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Posttranslational protein modifications (PTMs) are an inherent response to

physiological changes causing altered protein structure and potentially

modulating important biological functions of the modified protein. Besides

cellular metabolic pathways that may be dictated by PTMs, the subtle change of

proteins also may provoke immune attack in numerous autoimmune diseases.

Type 1 diabetes (T1D) is a chronic autoimmune disease destroying insulin-

producing beta cells within the pancreatic islets, a result of tissue inflammation

to specific autoantigens. This review summarizes how PTMs arise and the

potential pathological consequence of PTMs, with particular focus on specific

autoimmunity to pancreatic beta cells and cellular metabolic dysfunction in

T1D. Moreover, we review PTM-associated biomarkers in the prediction,

diagnosis and in monitoring disease activity in T1D. Finally, we will discuss

potential preventive and therapeutic approaches of targeting PTMs in repairing

or restoring normal metabolic pathways in pancreatic islets.

KEYWORDS

type 1 diabetes, glucose metabolism, posttranslational modifications, biomarkers,
neoepitopes
Introduction – overview of beta cell metabolism
associated with inflammatory PTMs

Posttranslational modifications (PTMs) change the properties of a protein and shape

its biological functions (1). Various pathways altered by PTMs that arise from tissue

inflammation have been closely linked to numerous disorders including cancer and

autoimmune diseases (2, 3). Type 1 diabetes (T1D) is a chronic autoimmune disease

characterized by altered glucose sensing and insulin response resulting that may arise

from the immune attack of insulin-secreting beta cells in the pancreas. In addition, tissue

specific properties of pancreatic islets, and beta cells in particular, may contribute to the

autoimmune pathology (4, 5). However, we are reminded that T1D, similar to other
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autoimmune syndromes, are multifactorial in origin, including a

role for genetics, stochastic factors, and environmental

influences in the onset and progression of disease.

It is clear that some, or many, tissue specific PTMs may not

be expressed in the thymus in the course of immune tolerance

induction, though clear studies of specific PTMs are lacking in

fully understanding central tolerance to modified proteins.

However, T cells specific to PTM determinants can escape

selection from the immune system, providing the potential for

the modified proteins to be recognized as neo-antigens and

contribute to autoimmunity. As one clear example, the role of

citrullination PTM has been extensively studied in rheumatoid

arthritis (RA). As with T1D, RA is also a chronic autoimmune

disease characterized by inflammation of the target tissue,

connective tissue in the joints, and more than 100 citrullinated

proteins have been identified from RA synovium (6). Anti-

citrullinated protein antibodies (ACPAs), present before the

early onset of RA and correlate with disease severity, are

routinely used for the diagnosis of RA for over a decade (7, 8).

Similarly, citrullination has recently become a relevant PTM in

T1D pathology (9). Accumulating evidence has identified

significant numbers of citrullinated islet proteins, including

proteins in the glucose and insulin metabolic pathways. These

citrulline PTM proteins elicit vigorous B and T cell autoimmune

responses in both human T1D and NOD murine disease,

including glutamic acid decarboxylase 65 (GAD 65), 78-kDa

glucose-regulated protein (GRP78) (also called BiP, HSP5a), islet

antigen-2 (IA2), islet-specific glucose 6 phosphatase catalytic

subunit-related protein (IGRP), islet amyloid polypeptide

(IAPP) and glucokinase (10). Indeed, several other

inflammatory PTMs also play the vital roles in the progression

of T1D, including deamidation, oxidation and carbonylation

(11). Not surprisingly, several enzymes responsible for forming,

repairing and/or regulating PTMs such as peptidylarginine

deiminase (PADs), antioxidant enzymes, catalase, glutathione

peroxidase 1 (GPx1), and superoxide dismutase (SOD) are also

found to modulate T1D autoimmunity and glucose and insulin

metabolism. However, it is important to realize that it is not

clearly known if specific PTMs are a cause of pathology or a

consequence of pathology in human T1D. Animal models and

ex-vivo studies have been partly useful in defining the roles of

PTMs in disease but do not perfectly reflect human disease.

Beta cells have very specific intracellular pathways that are

involved in coupling the metabolism of glucose to the release of

insulin. Many components of these pathways are subject to

modification by PTMs, including citrullination. The details of

how beta cell metabolism is coupled to insulin secretion through

oscillatory activation of the phosphoenolpyruvate (PEP) cycle to

close KATP channels have been recently reviewed in depth (12)

and will only be summarized here.

Glucose enters the rodent beta cell through glucose

transporter 2 (Glut2) and is introduced into glycolytic
Frontiers in Immunology 02
metabolism relative to its concentration in the plasma by the

activity of glucokinase (GK). GK is not product inhibited unlike

the other hexokinases and has an EC50 for glucose in the

physiologic range. The glucose carbons then flow through

glycolysis and enter the mitochondria as pyruvate and follows

one of two pathway fates. The first pathway is the more familiar

pyruvate dehydrogenase pathway (where pyruvate is converted

to acetyl CoA), which is ultimately oxidized to CO2 by the TCA

cycle and electron transport chain in the process of oxidative

phosphorylation (OXPHOS). OXPHOS supports the basal ATP

requirements of the cell. As the ATP/ADP ratio reaches its

thermodynamic equilibrium the OXPHOS progressively slows

in the process known as ADP privation where the mitochondrial

membrane potential hyperpolarizes, and TCA cycle

intermediate accumulate (13). In particular, acetyl CoA

increases in response to the high matrix NADH/NAD+ and

mitochondrial GTP production is increased driven by the high

ATP/ADP ratio (via antiparallel collaboration of the ATP and

GTP isoforms of succinyl CoA synthesis) (14). Increased acetyl

CoA activates pyruvate carboxylase diverting pyruvate into

anaplerotic synthesis of oxaloacetate (OAA) consuming an

ATP in the process. In the mitochondrial matrix, OAA is

converted into phosphoenolpyruvate (PEP) coupled to GTP

hydrolysis by the mitochondrial isoform of PEPCK (PCK2)

(15). Thus, the newly made, highly energetic PEP exits the

matrix where it is used to raise the ATP/ADP ratio via

hydrolysis back to pyruvate by pyruvate kinase (PK). The cycle

from pyruvate to OAA to PEP and back to pyruvate is known as

the PEP cycle. Because PK raises the ATP/ADP ratio more than

the mitochondria bioenergetics permit and because it is

physically localized to the KATP channel, it closes KATP

channels to depolarize the plasma membrane to allow Ca2+ to

enter to stimulate insulin release (13).

The cellular workload from membrane depolarization and

insulin release increases ATP hydrolysis resetting the system and

returning control over ATP synthesis back to OXPHOS.

Subsequent cycles of such coordinated metabolic and electrical

oscillations are partially entrained by the changes in cellular

work as well as the generation of fructose-1, 6-bisphosphate

(F16BP) by the PFK1/PFKFB3 system. F16BP allosterically

activates PK and supports mitochondrial ADP privation and

KATP closure. Many of the components of this glucose-sensing

mechanism in beta cell are modified by PTMs triggered by beta

cell stress (Table 1).

Relevant to metabolic pathways, we will summarize the

conditions that elicit PTMs, including their role in

immunological and biological processes, with specific focus on

their implications in T1D. We will particularly highlight the

inflammatory PTMs triggered by beta cell stress, the effects of

immunometabolic targets/biomarkers on T1D autoimmunity

and beta cell metabolism and discuss PTMs-based approaches

for preventive and therapeutic options of T1D.
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Beta cell stresses: source
and consequence

One pathologic hallmark of juvenile onset T1D is the

immense lymphocyte infiltration around and within pancreas

islets, i.e., inflammation termed as insulitis. Insulitis includes the

massive liberation of proinflammatory cytokines and reactive

oxygen species (ROS), a microenvironment that enhances a wide

variety of resident protein PTMs. Both experimental and clinical

studies demonstrate that beta cell stress-induced PTMs

participate in neo-antigen formation, beta cell dysfunction and

even beta cell death in the initiation and progression of T1D

(Figure 1) (11, 56).
Frontiers in Immunology 03
Essentially all professional secretory cells rely on

endoplasmic reticulum (ER) functions, a protein folding

factory, to ensure that accurately folded synthesized proteins

find their way to the secretory pathway. However, the process of

protein folding is often altered by various cell stresses including

viral infection, chemical exposure, heat shock, ROS and

inflammation. Improperly folded proteins accumulate in the

ER to disrupt ER homeostasis. The ER has finely mechanisms to

govern protein quality control by the unfolding protein response

(UPR), ER-associated degradation (ERAD) and autophagy (57).

One beta cell can synthesize more than 3000 insulin molecules

per second (58). Both misfolded proinsulin monomers and

aggregates during insulin biosynthesis are primarily cleared by
TABLE 1 Potential immunometabolic biomarkers in type 1 diabetes.

Target
proteins

Involved pathways Relevant PTMs and pathological roles References

GLUT1 glucose intake • reduces diabetogenic CD8+ T cells by GLUT1 blockade (16)

SGLT2 glucose intake • maintains blood glucose level by SGLT2 inhibitors (17)

GK glycolysis • alters GK activity by ubiquitination, SUMOylation and citrullination
• diminishes insulin secretion by citrullination
• increased citrullinated GK in islets before the onset of hyperglycemia
• autoantibodies against GK and citrullinated GK in NOD and T1D serum
• autoreactive T cells against citrullinated GK peptide in T1D patients

(10, 18, 19)
(10)
(10)
(10)
(10)

PFKFB3 glycolysis • inhibits diabetogenic CD4+ T cells response to beta cell antigens by PFKFB3 inhibitor, PFK15
• delays diabetic onset in adoptive transfer model of T1D by PFKFB3 inhibitor, PFK15
• increased PFKFB3 expression in T1D beta cells

(20)
(20)
(21)

Enolase glycolysis • loss expression of neuron-specific enolase in T1D
• decreased a-enolase expression in T1D renal glomeruli

(22)
(23)

PK glycolysis • alters PK activity by phosphorylation, acetylation, citrullination, methylation, succinylation and
glycosylation

• decreased PKM1 and PKM2 expression in T1D renal glomeruli
• protects diabetes by PKM2 activation

(24–26)
(23)
(27)

PDH TCA cycle • alters PDH activity by phosphorylation, acetylation and succinylation
• beta cell-specific PDH knockout mouse develops increased blood glucose level and decreases GSIS

(28, 29)
(30)

PC TCA cycle • overexpression of PC in INS-1 cells increases insulin secretion and cell proliferation
• protects human beta cells from inflammation and nitrosative stress

(31)
(32, 33)

PDIA1/P4Hb protein folding • ablation of the thioredoxin activity prevents the refolding of denatured and reduced proinsulin
• increased carbonylated PDIA1/P4Hb in islets before the onset of hyperglycemia
• autoantibodies against PDIA1/P4Hb and carbonylated PDIA1/P4Hb in NOD and T1D serum
• autoreactive T cells against carbonylated PDIA1/P4Hb peptide in T1D patients
• increased PDIA1/P4Hb level in NOD and T1D plasma

(34)
(35)
(35)
(35)
(36)

GRP78 protein folding • autoantibodies against GRP78 and citrullinated GRP78 in NOD and T1D serum
• autoreactive T cells against citrullinated GRP78 peptide in T1D patients

(37, 38)
(37)

Insulin glucose homeostasis • PTMs, citrullination, deamidation, chlorination and oxidation, increase HLA-A*02:01- binding affinity
to insulin-B-derived epitopes

• autoantibodies against oxidized insulin in T1D serum
• autoreactive T cells against deamidated insulin B30-C13 in T1D patients

(39–41)
(42–44)
(45)

GAD65 glutamate metabolism • autoantibodies against citrullinated and deamidated GAD65 peptides in T1D patients
• autoreactive T cells against citrullinated and deamidated GAD65 peptides in T1D patients

(46–49)
(49–52)

IGRP glucose metabolism • autoreactive T cells against citrullinated IGRP peptides in T1D patients (50)

IAPP glycemic regulator • autoreactive T cells against IAPP and citrullinated IAPP peptides in NOD and T1D serum (51–53)

IA2 insulin-signaling pathway
regulator

• autoantibodies against IA2 and deamidated IA2 in T1D serum
• autoreactive T cells against IA2 and deamidated IA2 peptides in T1D patients

(54)
(50, 55)
fr
GLUT1, glucose transporter 1; SGLT2, sodium-glucose co-transporter-2; GK, glucokinase; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6- biphosphatase 3; PK, pyruvate kinase; PDH,
Pyruvate dehydrogenase; PC, Pyruvate carboxylase; PDIA1/P4Hb, Protein disulfide isomerase A1 (PDIA1)/prolyl-4-hydroxylase beta; GRP78, glucose-regulated protein 78; GAD65,
glutamic acid decarboxylase 65; IGRP, islet-specific glucose-6-phosphatase catalytic subunit-related protein; IAPP, islet amyloid polypeptide; IA-2, islet antigen-2.
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ERAD pathway (59). Therefore, it is not surprising that secretory

pathways of beta cell are susceptible to ER stress caused by

inflammation and autoimmunity (60–62). For example, ORP150

is an ER resident HSP 70 family chaperone induced by ER stress.

Autoantibody against to ORP150 is detected in patients with

T1D (63). GRP78 acts as a sentinel to inactivate the UPR

pathway by inhibiting ER stress sensor membrane proteins,

including protein kinase RNA (PKR)-like ER kinase (PERK),

activating transcription factor 6 (ATF6), and inositol-requiring

protein 1 (IRE1). While it is not clear that citrullination alters

GRP78 activity, it is also found in synovial fluid and antibody

against citrullinated GRP78 frequently detected in patients with

RA (6, 64). Similarly, citrullinated GRP78 was found in human

islets under cytokine-induced stress in vitro and antibody against

citrullinated GRP78 was also detected in patients with T1D (37).

In support of PTMs that drive autoreactive inflammatory

processes, there is higher frequency of circulating CD4+ T cells

against citrullinated GRP78 peptides in T1D PBMC compared to

healthy subjects. However, it is clear that the peripheral T cell

compartment may not accurately reflect tissue resident T

cell populations.

Deletion of the IRE1-X-box–binding protein 1 (XBP1)

pathway in pancreatic beta cells results in decreased oxidative

folding of proinsulin and insulin secretion along with decreased

expression of protein disulfide isomerases (PDIs) (65, 66). Over

30% of proteins require PDI as a chaperone to catalyze disulfide

bond formation and facilitate protein folding including

preproinsulin, proinsulin and insulin (67). PDIA1, also called

prolyl-4-hydroxylase beta (P4Hb), is highly expressed in

pancreatic islets and are required for proinsulin oxidative

folding in vitro (34, 68, 69). Endoplasmic reticulum oxidase 1

(ERO1), another abundant protein expressed in the pancreatic

islet, is responsible for recycling reduced PDIA1/P4Hb by FAD

cofactor for transferring electrons to oxygen. ERO1-b mutant
Frontiers in Immunology 04
mice develop impaired glucose-stimulated insulin secretion and

decreased insulin content in islets (70). Deficiency of ERO1-b
increased cell apoptosis in MIN6 beta cells treated with

tunicamycin, an inhibitor of n-glycosylation, resulting in

protein misfolding and ER stress (71).

Calcium is essential for the activity of many ER-resident

chaperones to ensure accurate protein folding. Sarco/

endoplasmic-reticulum calcium ATPase (SERCA) is

responsible to pump calcium from cytosol into the ER lumen

to maintain higher ER intraluminal Ca2+ levels (100-800 µM

compared to 100 nM Ca2+ in the cytosol) (72). Carbonylation,

another PTM amplified in inflamed tissues, leads to a loss of

sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2a) activity

and diastolic dysfunction in the streptozotocin (STZ)-induced

T1D murine model (73). Frequently, ER stress results in Ca2+

leakage from ER lumen and then activates Ca2+ -dependent

PTM enzymes such as tissue transglutaminase 2 (Tgase2) and

PADs. Marré et al. reported that chemically-mediated ER stress

induced immunogenicity of murine CD4+ diabetogenic BDC2.5

T cells mediated by increased Tgase2 activity (74). Recently,

Donnelly et al. found that Tgase modified-GAD65 and -IA2

increased the binding affinity of these PTM ligands to their

corresponding serum autoantibodies from patients with

T1D (75).

Cytosolic PAD enzyme catalyzes the irreversible

deimination to convert arginine into citrulline within proteins,

a pathway that is closely regulated by calcium. Under the

physiologic Ca2+ concentration, PADs maintain normal basal

activity. When cytosolic calcium concentration increased to 100-

fold higher (approximately 1-100µM) above normal

physiological concentration in response to cell stresses such as

inflammation and ER stress, PAD enzymes become fully

activated (76, 77). Among five PAD isozymes, PAD2 has the

highest mRNA and protein expression level and activity in the
FIGURE 1

The sources and consequences of beta cell stress. Pancreatic beta cells are confronted with various sources of beta cell stress including viral
infection, chemical exposure, hyperglycemia, inflammation, ROS and ER stress. Then beta cell stress results in various posttranslational
modifications (PTMs), which cause many effects such as beta cell death, autoimmunity, decreasing insulin secretion and metabolic alteration
until the consequence of the onset of autoimmune diabetes.
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pancreatic islets from C57Bl/6, non-obese diabetes resistance

(NOR) and NOD mice (38). However, there is no PAD2 mRNA

expression in C57Bl/6, NOR and NOD liver, another major

organ for maintaining glucose homeostasis outside of the

pancreas (78). Of note, PAD2 and PAD4 are the only PAD

isozymes expressed in immune cells and their corresponding

enzyme activity in synovial fluid positively correlates with RA

tissue inflammation and disease activity (79). Moreover, a pan-

PAD inhibitor, BB-Cl-amidine was found to prevent diabetes in

the NOD murine model (80). Recently, we have carefully

reviewed the role of PAD enzymes in the pathogenesis of T1D

development (9).

PADs require reducing conditions for efficient catalytic

activity. For example, PAD enzyme in the synovial fluid from

patients with RA catalyzes citrullination of human fibrinogen in

vitro in the presence of reducing agents, dithiothreitol (DTT) or

reduced glutathione (GSH) (81). Of note, GSH is the most

abundant endogenous antioxidant. In addition, the level of

ROS also regulates PAD enzyme activity. Damgaard et al.

reported that H2O2 inhibited the catalytic activity of

recombinant human PAD2 and PAD4 in vitro (82). Recently,

Kim et al. reported that H2O2 promoted cellular senescence

mediated by the inhibition of PAD2 expression in osteoblasts

(83). However, how PAD enzyme is regulated and how aberrant

PADs activity leads to pathogenic conditions are still not clear.

For example, several studies demonstrated that patients with RA

have higher oxidative stress and lower GSH level compared to

healthy subjects (84–86). Recently, Nagar et al. reported that

thioredoxin, the other major redox regulator besides GSH, can

activate the enzyme activity of PADs (87). Their study provides

one of the mechanisms why citrullination level is increased in

patients with RA while the level of GSH, the known co-activator

of PADs, is decreased. Collectively, these studies indicate that

PAD enzyme activity and citrullination levels in individual

tissues and tissue proteins are susceptible to oxidative stress

and redox imbalance.

Of note, oxidative stress induced by hyperglycemia and

insulitis plays a key role in the onset of T1D and diabetes-

related complications of disease. Elevated biomarkers of

oxidative stress are frequently detected in tissue, urine and

blood from patients with metabolic disorders including T1D

and T2D (88–90). It has been hypothesized that beta cells

express lower levels of antioxidant enzymes compared to other

tissues. The expression of catalase, GPx and both cytosolic Cu/

Zn SOD and mitochondrial Mn SOD in mouse islets are lower

compared to liver, kidney, brain, heart, lung, skeletal muscle,

heart muscle, adrenal gland, and pituitary gland (91, 92). In

addition, the expression of catalase and GPx is reduced in

human pancreatic beta cells compared to alpha cells.

Moreover, beta cell viability is reduced after oxidative stress in

H2O2 or NO treated human islets (93). Consistent with these

observations, serum levels of GPx and SOD are reduced in

patients with T1D compared to healthy subjects (94). Thus,
Frontiers in Immunology 05
antioxidants may possess anti-diabetic potential in NODmurine

model (95, 96) supporting this therapeutic strategy in patients

with T1D (97, 98).

Insulin and its precursors, preproinsulin and proinsulin, also

undergo PTM including oxidation and deamidation (39–41).

Notably, insulin A-chain (A1-13) with a vicinal disulfide bond

between A6-A7 was required for T cell recognition by using a

CD4+ T cell clone isolated from an HLA DR4+ child with

autoantibody against insulin (39). Several common PTMs,

including citrullination, deamidation, chlorination and

oxidation, increase HLA-A*02:01- binding affinity to insulin-

B-derived epitopes in vitro (45). The deamidation of glutamine

catalyzed by Tgase2 is also found to modulate T cell recognition

to beta cell autoantigens. Van Lummel et al. reported that

deamidation increases epitope binding affinity to HLA DQ by

using Tgase2-modified peptides including phogrin, IA-2, IGRP,

GAD65 and proinsulin (41). Moreover, there are autoreactive

CD4+ T cells against deamidated insulin B30-C13 found in

patients with early onset T1D.

Protein carbonylation, the major PTM product of oxidative

stress, contributes to insulin resistance and metabolic

dysfunction in adipose tissue of both animal models and

human T1D (99). Hyperglycemia induces oxidative stress, the

major stress to trigger and amplify carbonyl modification, and

then leads to pancreatic beta cell and endothelial cell dysfunction

(100). In adipose tissue, oxidative stress induced GLT4

carbonylation and resulted in GLT4 activity loss (101). Other

studies have clearly profiled carbonylated plasma proteins as

potential biomarkers in T2D (102–104). Of note, Telci et al.

reported that the level of plasma carbonyl PTMs were increased

in adolescent and young adult T1D patients compared to the

healthy subjects (105). Carbonylated pancreatic amylase and

chymotrypsinogen were identified as biomarkers for

autoimmune pancreatitis and fulminant T1D, respectively

(106, 107). Our recent study also defined a group of pancreatic

beta cell proteins with carbonylation, all bound by

autoantibodies from human and NOD mice T1D antisera

including PDIA1/P4Hb, PDIA2, 14-3-3 protein isoforms,

GRP78 and chymotrypsinogen B (35). Of interest ,

carbonylated PDIA1/P4Hb was found to be an early

autoantigen, triggering both autoantibodies and autoreactive T

cells in human T1D.
Glucose metabolic PTM targets:
autoreactive T cells and beta cells

T1D is a T cell mediated autoimmune disease that both CD4+

and CD8+ T cells are involved in the selective attack of insulin

producing beta cells. Emerging data demonstrate that T cell

responses are finely linked to bio-energetic metabolism, glycolysis

and oxidative phosphorylation (OXPHOS). In a quiescent state, T

cells favor the use mitochondrial OXPHOS to make ATP for basal
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energy production. Upon antigen stimulation, T cells are

reprogrammed to use glycolysis to adjust the increased energy

demand to support cell activation, proliferation and differentiation.

Inhibition of glycolysis to manipulate T cell autoimmunity has been

tested in several autoimmune diseases including SLE, MS, RA and

T1D (20, 108, 109). Some of these pathways will be further

defined below.

The major biological function of pancreatic beta cells is to

secret insulin in response to the change of glucose concentration

to maintain glucose homeostasis. In the development of T1D,

inflammation and oxidative stress amplifies various PTMs

within islet self-proteins which then break immune tolerance

in addition to altering beta cell metabolism (Figure 2) (Table 1).
Glucose transporter

Glucose transporter 1 (GLUT1) facilitates the metabolic

switch to glycolysis in activated T cells. 2-Deoxy-D-glucose

(2DG), a glucose analog, is taken up by GLUT and then

converted to 2DG-6-phosphate by hexokinase in cytoplasm

where it is no longer metabolized. 2-DG-6-phosphate

accumulating in the cel ls inhibits hexokinase and
Frontiers in Immunology 06
phosphoglucose isomerase to then block glycolysis. In

comparison to quiescent T cells, activated T cells are more

susceptible to 2-DG due to the upregulated GLUT1 expression

and glycolytic metabolism. Treatment of NOD mice with 2DG

results in the reduction of diabetogenic CD8+ T cells specific to

IGRP (NRP-V7 epitope), less lymphocyte infiltration within the

islets and improves beta cell granularity (16). GLUT1 blockade

therapeutic strategy is also considered for T1D patients that

undergo islet transplantation to potentially protect beta cell loss

due to graft rejection (110). Glucose uptake is mediated by

GLUT2 in rodent beta cells (111). However, it remains

controversial if GLUT 1, 2 or 3 are individually critical for

glucose uptake in human beta cells (112).

Relevant to glucose uptake, SGLT2 (sodium-glucose co-

transporter-2) facilitates renal glucose reabsorption from the

circulation. SGLT2 inhibitors reduce renal glucose uptake

threshold and have been utilized in patients with T2D to lower

plasma glucose levels, with limited risk of hypoglycemia and to

prevent cardiovascular complications (17). Since both elevated

urine glucose and ROS levels increase SGLT2 activity, several

preclinical and clinical studies are ongoing to evaluate the

antioxidant effects of SGLT2 inhibitors mainly for patients

with T2D but also in streptozotocin (STZ)-induced diabetic
FIGURE 2

Suggested model of PTMs in the induction of autoreactive responses and dysfunction of beta cells in T1D. T1D is an autoimmune-mediated
metabolic disorder. PTMs-associated islet autoantigens are presented by antigen presenting cells (APC), such as dendritic cells and B cells, to
activate CD4+ T cells and B cells. Activated CD4+ T cells interact with B cells and CD8+ T cells drive the beta cell destruction. Therefore,
glucose homeostasis is disrupted due to the diminishment of insulin-secreting beta cells. On the other hand, PTMs itself directly regulate
glucose metabolism such as the biological functions of glucose metabolic enzymes.
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murine models (113). Recently, Shyr et al. reported that SGLT2

inhibitors protect from glucotoxicity-induced beta cell failure

through mitigation of oxidative and ER stress (114). Of note,

several studies evaluated the efficacy and safety of SGLT2

inhibitors in patients with T1D (112, 115).
Glucokinase

Glucokinase, mainly expressed in the liver and pancreatic

beta cells, is the first rate-limiting step of glycolysis in glucose

metabolism. However, the metabolic roles of glucokinase in liver

and pancreas are fundamentally different for glycogen synthesis

and insulin secretion, respectively. Glucokinase (hexokinase IV)

belongs to the family of hexokinases. Unlike other hexokinase I-

III, glucokinase activity is not regulated by feedback inhibition

by its product, glucose-6-phosphate. Glucokinase has ~35-fold

lower affinity for glucose (S0.5 7-9 mM) compared to other

hexokinases (S0.5 ~0.2 mM). In addition, the small fluctuations

of its enzyme activity alter the threshold of glucose-stimulated

insulin secretion in pancreatic b-cells. Therefore, glucokinase is
believed to act as an important glucose sensor by controlling the

rate of glucose input into in pancreatic beta cell metabolism.

More than 600 mutations of human glucokinase gene have

been identified in patients with glucokinase linked

hyperinsulinemic hypoglycemia (PHHI-GK), glucokinase-

linked permanent neonatal diabetes (PDNM-GK) and

glucokinase-linked maturity-onset diabetes of the young

(MODY-GK, also called MODY-2). Several studies also

demonstrate that glucokinase activity is regulated by PTMs.

For example, polyubiquitination of human glucokinase, both

pancreatic isoform 1 and hepatic isoform 2, allosteric activates

glucokinase catalytic activity up to 1.4 fold (18). SUMOylation

(small ubiquitin-like modifiers) of glucokinase was found in

MIN6 and INS-1 murine cell lines and results in increased

pancreatic glucokinase stability and activity (19). The STZ-

induced diabetic mouse model of T1D exhibits decreased

glucokinase expression with hyperglycemia (116). Recently, we

found that citrullination decreases the catalytic activity and

substrate binding affinity of human pancreatic glucokinase and

diminishes glucose stimulated insulin secretion (GSIS) in INS-

1E murine cells (10). In addition, citrullinated glucokinase is

present in NOD pancreas prior to insulitis and in human islet

beta cells exposed to inflammatory cytokines. Moreover,

immune self-tolerance is broken by citrullination as indicated

by the presence of autoantibodies and autoreactive CD4 T cells

against to citrullinated glucokinase in patients with T1D.

Glucose sensing and proliferative capacity differs

significantly between immature and mature beta cells, though

both secrete insulin. Immature beta cells sense lower glucose

concentrations via hexokinase 1 and gradually lose proliferative

functions as they mature (117). A major difference of metabolic

machinery is in the switch of expression from high glucose
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affinity hexokinase 1 in immature beta cells to low glucose

affinity glucokinase (also known as hexokinase 4) in mature

beta cells (118). We recently demonstrated that citrullination

increases the Km of glucokinase by 2-fold (10). This seemingly

small change in Km is nonetheless significant since glucokinase

functions in a narrow range of glucose concentration near the

Km. While PTMs may trigger increased turnover of modified

proteins, there is no known degradation pathway yet identified

for protein citrullination. Thus, even small molar changes in

irreversible glucokinase citrullination may reflect long term

abnormalities in glucose sensing and insulin secretion in

individual islets. As defined throughout this review, PTMs that

arise may separately alter metabolic processes and/or trigger

specific autoimmune responses, and the two outcomes may

separately alter or contribute to pathology in the pancreas.
6-phosphofructo-2-kinase/fructose-2,
6- biphosphatase 3

Besides GLUT1, inhibition of the glycolysis pathway

enzymes to modulate T cell autoimmune responses may be an

attractive therapeutic strategy for T1D. For example, a small

molecule PFK15, a competitive inhibitor of 6-phosphofructo-2-

kinase/fructose-2, 6- biphosphatase 3 (PFKFB3), is found to

inhibit glycolysis and T cell response to beta cell antigens in

diabetogenic CD4+ T cells from NOD.BDC2.5.TCR.Tg mice

(20). In addition, PFK15 treatment delayed diabetic onset in the

adoptive transfer model of T1D by BDC2.5 CD4+ T cells.

Interestingly, PFKFB3 expression is upregulated in beta cells

from patients with pre-T1D and T1D compared to non-diabetic

subjects (21). Given that several PTMs regulate the biological

activity, proteosomal degradation and stability of PFKFB3 in

cancer cells (119), it may yet be an important target for

therapeutic manipulation of diabetogenic T cells.
Enolase

Enolase is the glycolytic enzyme that converts 2-

phosphoglycerate (2PG) to phosphoenolpyruvate (PEP). The

tissue distribution of a-enolase in various autoimmune

syndromes has not yet been fully investigated with a potential

role in immune mediated tissue pathology. For example, the

expression of neuron-specific enolase (NSE) was not detected in

the pancreas of autopsied T1D patients, but was present in the

islets of non-diabetic subjects (22). Interestingly, anti-a-enolase
autoantibodies have been identified in numerous autoimmune

diseases such as autoimmune retinopathy, SLE, RA, MS, IBD

(120–122). Although PTM modifications of a-enolase with have

not yet been reported in autoimmune diabetes, the presence of

citrullinated a-enolase in the RA joint and autoantibodies

against to citrullinated a-enolase in RA serum suggests that
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citrullinated a-enolase can initiate and drive chronic

inflammatory responses in autoimmune diseases (123).
Pyruvate kinase

Pyruvate kinase is the last enzyme in glycolysis pathway and

produces net ATP and pyruvate. The catalytic activity of PK is

tightly regulated by PTMs including phosphorylation,

acetylation, citrullination, methylation, succinylation and

glycosylation (24–26) as well as through allosteric interaction

with F16BP mentioned above. For example, PK activity is

increased 2 to 3-fold after in vitro citrullination by PAD (124).

Our recent studies demonstrate that one pan-PAD inhibitor,

YW3-56, can restore cytokine-mediated suppression of insulin

secretion upon pyruvate stimulation in INS-1E beta cells (10).

The expression of PKM1, PKM2 and a-enolase is down

regulated in renal glomeruli from patients with T1D compared

to healthy control subjects (23). Pharmacologic activation of

pyruvate kinase M2 protects against diabetic nephropathy by

increasing glucose metabolic flux and inducing mitochondria

biogenesis (27). In rodent and human islets, PK activation

accelerates the frequency of metabolic oscillations and

increases GSIS in vivo (13, 125). Chronic treatment with PK

activator also protects islet function on a high fat diet. Upon

TCR engagement, PKM2 will translocate into the nucleus of T

cells. Treatment with TEPP-46, an allosteric activator of PKM2,

blocks its nuclear translocation, inhibits Th1 and Th17

polarization mediated by glycolysis blockade in vitro and

ameliorates the development of EAE murine model (126). This

is another pathway in beta cell metabolism where PTM

modification may alter PK biology, yet not affect autoimmune

specific responses. There are no defined autoimmune responses

to PK in T1D. Thus, PTMs may also singularly affect metabolic

components without subsequent autoimmune specific responses

(as is the case with PK). The alternative observation that PTMs

trigger only autoimmune responses without affecting specific

metabolic pathways has been defined in many studies for other

self proteins.
Pyruvate dehydrogenase

Pyruvate is the final product of glycolysis. Once pyruvate

enters into mitochondria, it can be metabolized either by

pyruvate dehydrogenase (PDH) or pyruvate carboxylase (PC)

to enter into TCA cycle metabolism. PDH allows pyruvate to

enter into the oxidative TCA pathway through the generation of

acetyl CoA in the mitochondrial matrix. PDH activity is

regulated by PTMs such as phosphorylation, acetylation and

succinylation (28, 29). Beta cell-specific PDH deficient (b-
PDHKO) mouse strains develop increased blood glucose level

and decreased plasma insulin level in the first month after birth
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presumably by decreasing glucose oxidation (30). In addition,

GSIS was reduced in isolated islets from b-PDHKO mice

compared to age-matched control mice. Of note, Zurgil et al.

reported that anti-PDH autoantibodies were found in several

autoimmune diseases including primary biliary cirrhosis,

Sjogren’s syndrome, scleroderma, SLE and RA (127).

Interestingly, double knock out the inhibitory PDH kinases in

beta cells (that increase PDH activity) actually leads to decreased

insulin secretion (125). Thus, the right balance of glucose

oxidation versus anaplerosis is required for functional beta cell

metabolism (125).
Pyruvate carboxylase

Comparison of pyruvate oxidation through PDH versus

pyruvate carboxylation via PC demonstrates that flux through

the latter strongly correlates with GSIS in INS1 cells, rodent and

human islets (125, 128). While PC is most strongly regulated via

allosteric activation by acetyl CoA levels (in addition to the

direct measures of its flux noted above), its relevance to GSIS has

been assessed by knockdown and overexpression approaches.

GSIS was not reduced in pyruvate carboxylase siRNA treated

INS-1 cells presumably because of incomplete knockdown, while

it was suppressed when treated with the chemical inhibitor of

PC, phenylacetate (129). In contrast, overexpression of PC in

INS-1 cells increases insulin secretion and cell proliferation (31).

PC expression is down regulated in islets from patients with T2D

compared to non-diabetic subjects (130). To protect human beta

cells from inflammation and nitrosative stress, pyruvate

carboxylase (PC) is needed for promoting glutathione (GSH)

synthesis and suppressing NO synthesis to limit ROS and NO

level, respectively (32, 33).
Protein disulfide isomerase
A1/prolyl-4-hydroxylase beta

P4Hb, a member of the PDI family and the beta subunit of a

tetramer of prolyl-4-hydroxylase (P4H), is the most abundant

ER oxidoreductase for the retention and accurate folding of

proinsulin/insulin in pancreatic beta cells (131, 132). Ablation of

the thioredoxin activity by chemical modification of PDIA1/

P4Hb prevents the refolding of denatured and reduced

proinsulin in vitro (34). Therefore, PDIA1/P4Hb plays the

critical role of proinsulin processing, insulin secretion and

protection from ER stress in islet beta cells. Recently, we found

that carbonylated P4Hb is elevated in human islets under

inflammatory and oxidative stress and is coincident with

decreased glucose-stimulated insulin secretion and altered

proinsulin to insulin ratios (35). We identified that

carbonylated PDIA1/P4Hb serves as an antigenic islet protein

supported with the presence of autoantibody and autoreactive T
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cells against carbonylated PDIA1/P4Hb in patients with T1D. In

a small population of early onset T1D patients (n=21, under 1

year of disease duration), we found that 76% patients had either

anti-PDIA1/P4Hb alone (11 out of 21 patients) or anti-PDIA1/

P4Hb linked with anti-insulin (auto)antibodies (5 out of 21

patients). In contrast, no patient had anti-insulin IgG (auto)

antibodies without the presence of anti-PDIA1/P4Hb

antibodies, indicating a potential link between these two

autoantibody subsets in T1D. Moreover, PDIA1/P4Hb plasma

level were increased in pre-diabetic NOD mice and in children

with T1D, newly diagnosed within 48 hours (36). In a small

cohort of T1D patients (<14 yrs of age) followed longitudinally,

some autoantibody responses to P4Hb appear transient,

suggesting that antibodies may reflect acute stress in the

pancreas . I t suggests PDIA1/P4Hb as a potent ia l

immunometabolic biomarker for early diagnosis of T1D and

also provides mechanistic insight of carbonylated P4Hb into

insulin metabolism and neo-epitope formation in the

progression of T1D. It is hypothesized that carbonyl

modification of P4Hb may cause altered folding of insulin,

causing both and accumulation of proinsulin and/or creating

an immunogenic misfolded form of insulin itself.
PTM-based therapeutic approaches

While exogenous insulin therapy is still the central

intervention to treat T1D, a more complete understanding of

T1D as a heterogeneous disease with multiple affected

immunologic and metabolic pathways encourages versatile
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modalities to treat, delay and even prevent T1D. Such

strategies include immune modulation, islet specific strategies

to prevent inflammation, and improved glycemic management.

The successful clinical trial of Teplizumab, a FcR non-binding

anti-CD3 mAb, reported a delay in the median time to diagnosis

of 2 years compared to placebo group for relatives of patients

with T1D (133, 134). Importantly, a new era of therapeutic

strategy exists with T cell mediated therapy, specifically upon

FDA approval of Teplizumab for at-risk T1D individuals to

delay the onset of this debilitating disease. Besides anti-CD3

mAb therapy, many attempts of monoclonal antibody and

antibody derivatives target on other ligands of T cells and B

cells such as CD2, CD20, CD80, CD86 and cytokines such as

TNF-a, IL-21, IL-2 and IL-6R are actively ongoing for T1D

immune-focused therapy. Other strategies to reduce beta cell

stress, maintain islet antigen immune tolerance, sustain glucose

homeostasis and even combination therapy are also leading to

more therapeutic options for T1D. There are several in-depth

reviews recently summarized current and the future therapies for

T1D (135–138). Herein, we highlight knowledge gap about

potential PTM-based T1D therapy and PTM biomarkers that

may reflect diagnosis, disease activity and/or assistance for

establishing optimal timing of T1D treatment (Figure 3).

Strollo et al. reported that autoantibody against oxidative

modified insulin (oxPTM-insulin) and insulin autoantibody

(IAA) co-existed in 50% of patients with T1D (42). Of note,

34% of IAA negative T1D patients were oxPTM-insulin positive.

In this study, the oxidative modification of insulin antigen

includes chlorination of Tyr16 and Tyr26, oxidation of His5,

Cys7 and Phe24, and glycation of Lys29 and Phe1 in chain B.
FIGURE 3

Potential PTMs-based diagnosis and therapeutic approaches for T1D. PTMs provide novel opportunities to mitigate the pathogenesis process of
T1D in multiple stages such as avoiding the formation of PTM-associated islet autoantigens, modulating the autoimmune responses and
improving glucose metabolism and complications. Moreover, PTM-biomarkers provide better diagnosis and monitoring of disease activity such
as autoantibodies against PTMs related proteins.
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Interestingly, some PTMs (citrullination, chlorination,

deamidation, and oxidation) can increase the binding affinity

of insulin-B-derived peptides on HLA-A*02:01 compared to

their counterpart native peptides (45). Strollo et al. also tested

the sensitivity and specificity in comparison of oxPTM-insulin

antibody with other established T1D autoantibodies (43).

Moreover, anti-oxPTM-insulin was observed to precede the

onset of T1D in prediabetic children (44). Their studies

suggest antibody against oxidative modified insulin as a

potential biomarker for better diagnosis compared to current

diagnostic T1D autoantibodies and even as a biomarker for

prediction of T1D in children. The observations imply that

PTM-insulin (oxidation) breaks immune tolerance, leading to

autoreactive B and T lymphocytes. Thereafter, subsequent

epitope spreading may result in the production of antibody

against the non-PTM self insulin protein. As with autoantibody

responses to P4Hb, as above, anti-oxPTM-insulin antibodies

may be associated with the onset and/or susceptibility of

diabetes-associated complications.

The concept of epitope spreading upon breaking of immune

tolerance by PTM self proteins has been supported in models of

lupus autoimmunity (139–141). The Mamula laboratory

demonstrated that elevated isoaspartyl PTM content is found

in lupus-prone mice. Particularly, isoaspartyl PTM is associated

to lupus T cell proliferative defect in MRL mice (142). Both

snRNP D and histone H2B are known lupus autoantigens.

Specifically, T cell immune tolerance is broken in isoaspartyl

snRNP D immunized mice and subsequent to activate B cells

producing antibodies against to both isoaspartyl PTM and naïve

forms of snRNP D peptide (140). Moreover, autoantibodies that

bind both isoaspartyl and aspartyl form of histone H2B are

present in human SLE and lupus-prone MRL/lpr mice, yet

another example of epitope spreading (141). It must be

emphasized that the clear roles of most PTMs in human

disease are not fully understood, notably, whether PTMs are a

cause of pathology or a consequence on existing tissue

pathology. Moreover, the bias of ex vivo technology in

defining T cell specificity from peripheral cells may not

accurately reflect tissue resident T cell populations and/or their

role in pathology.

In a similar manner as described above, protein carbonylation is

the major product of oxidative stress. Recently, we reported that

antibodies against carbonyl-PDIA1/P4Hb and native PDIA1/P4Hb

often co-exist in patients with established T1D (35). Interestingly,

antibody against PDIA1/P4Hb precedes the onset of hyperglycemia

in murine NOD mice, as early as 4 weeks of age. In line with the

promising anti-CD3 preventive T1D trial in children, PTM relevant

autoantibody analysis (either anti-oxPTM-insulin and anti-PDIA1/

P4Hb antibodies) may help establish the optimal time for

therapeutic immune modulation of high-risk T1D individuals.

Sultan et al. reported that high glucose and oxidative stress

increased protein carbonylation and glutathione peroxidase
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(GPx) activity in HUVECs cells (143). The enhanced GPx

activity is due to the compensation of decreased GPx1 protein

expression in high glucose or methylglyoxal-treated HUVECs

cells. The data suggest that Lys114 carbonylation of GPx1 may

alter the substrate H2O2 biding affinity that increases catalytic

activity. It is conceivable that antioxidant approaches to mitigate

beta cell stress and/or reduce oxidative PTMs is a potential

therapeutic strategy for T1D. Verapamil, a calcium channel

blocker, rescued mice from STZ-induced hyperglycemia

mediated by preventing beta cell loss (144). Moreover,

verapamil decreased thioredoxin-interacting protein (TXNIP)

expression in islets from STZ injected mice and TXNIP is one of

the important redox regulators in cells. In a phase II clinical trial

of 32 adults with recent onset T1D (diagnosed within 3 months),

the verapamil treated group had improved glycemic control and

mixed-meal-stimulated C-peptide secretion compared to

placebo group (145). As noted earlier, calcium is essential for

PAD activity. Verapamil fully inhibited Ca2+ influx in both A549

and THP-1 cells and fully blocked protein citrullination in A549

cells (146). The effect of verapamil in beta cells on modifying

PAD, citrullination, ER stress and other cellular events remains

to be more thoroughly investigated for evaluating the

therapeutic potential of verapamil in T1D.

Akin to PAD enzymatic activity, Tgase2 (also known as tissue

transglutaminase) is a calcium-dependent enzyme that catalyzes

deamidation reaction. Anti-Tgase2 antibody serves as a serological

marker of celiac disease, thought to be mechanistically associated

with T1D (147–149). In particular, Maglio et al. reported anti-

Tgase2 antibody deposition in the small intestine of a majority of

children with T1D (150). In addition, anti-Tgase2 with combination

of IAA, anti-GAD65 and anti-IA2 is found to facilitate screening for

pre-T1D and celiac disease (151). Recently, Tgase2 inhibitor,

ZED1227, was reported to attenuate gluten-induced small

intestinal damage compared to placebo group in a phase II

clinical trial of 41 patients with celiac disease (152). However, the

therapeutic potential of Tgase2 inhibitors for patients with T1D has

not yet been fully investigated.

Several citrulline blockade approaches have been developed

and studied in RA. For example, several potent PAD4 specific

reversible inhibitors can disrupt mouse and human NET

formation (NETosis), thought to be a major source of

autoantigens in RA (153–155). Recently, Sodre et al. reported

that BB-Cl-amidine, a pan-PAD inhibitor, prevented diabetes

development in the NOD murine model mediated by reduced

pancreas citrullination level and autoantibody against

citrullinated GRP78 (80). Recently, we demonstrated that a

PAD2/PAD4 inhibitor, YW3-56, partially restored cytokine-

mediated suppression of insulin secretion upon glucose or

pyruvate stimulation in INS-1E cells and citrullination

disrupted pancreas glucokinase activity (10). While inhibitors

of PTMs may be a promising preventative therapeutic approach

for T1D, the potential side-effects and/or risks of long term use
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in young children requires more thorough consideration, given

that disease pathology may be chronic in development.

Glucokinase activators have been evaluated in patients with

T2D including piragliatin, MK-0941, AZD1656 and dorzagliatin

(156, 157). Recently, a phase II clinical trial reported that

TTP399, a novel hepatoselective glucokinase activator, lowered

HbA1c and reduces hypoglycemia without increasing the risk of

ketosis compared to placebo group (158). Last year, the FDA

granted a Breakthrough Therapy designation for TTP399 as an

adjunctive therapy to insulin for T1D patients based on the

promising result by the above clinical trial. Relevant to

citrullination, Rituximab, a B cell depleting anti-CD20

antibody, was reported to modulate ACPAs level in patients

with RA compared to placebo group (159). In phase II clinical

trials, Rituximab delayed the decline of c-peptide, i.e. preserved

beta cell function, in patients with T1D compared to placebo

group but the effect was transient (160, 161).
Concluding remarks

Herein, we have identified how specific PTMs may arise in

T1D and their consequences on both autoimmunity and

metabolic pathways, notably glucose sensing and insulin release.

While there are examples of PTMs affecting both autoimmune

specificity and metabolism, the effects of PTMsmay also be clearly

distinct and delineated. For example, a number of PTMs have

been noted that trigger autoimmune response without obvious or

defined alterations in beta cell metabolism. Conversely, specific

PTMs may only affect metabolic pathways in the absence of

autoimmune specificity. Thus, therapies that may ‘correct’

PTMs as they arise in T1D may have important consequences

to various stages and distinct pathways that characterize T1D.

Individual PTMs may be subject to therapeutic manipulation

(reversal), while others are permanent and irreversible. Some

specific PTMs serve as a common platform for coordinating

metabolism and countering beta cell stresses arising from

environmental factors (such as diet, virus and chemical) or

microenvironmental factors (such as cytokines, ER stress and

calcium fluctuation). Similarly, PTMs may serve as biomarkers

that may predict and better diagnose early steps in T1D will prove
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important for designing therapies for preserving and rescuing beta

cell functions.
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