sciences Center, Oklahoma City, OK, United States
Ocular pathology is often associated with acute herpes simplex virus (HSV)-1

infection of the cornea in mice. The present study was undertaken to determine

the role of early T lymphocyte activation 1 protein or osteopontin (OPN) in

corneal inflammation and host resistance to ocular HSV-1 infection. C57BL/6

wild type (WT) and osteopontin deficient (OPN KO) mice infected in the cornea

with HSV-1 were evaluated for susceptibility to infection and cornea pathology.

OPN KO mice were found to possess significantly more infectious virus in the

cornea at day 3 and day 7 post infection compared to infectedWTmice. Coupled

with these findings, HSV-1-infected OPN KO mouse corneas were found to

express less interferon (IFN)-a1, double-stranded RNA-dependent protein

kinase, and RNase L compared to infected WT animals early post infection that

likely contributed to decreased resistance. Notably, OPN KO mice displayed

significantly less corneal opacity and neovascularization compared to WT mice

that paralleled a decrease in expression of vascular endothelial growth factor

(VEGF) A within 12 hr post infection. The change in corneal pathology of the OPN

KOmice alignedwith a decrease in total leukocyte infiltration into the cornea and

specifically, in neutrophils at day 3 post infection and in macrophage

subpopulations including CCR2+CD115+CD206+ and CD115+CD183+CD206+

-expressing cells. The infiltration of CD4+ and CD8+ T cells into the cornea was

unaltered comparing infected WT to OPN KO mice. Likewise, there was no

difference in the total number of HSV-1-specific CD4+ or CD8+ T cells found in

the draining lymph node with both sets functionally competent in response to
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virus antigen comparing WT to OPN KO mice. Collectively, these results

demonstrate OPN deficiency directly influences the host innate immune

response to ocular HSV-1 infection reducing some aspects of inflammation

but at a cost with an increase in local HSV-1 replication.
KEYWORDS

eye, infection, HSV-1, neovascularization disease, cytokines, macrophage - cell, type -
1 interferons
1 Introduction

The normal cornea is a transparent, avascular tissue

composed of three layers including the epithelial, stromal, and

endothelial layers. Transparency is maintained by the uniformity

and size of collagen fibril spacing and diameter, keratocyte

crystallin expression, soluble vascular endothelial growth factor

(VEGF) receptor 1 and 3, and anti-inflammatory molecules

including interleukin (IL)-1 receptor antagonist peptides,

pigment epithelial-derived factor and thrombosponin-1 (1) (2–

5) (6, 7). Additional mechanisms that regulate the activation of

infiltrating lymphocytes and neovascularization include FasL

(CD95L) and programmed death ligand-1 (PDL1) which are

constitutively expressed by corneal epithelial cells (8, 9). The

maintenance of corneal integrity is, in large part, driven by

innervation by sensory nerves that express substance P and

vasoactive intestinal peptide that also possess immunoregulatory

properties (10–12). However, the cornea is not devoid of

hematopoietic-derived cells but harbors macrophages,

myeloid-derived dendritic cells (DC), plasmacytoid DC (pDC),

Langerhans cells and CD34+ bone marrow-derived myeloid cells

(13–17). These cells tend to be quiescent with low expression of

major histocompatibility complex (MHC) class II, and CD40,

CD80, and CD86. However, a breach in the “immune-

privileged” tissue as a result of trauma or infection can

drastically alter the environment and cause irreparable damage.

Herpes simplex virus type 1 (HSV-1) is a highly successful

human pathogen that infects the cornea and upon episodes of

recurrent reactivation, can lead to a loss of visual acuity and even

blindness. In mice, the most common experimental model to

study HSV-1 infection, there is a robust inflammatory response

to the virus following acute infection. Initially, toll-like receptors

(TLR) and innate sensors including IFI-16 expressed by

epithelial cells, pDC, and DC perceive the viral nucleic acid

from replicating virus in the host cell and elicit the production of

pro-inflammatory cytokines, chemokines, and type I IFNs that

act directly on virus-infected cells or recruit circulating

leukocytes to the site of infection (16, 18–26). The infiltration

of innate immune cells into the cornea including neutrophils,

macrophages, and natural killer (NK) cells contributes to the
02
resolution of infection but also results in corneal pathology

including opacity, denervation, and neovascularization (27–

34). In addition to DC and macrophages, corneal epithelial

cells initiate expression of MHC class II antigen and may serve

as antigen presenting cells (35). Such results extend further as

CD4+ and CD8+ T cells that infiltrate the cornea and facilitate

clearance of the insulting pathogen also contribute to tissue

pathology (36) (37–39). As a result, the visual axis is significantly

compromised which in the case of infected mice, often results in

a significant drop in peripheral vision (40).

Early T lymphocyte activation-1 protein (also known as

osteopontin, OPN) was originally described as a T cell-derived

cytokine that bound macrophages and was associated with

severe autoimmunity in mice (41). Using a subjective scoring

system to grade herpes stromal keratitis (HSK) severity, one

group reported OPN deficient (OPN KO) mice show a

significant reduction in the development of HSK coupled with

an increase in IL-4 and IL-10 and a loss of IL-12 production by

viral antigen-stimulated draining lymph node cell cultures from

corneal-infected mice (42). OPN has also been reported to

contribute to trauma-induced corneal angiogenesis and wound

healing and assist in neutrophil recruitment in fungal-infected

mouse corneas likely through secreted isoforms of the parent

OPN molecule (43–46). Thus, the immunoregulatory properties

of OPN and involvement in cornea pathogenic processes

emphasize the role this molecule may play in orchestrating the

initial host immune response against ocular HSV-1 infection

(47, 48).

Previously, we found a reduction of OPN by 50% using

neutralizing antibody led to diminished corneal opacity and

damaged collagen in HSV-1-infected mice (49). To further

evaluate the role of OPN in the host immune response to

infection as well as characterize corneal pathology, we

employed OPN KO mice infected with HSV-1. In comparison

to wild type (WT) C57BL/6 mice, HSV-1-infected OPN KO

mice were found to be more susceptible to infection yet show

reduced corneal opacity, neovascularization, and macrophage

and neutrophil influx suggesting OPN is a significant

contributor to the immune onslaught that results in the

degradation of the visual axis.
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2 Materials and methods

2.1 Mice

Male and female C57BL/6J (stock number 000664) and OPN

KO (stock number 004936 on a C57BL/6 background) were

obtained from The Jackson Laboratory (Bar Harbor, ME., USA)

and housed in the Dean McGee Eye Institute vivarium. All

animal procedures were approved by the Institutional Animal

Use and Care Committee under the protocol, 19-008-AI. Mice

were between 7-12 weeks of age at the time of experimental use.

Prior to corneal scarification, harvesting tissue, or

exsanguinating mice, the animals were deeply anesthetized

using ketamine hydrochloride (100 mg/kg, Covetrus North

America, Dublin, OH., USA) and xylazine (6.6 mg/kg, Akorn

Inc., Lake Forest, IL., USA) administered intraperitoneally. Mice

were exsanguinated by cardiac perfusion with 10 ml phosphate

buffered saline (PBS, pH = 7.4).
2.2 Ocular infection

A stock of HSV-1 (1-10 x 108 plaque forming units, [PFU]/

ml, strain McKrae) was propagated in African green monkey

kidney (Vero, stock number CCL-81, American Type Culture

Collection, Manassas, VA., USA). Anesthetized mice were

infected under a dissecting microscope following scarification

of the cornea using a 25 ½ gauge needle (Becton Dickinson,

Franklin Lakes, NJ., USA) passed over the cornea surface 30x

longitudinally and diagonally followed by blotting the surface to

remove tear film, and then adding virus (350-500 PFU/cornea)

in a 5 µl volume of PBS. Non-infected mice that were scarified

served as controls.
2.3 Virus plaque assay

Mice were exsanguinated at day 3 or day 7 post infection (PI)

and the corneas and trigeminal ganglia (TG) were removed from

the animals. The tissue was placed in 2.0 ml microcentrifuge

tubes (Midsci, St. Louis, MO., USA) and homogenized using a

Tissue tearer (Biospec Products Inc., Mt Pleasant, IL., USA) in

0.5 ml of RPMI-1640 (Gibco Life Technologies, Grand Island,

NY., USA) containing 10% fetal bovine serum (FBS, Gibco Life
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Technologies), antibiotic/antimycotic solution (Thermo Fisher

Scientific, Waltham, MA., USA), and gentamicin (Invitrogen,

Carlsbad, CA., USA) (referred to as complete media). Viral titers

were determined by plaque assay as previously described (50).
2.4 Real time reverse transcriptase-
polymerase chain reaction

The corneas of WT and OPN KO mice were collected day 3

PI and placed in 1.5-mL GREEN bead lysis tubes (Next Advance,

Averill Park, NY., USA) containing 1mL Trizol (ThermoFisher).

For RNA isolation, briefly, samples were then homogenized in a

Bullet Blender Storm 24 (Next Advance) for 5 min. Samples

were incubated 5 min at room temperature to allow complete

dissociation of the nucleoproteins complexes, Trizol

homogenate was transferred to a new Eppendorf tube and 0.2

mL of chloroform was added. Samples were centrifuged for 15

minutes at 12,000xg at 4°C. The aqueous phase was transferred

to in a new 1.5 ml tube. To precipitate the RNA, 0.5 ml of

isopropanol was added to the aqueous phase, mixed by inversion

three times, and then incubated 10 min on ice followed by

centrifugation at 12,000xg for 10 min at 4°C. Following

centrifugation, the isopropanol was decanted, and the RNA

pellet was resuspended in 1 mL 80% ethanol. The samples

were then incubated overnight at 4°C. A final centrifugation

was performed at 12,000xg for 5 min at 4°C. The ethanol was

decanted, and the tube was air dried at 72°C for 2-3 min. The

RNA pellets were resuspended in 25 µL of RNase-free water, and

the concentration of RNA was determined using a Nanodrop

apparatus (ThermoFisher Scientific). cDNA was generated from

the RNA template using an iSCRIPT cDNA synthesis kit

according to the manufacturer’s directions (Bio-Rad, Hercules,

CA., USA). Forward and reverse oligonucleotide primer sets

(Table 1) were used to amplify the targeted genes of interest by

RT-PCR. A set of proprietary forward and reverse

oligonucleotide primers were obtained and validated from a

commercial vendor (Bio-Rad) targeting glyceraldehyde 3-

phosphate dehydrogenase (GAPDH), IFN-a1, IFN-b ,
oligoadenylate synthetase (OAS)3, RNA-dependent protein

kinase (PKR), RNase L, and tetherin (Bst2) to amplify targeted

genes. Melt curves were conducted after all runs to validate a

single product. Relative values of gene expression were

calculated using the DDCt method following PCR runs on a
TABLE 1 Oligonucleotide primer pairs for targeted genes of interest.

Forward Reverse

IFNa4 5’-TTC TGC AAT GAC CTC CAT CA-3’ 5’-GGC ACA GAG GCT GTG TTT CT-3’

mSTING 5’-CCT AGC CTC GCA CGA ACT TG-3’ 5’-CGC ACA GCC TTC CAG TAG C-3’

Oas1a 5’-CTT TGA TGT CCT GGG TCA TGT-3’ 5’-GCT CCG TGA AGC AGG TAG AG-3’
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CFX Connects thermal cycler (Bio-Rad), using GAPDH to

normalize samples and CFX Manager software to analyze the

data as described (51).
2.5 Protein extraction and
suspension array

HSV-1-infected mice were exsanguinated and corneas

removed at 12 hr PI or 1, 3, 7, or 15 days PI and placed in 250

µl of PBS containing aproptinin (10 µg/ml, catalog no. A6279;

Sigma-Aldrich, Natick, MA., USA), leupeptin (10 µg/ml, catalog

no. 1167; Tocris Bioscience, Bristol, UK), and pepstatin (10 µg/ml,

Tocris Bioscience) in 1.5-mL GREEN bead lysis tubes (Next

Advance, Averill Park, NY., USA). The samples were then

homogenized in a Bullet Blender Storm 24 (Next Advance) for

5 min, sonicated in a water bath Bransonic sonicator (Branson

Ultrasonics Corp., Danbury, CT., USA) for 5 min, and then

homogenized and sonicated again as before. The tubes were

then centrifuged (10,000xg, 1 min) in a Micromax RF

microcentrifuge (International Equipment Company, Needham

Heights, MA., USA). The supernatant was removed from each

sample, and the samples were diluted 1:2 in PBS and then frozen

back at -800 C until analysis. Total protein content in the clarified

supernatant was quantified using a Pierce BCA protein assay kit

(catalog no. 23227; Thermo Fisher Scientific). Samples were

analyzed for CCL2/MCP-1, CXCL1/KC, IL-6, matrix

metalloproteinase (MMP)-2, MMP-8, and VEGF A using

customized suspension array kits (Bio-Rad). The limit of

detection of each analyte was as follows: CCL2, 10.45 pg;

CXCL1, 17.24 pg; IL-6, 1.72 pg; MMP-2, 48.24 pg; MMP-8,

10.63 pg, and VEGF A, 4.55 pg. The Milliplex MAP kits for

MMP-2 and MMP-8 were obtained from Millipore (catalog no.

MMP3MAG-79K; EMD Millipore, Burlington, MA., USA)

whereas kits to detect CCL2, CXCL1, IL-6, MMP-2, MMP-8,

and VEGF A were obtained from Bio-Rad. The concentration of

each analyte was expressed as pg analyte/mg total protein. OPN

was measured using a magnetic Luminex assay kit (catalog no.

LXSAMSM-02; R&D Systems, Minneapolis, MN., USA)

according to the manufacturer’s instructions.
2.6 Flow cytometry

The corneas and submandibular lymph nodes (MLN) were

harvested from infected, exsanguinated mice at day 3 or day 7

PI. The MLN were macerated into single-cell suspensions in

1.0 mL complete media (RPMI 1640 + 10% FBS) and kept on

ice. Corneas were digested in 0.25 Wümsch units of Liberase

TL enzyme (Roche Diagnostics, Indianapolis, IN., USA)

suspended in 500 µl complete media for 40 minutes at 370 C
Frontiers in Immunology 04
with trituration every 10 min. After enzymatic digestion the

corneal tissue samples were washed with staining buffer (PBS

with 0.5% bovine serum albumin) and along with the MLN

samples were then passed through a 40 µm nylon mesh filter

(Thermo Fisher Scientific) prior to labeling. Cornea samples

were resuspended in 100 µl of staining buffer whereas MLN

samples were counted, diluted and finally adjusted to equal

number/sample by resuspension in staining buffer prior to

labelling. Cell suspensions were first stained with Zombie Aqua

for 15 minutes at room temperature and next washed with

staining buffer. Subsequently cells were blocked with 1 µl anti-

CD16/32 (clone 93; eBioscience, San Diego, CA., USA) for

10 min at 40C and next stained (30 minutes at 40C) with anti-

mouse conjugated antibodies (1 µl/antibody/sample) targeting

T cell subpopulations (naïve, and effector and central memory

T cells) as well as HSV-1 antigen-specific CD8 or CD4 T cells:

rat Spark Blue 550-conjugated anti-CD45 (clone 30-F11,

Biolegend, San Diego, CA), BV605 conjugated anti-CD3ϵ
(clone: 145-2C11) APC-Cy7 conjugated anti-CD4, (clone:

GK1.5, Biolegend) FITC-conjugated anti-CD8a (clone 53-

6.7, Biolegend), PE-Cy5 conjugated anti-CD44 (clone: IM7,

Biolegend), APC conjugated anti-CD62L (clone: MEL-14,

Biolegend), BV421 conjugated HSV-1 gD tetramer

(IPPNWHIPSIQDA, NIH tetramer core facility, Atlanta, GA)

or PE conjugated HSV-1 gB (SSIEFARL, NIH tetramer core

facility) tetramer. To determine myeloid cell subpopulations,

the MLN and corneal cell suspensions were stained with the

following anti-mouse antibodies: APC conjugated anti-CD206

(clone: C068C2, Biolegend), APC-Cy7 conjugated anti-Ly6C

(clone: HK1.4, Biolegend), BV480 conjugated anti-CD195

(clone: C34-3448, BD Bioscences), BV605 conjugated anti-

MHCII (clone: M5/114.15.2, Biolegend), BV650 conjugated

anti-CCR2 (clone: SA203G11, Biolegend), PE conjugated

anti-CD11b (clone: M1/70, Biolegend), Spark Blue 550

conjugated anti-CD45 (clone: 30-F11, Biolegend), PE-Cy7

conjugated anti-CD115 (clone: AFS98, Biolegend), Pacific

Blue conjugated anti-F4/80 (clone: BM8, Biolegend), PerCP-

Cy5.5 conjugated anti-Ly6G (clone: IA8, Biolegend), FITC

conjugated anti-CX3CR1 (clone: SA011F11, Biolegend) and

BV786 conjugated anti-CD183 (clone: CXCR3-173,

BD Biosciences).

For evaluation of IFN-g expressing HSV-1-specific CD4+ T

cells by ELISPOT, 5x106 MLN cells were stimulated with HSV-1

gD peptide (10 µg/ml) overnight, and the plate was then

developed to detect IFN-g-expressing cells as described (52).

For evaluation of IFN-g, granzyme B, and CD107 expressing

HSV-1 antigen-specific CD8+ T cells, single cell suspensions of

MLN cells (3x106 cells) were cultured in polypropylene tubes in

2.0 ml complete media at 370 C, 5% CO2. The cells were

stimulated with 100 nM phorbol 12-myristate 13-acetate

(PMA) and 1 mM ionomycin (both from MilliporeSigma,
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Burlington, MA., USA) for 6 hr in the presence of brefeldin A

(diluted 1:1000) (GolgiPlug, BD Biosciences) and BV421

conjugated anti-CD107a antibody (clone: 1D4B, Biolegend).

After completion of cell stimulation, cells were washed with

staining buffer and stained with cell surface anti-mouse

antibodies: Spark Blue 550 conjugated CD45, BV605

conjugated CD3ϵ, and PE conjugated CD8 (clone: 53-6.7,

eBioscience) for 30 minutes on ice. Next, the cells were

washed followed by fixation and permeabilization with

eBioscience™ Foxp3/Transcription Factor Staining Buffer Set

accordingly to manufacturer guidelines. At the permeabilization

step, the cells were intracellularly stained with FITC conjugated

anti-granzyme B (clone: QA18A28, Biolegend) and APC

conjugated anti-IFN-g (clone: XMG1.2, Biolegend) for 30 min

at room temperature. Cells were then washed in 2.0 ml

permeabilization buffer (300xg, 5 min) and resuspended in 200

µl staining buffer for subsequent data acquisition by spectral

flow cytometry.

The samples were acquired with either a 3-laser flow cytometer

MacsQuant (Miltenyi Biotec) or a 4-laser spectral flow cytometer

Aurora (Cytek Biosciences, Fremont, CA USA) containing 16

violet, 14 blue, 10 yellow-green and 8 red channels (4L-16V-14B-

10YG-8R). For acquisition using MacsQuant, the compensation

was set up using the automatic wizard of the instrument software

and if necessary, modified post hoc. For acquisition using the

Aurora flow cytometer, compensation for spectral unmixing was

performed by using single stained reference controls and unmixing

wizard integrated in SpectroFlo software (Cytek Biosciences). The

general spectra pattern for all fluorochromes used as well as

complexity and similarity index for the fluorochrome mix was

validated prior labelling based on online resources: Cytek Full

Spectrum Viewer (website: https://spectrum.cytekbio.com/).

Acquired samples were exported as FCS files and were further

analyzed using FlowJo software version 10.7.1 (BD Biosciences,

Ashland, OR USA).
2.7 Analysis of visual axis

Corneal edema, the blink response, neovascularization, and

opacity were evaluated by optical coherence tomography,

esthesiometry, confocal microscopy, and absorbance

respectively, as previously described (53).
2.8 Statistics

Data for each group of experiments was analyzed for

significance (p<.05) using Prism 9.0 software (GraphPad, San

Diego, CA., USA) using multiple t-test and the Holm-Sidak

method. Each experiment was repeated 2-6 times with each

group consisting of n=2-4 mice/experiment.
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3 Results

3.1 OPN KO mice are more susceptible in
the cornea but not TG following ocular
HSV-1 infection

An early study suggested OPN contributed to the severity of

HSV-1 pathology following corneal infection associated with a

defective delayed-type hypersensitivity response (42). To

determine whether there was an association between ocular

disease as reported and local replication of the HSV-1, WT

and OPN KO mice were infected and evaluated for weight loss

over time and viral titers at day 3 and day 7 PI (Figure 1).

Initially PI, both WT and OPN KOmice gained weight although

there was a significant difference between the two groups of

infected mice with WT animals gaining modestly more weight

than OPN KOmice up to day 5 PI (Figure 1A). However, by day

7 PI OPN KO mice had lost significantly more weight in

comparison to the WT counterparts. By day 12 PI, both

groups of infected mice began to recover in weight loss from

the day 7 PI time point although the OPN KO mice still showed

a 10% loss in total weight compared to uninfected (day 0 PI)

time point. In terms of virus titer, there was approximately 10-

fold more infectious virus recovered in the cornea of OPN KO

mice versus WT animals at day 3 (Figure 1B) and day 7

(Figure 1C) PI. However, there was no difference in the virus

load recovered in the TG of infected animals. Moreover, there

was no difference in the overall survival rate comparing WT to

OPN KO mice with between 15-20% of animals in each group

succumbing to infection. Taken together, enhanced replication

of HSV-1 in OPN KO mice following ocular HSV-1 infection is

restricted to the cornea.
3.2 IFNa1 and downstream effector gene
expression are suppressed in the cornea
of OPN KO mice

OPN KO mice have previously been found to be more

susceptible to vesicular stomatitis virus (VSV) infection with a

reduction in IFN-b expression in the sera of the infected OPN

KO mice compared to WT controls (54). Type I IFNs including

IFN-b have previously been shown to antagonize ocular HSV-1

infection, and are induced by a number of sensors that can detect

and are antagonized by products encoded by the virus (26, 55–

57). Since OPN KO mice displayed a loss in virus surveillance in

the cornea, we next investigated expression of type I IFN and

associated pathways to determine if changes in the levels of

expression correlated with HSV-1 susceptibility at day 3 PI. The

results show that IFN-a1 (Figure 2A) but not IFN-a4
(Figure 2B) or IFN-b (Figure 2C) were significantly suppressed

in the OPN KO mouse corneas compared to WT expression.
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Investigating downstream pathways activated by type I IFN

expression, there was no difference in the relative expression

of STING (Figure 2D) but oligoadenylate synthetase (OAS)1a

was elevated in the cornea of OPN KO mice (Figure 2E).

Conversely, OAS3a was elevated in the cornea of WT mice in

comparison to OPN KO animals although it did not quite reach

significance (Figure 2F). Previous results reported anti-viral

molecules associated with resistance to corneal HSV-1

infection included tetherin (58), OAS/RNase L (59), and PKR

(60). Therefore, we investigated the expression of these IFN-

driven, downstream effector molecules. In the case of tetherin

(Bst2), both WT and OPN KO mice expressed similar levels well

above the uninfected control animals (relative value = 1)

(Figure 2G). However, PKR (Figure 2H) and RNase L

(Figure 2I) were significantly reduced in the cornea of OPN

KO mice compared to the WT animals. These results strongly

correlate the expression of RNase L and PKR to resistance to

ocular HSV-1 infection, and suggest OPN influences the

expression of both these molecules likely through changes in

the activation of IFN-a1.
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3.3 Myeloid cell infiltration in response to
HSV-1 is reduced in the cornea of OPN
KO mice

Following cornea infection with HSV-1, there is a significant

migration of immune cells into the cornea composed initially of

myeloid-derived cells, natural killer cells, and gd T cells of which

neutrophils compose the vast majority of the initial myeloid

population to enter from circulation (31, 61, 62). Mast cells likely

contribute to the recruitment of leukocytes as they are located

proximal to the corneal limbal vasculature, are a rich source of

chemokines, and rapidly respond to HSV-1 infection through

degranulation (63, 64). Moreover, NK cells and macrophages

have been reported to play a role in the control of HSV-1

replication in the cornea during acute infection and ensuing HSV

keratitis (65–68). Since there was a difference in the amount of

infectious virus recovered in the cornea of OPNKOmice compared

to WT animals during acute infection, leukocyte infiltration was

characterized in the cornea. Initially, myeloid-derived cells were

investigated with a focus on neutrophil and macrophage
A

B C

FIGURE 1

HSV-1 replication is not controlled in the cornea of OPN KO mice. C57BL6 (WT) and OPN KO male and female mice were infected with HSV-1
(350 PFU/cornea). (A) At the indicated time PI, the mice (n= 6-24/time point/group) were weighed. The average weight prior to infection (day 0)
for WT mice was 22.1 grams and OPN KO mice was 22.4 grams. At day 3 (B) or day 7 (C) PI, WT and OPN KO mice (n=5-10/group/timepoint)
were exsanguinated, and the cornea and TG were removed and processed to determine viral titer by standard plaque assay. *p < .05, **p < .01,
and ***p < .001 comparing the two groups at the indicated time point as determined by the Holm-Sidak t-test. Results are depicted as the
mean ± SEM.
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populations. At the early time point post infection, we focused on

the total myeloid-derived (CD45+CD11b+), neutrophil

(CD45+CD11b+F4/80-Ly6G+Ly6CloCX3CR1
-) and macrophage

(CD45+CD11b+F4/80+Ly6G-Ly6C+CD115+CX3CR1
+) populating

the cornea of WT (Figure 3A) and OPN KO (Figure 3B) mice.

The results show that at day 3 PI there were more total myeloid-

derived and neutrophil but not macrophage populations that reside

in the cornea of WT mice compared to OPN KO animals although

the results did not reach significance (p=.06) (Figure 3C). By day 7

PI, all cell populations including the total myeloid-derived,

neutrophil, and macrophage populations were nearly equivalent

(Figure 3D). However, numerous populations of macrophages exist
Frontiers in Immunology frontiersin.or07
and infiltrate traumatized cornea with two distinct populations

associated with corneal wound healing and inflammation (69). In

the current study, there was a modest difference in the total number

of macrophages residing within the cornea at day 7 PI with more

found in theWT compared to OPN KOmouse cornea (Figure 3D).

Therefore, different populations of macrophages were further

analyzed using additional markers including CCR2, CD183, and

CD206 along with CD115. Whereas there were no cells detected at

day 3 PI using these markers in mouse corneas, by day 7 PI WT

(Figure 3E) and OPN KO (Figure 3F) mouse corneas possessed

CD115+CD206+CCR2+CD183-F4/80+CX3CR1+ and

CD115+CD206+CCR2+CD183+F4/80+CX3CR1
+ macrophages.
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FIGURE 2

Type I IFN expression is suppressed in the cornea of HSV-1-infected OPN KO mice. WT and OPN KO male and female mice (n=5-13/group)
were infected with HSV-1 (350 PFU/cornea). At day 3 PI, the mice were exsanguinated, and the corneas were removed and processed for
select gene expression including (A) IFN-a1, (B) IFN-a4, (C) IFN-b, (D) STING, (E) OAS1a, (F) OAS3, (G) Bst2 (tetherin), (H) PKR and (I) RNase L
by real time RT-PCR. The results are expressed in relative value compared to uninfected controls (relative value of 1.0) and expressed as the
mean ± SEM, **p < .01 comparing the HSV-1 infected WT to OPN KO mice as determined by the Wilcoxon matched-pairs sign rank test.
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Both macrophage phenotypes were found to be significantly

reduced in the cornea of OPN KO mice compared to WT

animals (Figure 3G). Collectively, total myeloid-derived cells,

neutrophils, and macrophages were reduced in the cornea of

OPN KO mice at day 3 or day 7 PI. The reduction correlates
Frontiers in Immunology 08
with a reduction in type I IFN expression and inversely, correlates

with infectious virus recovered in the cornea at day 3 and day 7 PI

in the OPN KO mice.

In addition to myeloid-derived cells, T cells are also recruited

to the cornea post HSV-1 infection and contribute to tissue
A
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FIGURE 3

Myeloid-derived cell numbers are reduced in the cornea of OPN KO mice following HSV-1 infection. WT and OPN KO male and female mice
(n=6/group) were infected with HSV-1 (350 PFU/cornea). At day 3 or day 7 PI, and corneas were removed from the mice and processed into
single cell suspensions in a total volume of 100 µl. The cell suspensions were first stained with Zombie Aqua for 15 minutes at room
temperature and next washed with staining buffer. Next, cells were blocked with 1 µl anti-CD16/32 for 10 min at 40C and then stained (30
minutes at 40C) with anti-mouse conjugated antibodies to CD45, CD11b, CD115, CD183, CD206, CX3CR1, F4/80, Ly6C, and Ly6G. The samples
were then acquired on an Aurora spectral flow cytometer, and the data analyzed using FlowJo software. Gating strategy for total myeloid,
neutrophil, and macrophage populations with representative presentations from (A) WT and (B) OPN KO mice at day 3 PI. Summary of cell
counts for total WT and OPN KO myeloid, neutrophil, and macrophage populations for (C) day 3 PI and (D) day 7 PI. Gating strategy for
CD115+CD206+CCR2+CD183-F4/80+CX3CR1

+ and CD115+CD206+CCR2+CD183+F4/80+CX3CR1
+ macrophages found in the corneas of (E) WT

and (F) OPN KO mice at day 7 PI. (G) Summary of cell counts for the designated macrophage populations from WT and OPN KO mice. Bars
represent mean ± SEM ***p<.001. At day 3 PI, p=.06 comparing WT to OPN KO mice as determined by the Holm-Sidak t-test.
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pathology and clearance of the virus (38, 70–72). Moreover,

OPN is thought to promote a TH1 immune response and

modulate the development of memory CD8+ T cells (42, 73).

Therefore, we next investigated the recruitment of T cells to the

cornea of infected mice and evaluated the function and

development of memory T cells in the draining (mandibular)

lymph nodes (MLN) following HSV-1 infection. Unlike

myeloid-derived cell populations, CD4+ and CD8+ T cell
Frontiers in Immunology 09
recruitment to the cornea was as efficient in OPN KO mice as

it was in WT animals. Specifically, the cornea of WT mice

harbored 134 ± 30 CD4+ T cells compared to 106 ± 28 found in

OPN KO corneas at day 7 PI. Likewise, WT mouse corneas

contained 96 ± 36 CD8+ T cells compared to 60 ± 11 found in

OPN KO mouse corneas. Evaluation of the T cell populations

within the MLN at the same time point yielded similar results

(Figure 4A). Specifically, equivalent numbers of total CD4+
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FIGURE 4

Osteopontin does not influence the development of HSV-1-specific T cells in the draining lymph node during acute infection. HSV-1 infected
WT and OPN KO male and female mice (n=9/group) were exsanguinated at day 7 PI, and the draining mandibular lymph nodes (MLN) were
removed and processed into single cell suspensions. One million cells were stained with an antibody cocktail including Zombie Aqua to discern
viable from dead cells. The gating strategy is shown in panel (A) The gD tetramer negative staining control shown in the lower left plot of panel
A is: PVSKMRMATPLLMQA conjugated to BV421. The positive control for the gB tetramer staining employed CD8+ T cells from gBT-I.1
transgenic mice in which > 95% of the CD8+ T cells are specific for gB (74). The total number of CD4+ T cells (B), CD8+ T cells (C), HSV-1 gD-
specific CD4+ T cells (D), HSV-1 gB-specific CD8+ T cells (E), effector-memory (EM) CD4+ T cells (F), central-memory (CM) CD4+ T cells (G), EM
CD8+ T cells (H), and CM CD8+ T cells (I) per MLN. Bars represent the mean ± SEM summarizing the total of three experiments.
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(Figure 4B), total CD8+ (Figure 4C), HSV-1 glycoprotein (g)D-

specific CD4+ (Figure 4D), HSV-1 gB-specific CD8+ (Figure 4E),

total effector memory CD4+ (Figure 4F), total central memory

CD4+ (Figure 4G), total effector memory CD8+ (Figure 4H), and

total central memory CD8+ (Figure 4I) T cells resided in the

MLN of WT and OPN KO mice at day 7 PI. To determine if

functional changes were found comparing MLN T cells from

WT- and OPN KO-infected mice, stimulated MLN T cells were

evaluated for IFN-g expression. The results show that there were

no differences in the number of IFN-g-expressing, HSV-1-

specific CD4+ (Figure 5A) or CD8+ (Figure 5B) T cells

comparing WT to OPN KO mice. Further analysis of the

HSV-1 gB-specific CD8+ T cell polyfunctional profile

(Figure 5C) suggested no differences comparing CD8+ T cells

from the MLN of WT and OPN KO mice (Figure 5D) affirmed
Frontiers in Immunology 10
by SPICE software (Supplemental Figure 1). Therefore, we

surmise the lack of OPN does not significantly impact the T

cell profile in terms of recruitment, number, or function in HSV-

1-infected mice.
3.4 OPN and IL-6 levels are elevated in
the cornea of wild type mice peaking 12-
24 hr post infection

Cytokines including chemokines are an important set of

molecules in the host immune response to infection as having

pro- and anti-inflammatory activity, cell migration promotion

and proliferation as well as wound repair. In response to ocular

HSV-1 infection, pro-inflammatory cytokines including IL-1,
A

B D

C

FIGURE 5

Osteopontin does not alter the function of antigen-specific MLN T cells. HSV-1 infected WT and OPN KO male and female mice (n=5-9/group)
were exsanguinated at day 7 PI, and the draining mandibular lymph nodes (MLN) were removed and processed into single cell suspensions.
Cells were cultured and stimulated as described under Materials and Methods and during and after stimulation, labeled with an antibody cocktail
including Zombie Aqua to discern dead from viable cells. Samples were analyzed by flow cytometry and results processed using FlowJo
software. The total number of HSV-1 gD-specific CD4+IFN-g+ (A) and HSV-1 gB-specific CD8+IFN-g+ (B) T cells are shown. A representative
flow plot assessing CD107a, IFN-g, and granzyme B expression from stimulated (left panel) and unstimulated (right panel) for each genotype in
(C) with the summary of the data included in (D). Unstimulated controls possessed fewer than 20 cells. Bars represent the mean ± SEM.
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IL-6 and chemokines including CCL2, CCL3, CCL5, CXCL1,

CXCL2, CXCL9, and CXCL10 are produced rapidly following

infection by resident cells and infiltrating leukocytes (23, 25, 75,

76). OPN has previously been associated with recruitment of

neutrophils by upregulation of CXCR2, the receptor for CXCL1

and CXCL2, in a bacterial air-pouch mouse model (77). As

myeloid cell infiltration in response to ocular HSV-1 was altered

in the absence of OPN, select cytokine and chemokine content

was measured at times PI in the cornea of WT and OPN KO

mice. As expected OPN was not found in OPN KOmice but was

readily detected in uninfected mouse cornea with peak

expression detected 24 PI (Figure 6A). The chemokines CCL2

(Figure 6B) and CXCL1 (Figure 6C) and cytokine IL-6

(Figure 6D) all peaked earlier at 12 hr PI with no significant

differences comparing WT to OPN KO cornea levels although

there was a > 2-fold difference between IL-6 with a greater

amount detected in the cornea of WT compared to OPN KO

corneas at the 12 hr PI time point (p<.09). By comparison matrix

metalloproteinase (MMP)3 (Figure 6E) and MMP8 (Figure 6F)

displayed a rise during the early stages of acute infection with no

significant differences found comparing WT to OPN KOmice at

any time point measured. Therefore, there are no significant

differences in select chemokine and cytokine candidates

measured that would explain the change in recruitment of
Frontiers in Immunology 11
myeloid-derived cells into the cornea of OPN KO mice versus

WT control animals.
3.5 VEGF A levels are elevated early in
response to HSV-1

Since there were changes in susceptibility to virus infection

and inflammatory response as measured by select myeloid cell

infiltration, we next investigated cornea function and pathology

comparing WT to OPN KO mice. Initially, the mechanosensory

function of the cornea was evaluated during acute infection.

Whereas there was no detectable drop in the blink response

comparing uninfected mice out to day 5 PI in both groups of

infected animals, there was a noticeable drop in the response by

day 7 PI with a significant >60% loss in the response in the WT

mice (p<.001 comparing day 0 to day 7 PI) and a 30% drop in

response in the OPN KO mice (p=0.05316) suggesting both

groups had a decline in the blink response but it was more robust

in WT animals (Figure 7A). Inflammation as a result of

leukocyte infiltration and cytokine/chemokine expression often

elicits corneal edema and opacity (49, 78). In comparing WT to

OPN KO mice, we found no difference in corneal edema

measuring thickness by optical coherence tomography at 3, 7,
A B

D E F

C

FIGURE 6

Select cytokine/chemokine levels are not altered in the cornea of OPN KO mice. WT and OPN KO male and female mice (n=5-6/group) were
infected with HSV-1 (350 PFU/cornea). At the indicated time point PI, corneas were removed from the mice and processed for analyte
expression including (A) OPN, (B) CCL2, (C) CXCL1, (D) IL-6, (E) MMP3, and (F) MMP8 by multiplex suspension array analysis. Each point
represents the mean ± SEM ***p<.001, **p<.01, and *p<.05. Uninfected mice served as controls and are represented at the day 0 post infection
time point.
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and 15 days PI compared to the uninfected (day 0 PI) time point

(Figure 7B). However, both WT and OPN KO mice displayed

significant corneal opacity at day 7 PI compared to the

uninfected WT animals (Figure 7C). In addition, infected WT

mouse corneas displayed significantly greater opacity compared

to infected OPN KO mouse corneas (Figure 7C). In mice, acute

HSV-1 infection often elicits neovascularization including hem-

and lymph-angiogenesis (33, 34). Therefore, corneal

neovascularization was evaluated in WT and OPN KO mice at

day 14 PI, a time point in which blood and lymphatic vessel

development can be readily detected in the normally avascular

cornea (79). In the current study, OPN KO mouse corneas

displayed a 50% reduction in neovascularization compared to
Frontiers in Immunology 12
WT animals (Figure 7D). The drop in corneal angiogenesis was

associated with a temporal loss in VEGF A levels in the cornea of

OPN KO mice at 12 hr PI compared to WT mice (Figure 7E).

These results suggest the absence of OPN leads to a drop in the

severity of corneal opacity, neovascularization, and

mechanosensory function in response to HSV-1 infection.
4 Discussion

OPN is a pleiotropic molecule that has multiple biological

effects dictated by OPN processing and the target tissue cell-

surface receptors that OPN species binds (80, 81). One such post-
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FIGURE 7

OPN KO mouse corneas display less corneal neovascularization associated with a temporal loss in VEGF A expression. WT and OPN KO male
and female mice (n=6-20/group) were infected with HSV-1 (350 PFU/cornea). At the indicated time point PI, the mouse corneas were assessed
for (A) mechanosensory function by esthesiometry (DDDp < .001 comparing the day 0 time point to the day 7 post infection time point for the
WT mice) and (B) corneal thickness by optical coherence tomography. (C) At day 7 PI, another group of mice were exsanguinated and the
corneas were removed and assessed for opacity. **p < .01, DDp < .01 comparing the indicated groups as determined by one-way ANOVA and
Dunn’s multiple comparison test. (D) At day 14 PI, another group of mice were exsanguinated and the corneas were removed, stained for blood
(B, red) and lymphatic (L, green) vessels, fixed, and imaged by confocal microscopy. The summary of the area means of images covered by
lymphatic and blood vessels ± SEM is shown along with a representative flat mount image of the stained cornea. ***p < .001, **p < .01
comparing the WT to OPN KO blood and lymphatic groups as determined by the Holm-Sidak t-test. (E) At the indicated time point PI, corneas
were removed from the mice and processed for VEGF A expression by multiplex suspension array analysis. Each point represents the mean ±
SEM. Uninfected mice served as controls and are represented at the day 0 post infection time point. **p < .01 comparing the WT to OPN KO
mice at 12 hr PI as determined by the Holm-Sidak t-test.
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translational modification of OPN has been observed to

contribute to high affinity binding to histones reducing their

cytotoxic activity (82). OPN also directly acts on immune cells

contributing to tissue inflammation. For example, macrophage

and neutrophil migration is facilitated by expression OPN

interaction with integrins (83, 84). In the present study, we

found that OPN KO mice infected with HSV-1 showed a muted

response in total neutrophil but not macrophage infiltration into

the cornea at day 3 PI. Total macrophage numbers were nearly

equivalent between the two genotypes at day 3 PI with WT

corneas possessing 117 ± 8 total macrophages vs 111 ± 9 total

macrophages in OPNKOmouse corneas. By day 7 PI, the number

of total macrophages that reside in the WT cornea nearly

quadrupled to 446 ± 141 and nearly doubled in the OPN KO

mouse corneas at 211 ± 51 total macrophages. Whereas there was

no significant difference between the two groups, two

subpopulat ions of macrophages were found to be

significantly reduced in the cornea of OPN KO mice;

CD115+CD206+CCR2+CD183 -F4/80+CX3CR1+ and

CD115+CD206+CCR2+CD183+F4/80+ CX3CR1
+ macrophages.

In the past and more recently, macrophages that reside or are

recruited to the cornea following HSV-1 infection have been

broadly defined in terms of the expression of CD11b, F4/80,

Ly6C, Ly6G, and/or CD206 or indirectly through genetic

manipulation of genes that skew development toward an M1 vs

M2 functional phenotype (13, 85, 86). We reasoned further

identification of subpopulations of macrophages may identify

specific cell types associated with the corneal pathology

observed in the WT but not OPN KO mice and not defined by

“M1” vs “M2” status as monocytes/macrophages have a high

degree of plasticity (87). As CCR2 expressed by monocytes is

thought to be a prerequisite to recruitment to inflamed tissue and

differentiation of monocytes to macrophages is greatly influenced

by the microenvironment (87, 88), additional phenotypic markers

would likely facilitate the identification of cell populations

associated with pathology or resistance to infection. Of the two

major macrophage populations that infiltrated the cornea by day 7

PI (in terms of number), the only distinction in phenotype was

whether the cell expressed CD183 (CXCR3). CXCR3-expressing

macrophages are reported to possess anti-inflammatory wound

healing and antinociceptive attributes or in contrast, a pro-

inflammatory signature depending on the tissue and disease

(89–93). In the present study, there were more CD183-

expressing macrophages in the cornea of HSV-1-infected WT

mice aligned with a greater degree of cornea opacity and

neovascularization. Previously, we reported a significant

reduction in CD115+ myeloid-derived cells preserved corneal

innervation following HSV-1 infection (94). These cells were

also found to be a source of complement component 3 which

reportedly contributes to corneal denervation (95). As CD115+

cells are a source of OPN and the local reduction in OPN content

leads to a loss in HSV-1-induced corneal opacity (49), we reason

that a loss in CD115+ macrophages contributes to a reduction in
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corneal opacity in the infected OPN KO mice. Along these lines,

macrophages are a source of the neuropeptide substance P (96)

that can act through the neurokinin-1 receptor and elicit

inflammation and corneal opacity resulting in an inflammatory

reflex that can involve the sensory (trigeminal) ganglia (11, 97,

98). Thus, the two major CD115+ macrophage populations that

infiltrate the cornea during acute HSV-1 infection are likely

significant contributors in the corneal opacity that ensues in

response to local virus infection and replication.

HSV-1 infection often elicits neovascularization including

growth of new blood and lymphatic vessels into the central

cornea (34, 99, 100). Macrophages have previously been

identified as contributors to vascular proliferation and

angiogenesis through the production of pro-angiogenic factors

including VEGF-A (101–104). While there is precedence for the

physical contribution of macrophages in the genesis of growing

corneal vessels as a result of inflammation (105), macrophages

do not behave in this manner in response to HSV-1 infection

(34). In the present study, there was an direct correlation

between the number of CD183+ macrophages that have been

reported to express VEGF A (93) and neovascularization with

fewer CD183+ macrophages residing in the OPN mouse cornea.

However, another pro-inflammatory factor IL-6 that contributes

to HSV-1-induced angiogenesis (100, 106) was not found to be

significantly different between WT and OPN KO mice. Whereas

there are numerous other factors that play a role in angiogenesis

including TNF-a and fibroblast growth factor-2 (79, 107), it is

highly likely VEGF-A is the initial stimulus that sets corneal

neovascularization into motion in the mouse ocular herpes

stromal keratitis model.

A number of cells and factors associated with innate

immunity are known to possess potent anti-viral activity

including type I IFNs, dendritic cells, natural killer (NK) cells,

and macrophages (61, 108). Relative to OPN, a loss of

intracellular (i)OPN expression reportedly induces NK cell

contraction as a result of an impaired IL-15 response (109).

Likewise, iOPN has been found to prevent polyubiquitination of

TRAF3, positively regulate IRF3, and enhance IFN-b expression

leading to resistance to Sendai virus and vesicular stomatitis

virus in vitro (54). In the present study, we found OPN KO mice

were susceptible to ocular HSV-1 infection with a significant

drop in weight during acute infection that correlated with an

increase in infectious virus recovered from the cornea but not

TG of infected mice compared to WT animals. Such results

correlated well with the expression of IFN-a1 which has been

found to elicit robust resistance to HSV-1 replication (51).

However, STING was not found to be elevated in the cornea

of WT compared to OPN KO mice even though previously

published data indicate the STING pathway is an integral

defense against HSV-1 replication including the cornea and

for which the virus attempts to counter through induction of

cellular microRNA-24 (20, 58, 110–112). Likewise, the STING-

inducible molecule, tetherin (Bst2) did not display differential
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expression in the cornea comparing WT to OPN KO mice. Of

considerable note, the OAS system was found to be differentially

expressed in the cornea of OPN KO mice in response to HSV-1

infection. OAS1a was found to be significantly elevated whereas

OAS3 expression was reduced in the cornea of OPN KO mice

post virus infection. Furthermore, the expression of the OAS-

dependent effector molecule RNase L was elevated in the cornea

of WT mice compared to OPN KO animals suggesting a

correlation with OAS3 expression as opposed to OAS1a levels.

Such results are consistent with previously published data

indicating OAS3 possesses a much higher affinity for double-

stranded RNA, and is the principal OAS protein that activates

RNase L in response to several RNA and DNA viruses (113).

Currently, the location of expression of OAS proteins OAS1a

and OAS3 relative to the cell type within the cornea is unknown

but will need further assessment to more fully understand the

host IFN response to the HSV-1 as OPN is expressed by multiple

hematopoietic and non-hematopoietic cell types found in the

infected cornea (49).

Lymphatic vessel growth in the avascular cornea is thought

to contribute to the regional adaptive immune response to

antigen including HSV-1 within the draining lymph node

(114, 115). As OPN has previously been found to contribute to

the T cell response to HSV-1 (42) and OPN KOmice exhibited a

loss in corneal lymphangiogenesis, we investigated the local

HSV-1-specific T cell response in the draining (MLN) lymph

node during acute infection. However, there was no change in

the total number of HSV-1-specific CD4+ or CD8+ T cells or in

the effector or central memory T cells found in the MLN of OPN

KO mice in comparison to WT MLN during acute infection.

Likewise, the function of T cells in response to HSV-1 antigen

was not compromised as determined by IFN-g expression post

stimulation. Therefore, our results suggest the absence of OPN

does not alter the T cell response to HSV-1 which is consistent

with the results showing no difference in virus titer in the TG

comparing WT to OPN KO mice, as T cells play a significant

role in the control of virus replication and spread in the TG (116,

117). In conclusion, the present study emphasizes the

contribution of OPN in the innate immune response to

corneal HSV-1 infection highlighting its absence on a

reduction in select type I IFN concentration and activation of

downstream pathways. As OPN has biological effects within cells

as well as upon secretion and acts upon numerous different cell

types (118), the role of OPN within the context of the cornea and

HSV-1 infection is indeed complex and will likely require

dissecting the biological effects of splice variants residing

externally and internally relative to the host cell.
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SUPPLEMENTARY FIGURE 1

Wild type and OPN KOmice exhibit equivalent polyfunctional CD8+ T cell
response during acute ocular HSV-1 infection. Data generated from was

used to assess for polyfunctionality of CD8+ T cells using SPICE software
with the results presented as pie charts in panel (A). The average

percentage of HSV-1 gB-specific CD8+ T cells expressing CD107a, IFN-
Frontiers in Immunology 15
g, and granzyme B fromWT andOPN KO are displayed. The inner segment
segments display cells expressing different combinations of proteins

whereas the outer color-coded arcs around each circle show the
frequency of cells expressing each protein (CD107a, IFN-g, and

granzyme (B). The polyfunctionality of the cells is indicated in panel B
with the data displayed as mean ± SEM.
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