
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Liangxue Zhou,
Sichuan University, China

REVIEWED BY

Alfeu Zanotto-filho,
Federal University of Santa Catarina,
Brazil
Abdallah Badou,
University of Hassan II Casablanca,
Morocco

*CORRESPONDENCE

Yanzhi Guo
yzguo@scu.edu.cn

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Immunology

RECEIVED 25 August 2022

ACCEPTED 15 November 2022
PUBLISHED 01 December 2022

CITATION

Li H, He J, Li M, Li K, Pu X and Guo Y
(2022) Immune landscape-based
machine-learning–assisted
subclassification, prognosis,
and immunotherapy prediction
for glioblastoma.
Front. Immunol. 13:1027631.
doi: 10.3389/fimmu.2022.1027631

COPYRIGHT

© 2022 Li, He, Li, Li, Pu and Guo. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 01 December 2022

DOI 10.3389/fimmu.2022.1027631
Immune landscape-based
machine-learning–assisted
subclassification, prognosis,
and immunotherapy prediction
for glioblastoma

Haiyan Li, Jian He, Menglong Li , Kun Li, Xuemei Pu
and Yanzhi Guo*

College of Chemistry, Sichuan University, Chengdu, Sichuan, China
Introduction: As a malignant brain tumor, glioblastoma (GBM) is characterized

by intratumor heterogeneity, a worse prognosis, and highly invasive, lethal, and

refractory natures. Immunotherapy has been becoming a promising strategy to

treat diverse cancers. It has been known that there are highly heterogeneous

immunosuppressive microenvironments among different GBM molecular

subtypes that mainly include classical (CL), mesenchymal (MES), and

proneural (PN), respectively. Therefore, an in-depth understanding of

immune landscapes among them is essential for identifying novel immune

markers of GBM.

Methods and results: In the present study, based on collecting the largest

number of 109 immune signatures, we aim to achieve a precise diagnosis,

prognosis, and immunotherapy prediction for GBM by performing a

comprehensive immunogenomic analysis. Firstly, machine-learning (ML)

methods were proposed to evaluate the diagnostic values of these immune

signatures, and the optimal classifier was constructed for accurate recognition

of three GBM subtypes with robust and promising performance. The prognostic

values of these signatures were then confirmed, and a risk score was established

to divide all GBM patients into high-, medium-, and low-risk groups with a high

predictive accuracy for overall survival (OS). Therefore, complete differential

analysis across GBM subtypes was performed in terms of the immune

characteristics along with clinicopathological and molecular features, which

indicates that MES shows much higher immune heterogeneity compared to CL

and PN but has significantly better immunotherapy responses, although MES

patients may have an immunosuppressive microenvironment and be more

proinflammatory and invasive. Finally, the MES subtype is proved to be more

sensitive to 17-AAG, docetaxel, and erlotinib using drug sensitivity analysis and
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three compounds of AS-703026, PD-0325901, and MEK1-2-inhibitor might be

potential therapeutic agents.

Conclusion: Overall, the findings of this research could help enhance our

understanding of the tumor immune microenvironment and provide new

insights for improving the prognosis and immunotherapy of GBM patients.
KEYWORDS

glioblastoma (GBM), immune landscape, machine-learning (ML), subclassification,
prognosis, immunotherapy
Introduction

Glioblastoma (GBM) is the most common malignant

primary brain tumor, accounting for 82% of all malignant

gliomas (1). Due to its malignant growth and invasion into the

brain parenchyma, coupled with resistance to chemotherapy and

targeted therapy, GBM is the deadliest cancer among all cancers

(2). GBM could be divided into four subtypes based on an

unsupervised gene expression analysis by Verhaak et al. in 2010,

including classical (CL), mesenchymal (MES), proneural (PN),

and neural (NE), each featuring distinct genetic, epigenetic, and

transcriptional alterations (3). CL GBM has a high rate of EGFR

gene amplification and expresses the markers of neuron

precursor cells and stem cells (4, 5). MES reveals the features

of cultured astrocytic gliomas with predominant NF1 gene

aberrations and PTEN mutations. It is commonly linked to a

poor prognostic outcome (4, 6) and also shows the highest

inflammatory signature with significant upregulation of genes in

the TNF and NF-kB pathways (7). PN is characterized by a lower

incidence rate and the best median patient survival. It has

PDGFRA alterations and point mutations of IDH1 and

develops mainly in younger patients with secondary

glioblastoma (5, 7). Clustered in the normal brain samples, NE

shows strong expression of neuronal markers including NEEL,

GABRA1, SYT1, and SLC12A5 (6). So, we can see that different

GBM subtypes exhibit a high degree of inter- and

intratumor heterogeneity.

Immunotherapy, represented by immune checkpoint

blockage (ICB), has been becoming an appealing treatment for

gliomas. Immune checkpoint inhibitors (ICIs) can induce an

improved clinical response in patients, and emerging evidence

has disclosed that the anticancer efficacy of ICIs is dependent on

the tumor microenvironment (TME) (8). As a vital mediator of

tumor malignant progression and therapeutic outcome, TME is

closely associated with the immune evasion of tumor cells. The

GBMmicroenvironment mainly consists of non-neoplastic cells,

infiltrating and resident immune cells, vascular cells, and other

glial cells (9). In the TME, through infiltration into tumor tissue
02
to form the tumor immune microenvironment (TIME), immune

cells could help tumor cells achieve immune escape and promote

tumor malignancy, which is closely associated with the response

rate of immunotherapy (10). It is known that there is a highly

heterogeneous immunosuppressive microenvironment in GBM

(11–13); therefore, it is of great practical significance to explore

the differences in immune landscapes among GBM subtypes.

Recently, almost all studies focusing on the GBM immune

landscape selected only one of the different immune signatures

to divide GBM patients into different immune phenotypes, such

as immune-related genes (1, 14), lncRNAs (15), immune cell

infiltration-associated genes (16), abundances of immune cells

(10, 17), and antigen presentation machinery (APM) signature

(18). Moreover, for the immune landscape of GBM subtypes,

Doucette et al. have studied the associations of antigen

expression, immunosuppression, and effector response genes

within GBM subtypes (19). The distribution and the

infiltration of the immune components across the commonly

described subgroups have been analyzed by Maria et al. using an

immunohistochemistry-based approach (6). Until now, there

has been no comprehensive analysis of the immune landscape

amon g GBM sub t y p e s t h a t i n t e g r a t e s v a r i o u s

immune characteristics.

Meanwhile, machine learning (ML)-based methods could

detect key features from complex datasets and have been popular

applications in clinical cancer research in recent years, such as

early diagnosis, subtype identification, prognosis prediction, and

so on (20). It has been used to classify various cancer subtypes,

for example, breast cancer (21), adult T-cell leukemia/

lymphoma (22), kidney cancer (23), and glioma (24). The

application of ML for cancer subtype identification will enable

accurate diagnosis and regard to the clinical management of

patients. By performing a comprehensive immunogenomic

analysis, we aim to develop ML-based models to achieve a

precise diagnosis, prognosis, and immunotherapy prediction

for GBM.

In this study, we integrated the expression profiles of 397

GBM samples from public databases and studies. Single-sample
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https://doi.org/10.3389/fimmu.2022.1027631
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.1027631
gene-set enrichment analysis (ssGSEA), xCell, ESTIMATE, and

other algorithms were employed to collect the largest number of

immune signatures, and 109 immune signatures were utilized to

comprehensively characterize the immune landscapes of

GBM subtypes.

Initially, we focused on constructing an immune signature-

based model for the accurate recognition of different GBM

subtypes using ML methods. Among 109 features, 61 were

proved to yield great contributions to the identification of three

GBM subtypes, and the RBF-based support vector machine

(SVM) gives the best diagnostic performance. Moreover, the

prognostic values of these 61 optimal immune features were

determined, and a prognostic risk model was established for the

OS prediction of GBM patients based on 13 survival-associated

immune signatures using multivariate Cox regression analysis. A

complete differential analysis across GBM subtypes was then

performed on the optimal immune characteristics. Moreover,

clinicopathological and molecular features were also considered

for comparisons of the three subtypes. Analyses of exhausted

CD8+T cells and anti-PD-1 immunotherapy response were also

conducted. Eventually, based on the differential upregulated

genes of MES compared to CL and PN samples, gene-set

cancer analysis (GSCA) and connectivity map (CMap) analysis

were also performed to achieve potential antitumor drugs or

small molecules for MES patients.
Materials and methods

Data collection and preprocessing

GBM samples are commonly classified into four subtypes

CL, MES, PN, and neutral (NE), respectively. Currently, only a

few NE samples are available, so we mainly considered the three

classes of CL, MES, and PN. We downloaded three gene

expression profiling datasets along with the corresponding

clinical information for the three subtypes, including

TCGA-GBM from the TCGA data portal (https://portal.gdc.

cancer.gov/), the Gravendeel microarray dataset from the

GlioVis database (http://gliovis.bioinfo.cnio.es/), and the Wang

RNA-seq dataset (25), respectively. After deleting samples

without either expression data or clinical information, 397

eligible GBM samples remained, consisting of 131 CL, 140

MES, and 126 PN samples. Firstly, the missing gene

expression data in the Wang RNA-seq dataset were

complemented by the K-nearest neighbor (KNN) method.

These gene expression data were then transformed into

transcripts per kilobase million (TPM) format so as to

calculate immune characteristics. Finally, the ComBat method

from the “SVA” R package was used to remove the batch effects

among three different datasets.
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Immune landscape construction

Here, we aim to collect the largest number of immune

characteristics to construct comprehensive immune landscapes

for GBM samples. By performing a deep exploration of the

literature, various immune characteristics were acquired,

including 28 tumor-infiltrating lymphocytes, 64 immune and

stromal cells, the cytolytic score (CYT score), the T-cell

infiltration score (TIS score), the immune score, the stromal

score, tumor purity, the innate and adaptive immune scores, the

immune checkpoint gene score (ICG score), the APM score, the

T-cell exhaustion markers, and the corresponding genes of

glioma antigens.

Firstly, the ssGSEA algorithm was employed to quantify the

relative abundances of 28 tumor-infiltrating lymphocytes, the

TIS score, the innate and adaptive immune scores, and the APM

score. The gene sets for 28 tumor-infiltrating lymphocytes were

obtained from the TISIDB database (http://cis.hku.hk/TISIDB/),

and those for calculating the TIS score were from the studies of

Şenbabaoğlu et al. (26). From the work of Charoentong et al.

(27), a set of genes that mark each infiltrating immune cell type

were obtained for innate and adaptive immune scores. These

gene sets are shown in Supplementary Tables S1–S3. For the

APM score, the following genes were collected for estimation of

the APM signature: PSMB5, PSMB6, PSMB7, PSMB8, PSMB9,

PSMB10, TAP1, TAP2, ERAP1, ERAP2, CANX, CALR, PDIA3,

TAPBP, B2M, HLA-A, HLA-B, and HLA-C (18).

The abundances of 64 various cell types were then achieved

using the “xCell” R package (28). The CYT score, representing

cytolytic activity, was calculated as the geometric mean of two

genes’ expression, including GZMA and PRF1 using the

established methodology by Takahashi et al. (8). The

ESTIMATE algorithm was used to evaluate the immune score,

stromal score, and tumor purity of each GBM sample for

determining the immune infiltration level in the tumor. We

computed the average expression value of six immune

checkpoint genes, including PDCD1, CD274, CTLA4,

HAVCR2, LAG3, and TIGIT, as the ICG score of every

GBM sample.

Moreover, we also assessed the expressions of T-cell

exhaustion markers and corresponding genes of glioma antigens

(6). They are composed of 11 genes (PDCD1, CD274, CTLA4,

IDO1, IDO2, LAG3, HAVCR2, PDCD1LG2, TIGIT, ADORA2A,

and VTCN1) and 17 genes (EGFR, ERBB2, BIRC5, NCL, EPHA2,

TERT, CCNB1, SART1, DSE, SART3, AIM2, TYRP1, TYR,

MGAT5, PMEL, MLANA, and MAGEA1), respectively.

Finally, after deleting the overlaps between 28 tumor-

infiltrating lymphocytes and 64 immune and stromal cells, a

total of 109 immune signatures were achieved (Table 1) and then

normalized by z-score for further integrative immunogenomic

analysis. Details can be seen in Supplementary Table S4.
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Evaluation and selection of
immune features

In order to select the distinctive immune features for

distinguishing three GBM subtypes, support vector machine

recursive feature elimination (SVM-RFE) was used to evaluate

all 109 signatures. SVM-RFE is a backward feature deletion

method based on SVM, and it recursively removes the features

with the lowest weights that are computed after the SVM

learning model is built (29). On account of its superiority,

SVM-RFE has been widely adopted for feature selection of

genomics, proteomics, and metabolomics data (30). To

perform a reliable and convincing feature evaluation, SVM-

RFE was implemented 100 times on 109 immune signatures,

and those retained more than 50 times were selected as the

distinctive ones.
ML methods for diagnostic prediction of
GBM subtypes

In order to give an optimal model for diagnostic prediction

of GBM subtypes, based on the selected immune signatures by

SVM-RFE, the four most widely used ML methods were adopted

for model construction, including support vector machine

(SVM), random forest (RF), extreme gradient boosting

(XGBoost), and artificial neural network (ANN), respectively.
SVM

Proposed by Vapnik in 1992 (31), SVM is a widely used ML

method in bioinformatics due to its high accuracy and ability to

deal with high-dimensional data (32). As a powerful method for
Frontiers in Immunology 04
building a classifier, the basic idea behind it is creating a decision

boundary between two classes that enables the prediction of

labels from one or more feature vectors (33). It has been used

successfully in various cancer identification and subtyping,

including breast cancer (34), lung cancer (35), lymphoma

cancer (36), adult soft tissue sarcoma (37), and others. For the

SVM method, four currently available kernel functions of

“linear,” “polynomial,” “RBF,” and “sigmoid” were all used to

construct prediction models, respectively.
RF

Provided by Beriman et al. in 2001 (38), RF is a classification

and regression method based on the aggregation of a large

number of decision trees. It is an ensemble method that grows

trees as base learners and combines their predicting results by

averaging; in other words, the ultimate prediction is determined

by the votes of all the trees for a binary task (39, 40). RF is known

for its great practical performance, particularly in high-

dimensional settings, and has become a standard data analysis

tool in bioinformatics (41).
XGBoost

As a regression tree that has the decision rules as a decision

tree, the XGBoost algorithm was first proposed by Chen et al.

(42). It can be used for regression, classification, and ranking

problems. It is a MLmodel that integrates multiple weak learners

to achieve a stronger learning effect (43). Compared with other

traditional ML algorithms, XGBoost is highly scalable and

flexible. It has been shown to perform exceptionally well in a

variety of tasks in bioinformatics and medicine (44).
TABLE 1 List of 109 immune signatures collected in this paper.

Feature
type

Detailed signature names

Immune and
stromal cells

Activated B cell, activated CD4 T cell, activated CD8 T cell, CD56bright natural killer cell, CD56dim natural killer cell, myeloid-derived suppressor cell,
T follicular helper cell, Type 17 T helper cell, aDC, adipocytes, astrocytes, B cells, basophils, CD4+ memory T cells, CD4+-naive T cells, CD4+T cells,
CD4+ Tcm, CD4+ Tem, CD8+-naive T cells, CD8+T cells, CD8+ Tcm, CD8+ Tem, cDC, chondrocytes, class-switched memory B cells, CLP, CMP,
DC, endothelial cells, eosinophils, epithelial cells, erythrocytes, fibroblasts, GMP, hepatocytes, HSC, iDC, keratinocytes, ly endothelial cells,
macrophages, macrophages M1, macrophages M2, mast cells,megakaryocytes, melanocytes, memory B cells, MEP, mesangial cells, monocytes, MPP,
MSC, MV endothelial cells, myocytes, naive B cells, neurons, neutrophils, NK cells, NKT, osteoblast, pDC, pericytes, plasma cells, platelets,
preadipocytes, pro-B cells, sebocytes, skeletal muscle, smooth muscle, Tgd cells, Th1 cells, Th2 cells, Tregs

Immune-
related scores

CYT score, TIS score, ICG score, APM score, stromal score, immune score, tumor purity, adaptive immune score, innate immune score

T-cell
exhaustion
markers

PDCD1, CD274, CTLA4, IDO1, IDO2, LAG3, HAVCR2, PDCD1LG2, TIGIT, ADORA2A, VTCN1

Corresponding
genes of glioma
antigens

EGFR, ERBB2, BIRC5, NCL, EPHA2, TERT, CCNB1, SART1, DSE, SART3, AIM2, TYRP1, TYR, MGAT5, PMEL, MLANA, MAGEA1
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ANN

Inspired by the early models of sensory processing by the

brain, ANN is created by stimulating a network of model

neurons in a computer (45). The elementary building blocks of

ANN are artificial neurons, and nodes in the neural network can

be mostly divided into three layers: the input layer, the output

layer, and one or more hidden layers (46). Due to the high

parallelism, robustness, generalization, and noise tolerance of

ANN, it has been applied in various domains, and within cancer

research alone, ANN can be applied to disease diagnosis, image

processing, and treatment-response forecasting (47).
Model construction and
performance evaluation

Usually, the ML methods are for binary classification. Here,

a multiple-label vector was used to construct the triple-class

classifier. For CL samples, the label vector is [1 0 0], MES is [0 1

0], and PN is [0 0 1]. The performance of the models developed

by different ML algorithms is closely related to the

hyperparameters. In order to optimize the hyperparameters of

each classifier, we carried out the grid search approach and

fivefold cross-validation. Finally, the model was fitted on the

training set with the optimal parameters and then evaluated on

the corresponding testing set. For each model, 397 GBM patients

were randomly divided into training and testing sets according

to the ratio of 8:2. Meanwhile, in order to prove the stability of

each model, the data division was repeated 50 times, so 50

different training sets and corresponding testing sets were

generated. The performance of each classification model was

assessed by averaging the accuracy (ACC), Precision, Recall, and

F1 scores from the 50 testing sets. Here, four ML methods could

give seven different classifiers, and the optimal one with the best

performance would be selected as the final classifier. The

following are the equations of four evaluation parameters:

ACC =
TP + TN

TP + FP + TN + FN
(1)

Pr ecision =
TP

TP + FP
(2)

Re call =
TP

TP + FN
(3)

F1 =
2 ∗Pr ecision ∗Re call
Pr ecision + Re call

(4)

Where TP, FP, TN, and FN are true positive, false positive,

true negative, and false negative, respectively.
Frontiers in Immunology 05
Differential analysis among
GBM subtypes

To explore the differences among the three GBM subtypes,

we analyzed the associations between GBM subtypes and

immune, molecular, and clinical characteristics, respectively.

We investigated the difference in immune signatures among

three GBM subtypes using the Kruskal–Wallis test (K-W test),

and a two-sided p< 0.05 is considered a significant difference.

The Kaplan–Meier curve was calculated to detect if there were

survival differences among subtypes. Moreover, the divergence

of isocitrate dehydrogenase (IDH) mutation status and

methylguanine methyltransferase (MGMT) promoter

methylation status among the three subtypes of patients was

studied. Gene-set variation analysis (GSVA) was executed by the

“GSVA” package to acquire the GSVA scores of biological

pathways and GO terms of each GBM patient. The “limma”

package was used to investigate significantly differential

pathways and GO terms between three GBM subtypes, and

those with an adjusted p-value of< 0.05 were considered

statistically significant.
Development of prognostic model by
immune features and survival analysis

A univariate Cox regression analysis was performed to

analyze the relationships between immune characteristics and

the OS of GBM patients. The immune features that were

significantly associated with the GBM OS in the univariate

Cox regression analysis were then entered into a step-wise

multivariate Cox regression analysis using the “survminer” R

package to select the key immune features with great prognostic

values. In addition, the immune signatures with p-value of< 0.05

were used to build the prognostic model. The risk score of each

GBM patient was calculated by the following formula:

Risk score =o
n

i=1
bi ∗ IFi (5)

Where bi is the regression coefficient and IFi is the value of the
corresponding immune features. According to the cutoff value

determined by X-tile, GBM patients were divided into high-,

medium-, and low-risk groups. The Kaplan–Meier method and

log-rank tests were implemented to estimate the differences in OS

among subgroups. Furthermore, receiver operating characteristic

(ROC) analysis was performed to investigate the prognosis

performance of the model, and area under the ROC curve

(AUC) values were calculated. Meanwhile, the stratified analysis

was performed to determine whether the prognostic signature is

independent of other clinical variables, including gender, age, IDH

status, and MGMT status, respectively.
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Identification of gene signatures for
exhausted CD8+T cells

T-cell exhaustion is a hypofunctional state characterized by

the accumulation of multiple co-inhibitory checkpoint receptors

consisting of PD1, CTLA4, TIM3, and LAG3 (48). We acquired

the upregulated PD-1-positive gene list by selecting differentially

expressed genes between PD-1-high and PD-1-negative CD8+T

cells from the work of Cai et al. (49). The list incorporates 478

genes in our whole dataset (Supplementary Table S5). To define

a gene expression signature of exhausted CD8+T cells, Pearson’s

correlation analysis was implemented to assess the relationship

between these upregulated genes and PDCD1. A list of genes

with correlation efficiency of > 0.25 and adjusted p-value of<

0.05 was considered the gene signature for exhausted CD8+T

cells, and the gene signature was used to conduct ssGSEA to

obtain the ssGSEA score as an exhausted CD8+T cell (GET)

score. Here, a higher GET score indicates the better

immunotherapy response.
SubMap analysis

To further investigate the immunotherapy responses of

patients with different GBM types, SubMap analysis (50) was

used to compare gene expression matrices of different subtypes

with those from other cancers treated with immune checkpoint

blockade therapy, including transcriptomic data from 65

patients receiving anti-PD1 therapy (51) by implementing the

subclass mapping method. This step was implemented on the

SubMap module of the GenePattern website (http://genepattern.

broadinstitute.org/) with default parameters (num marker genes

= 100, num perm = 100, and num perm Fisher = 1,000).
Drug sensitivity prediction

We enforced the Wilcoxon test to screen out the upregulated

genes of MES compared to CL and PN patients with log2FC of >

2 and adjusted p-value of< 0.05. Drug sensitivity prediction was

carried out using “Drug Sensitivity of Gene Set Cancer Analysis”

(GSCALite, http://bioinfo.life.hust.edu.cn/web/GSCALite/) with

those upregulated hub genes as input. GSCA integrates drug

sensitivity and gene expression profiling data from cancer cell

lines in Genomics of Drug Sensitivity in Cancer (GDSC) and

Cancer Therapeutics Response Portal (CTRP). It predicts the

drug response based on the calculated correlation between

mRNA express ion and drug with 50% inhib i tory

concentration (IC50) (52). The negative correlations mean that

the predicted drugs have potential activity.

In addition, these upregulated genes were also uploaded to

the CMap online tool (https://clue.io) to predict the effect of

drugs on particular gene expression patterns in tumors. The
Frontiers in Immunology 06
result of CMap provides a score from −100 to 100 to estimate the

match between the interested genes and chemicals, and bioactive

chemicals with a negative score might be candidate drugs for the

treatment of patients.
Results

Extracting optimal immune
signatures and comparisons of
different ML methods

Through performing SVM-RFE 100 times on the 109

immune signatures, those that were retained with more times

could probably contribute more to the identification of three

GBM subtypes. There are 73 signatures retained more than 50

times in our experiment, so they were selected for comparisons

of different ML methods.

In order to give convincing comparisons, the whole dataset

was divided into training and testing sets 50 times in an 8:2 ratio.

Based on each training set, fivefold cross-validation was used to

build the model, and the performance of the model was tested by

the testing set. For seven different ML methods, the overall

performance was compared by averaging those of 50 different

testing sets. The comparison results are summarized in

Figure 1A. We can see that compared to RF, XGBoost, and

ANN, the SVM algorithm shows better prediction performance.

Although the four different kernel function-based SVM models

give comparable results, the RBF-based model exhibits slightly

higher ACC and F1 values than the other three models. Since

RBF has been the most widely used kernel for resolving

nonlinear classification problems, RBF-based SVM was

selected as the optimal classifying algorithm.

Using the RBF-based SVM model, the diagnostic ability of

these 73 signatures was further evaluated. In order to evaluate

the performance of different feature subsets for GBM subtypes

identification, additional four feature subsets containing 64, 61,

55, and 38 signatures were also extracted to construct classifiers.

They were retained at least 70, 80, 90, and 100 times,

respectively, by SVM-RFE. Figure 1B shows the performance

of RBF-based SVM models based on five feature subsets,

respectively. The AAC and F1 values of each model are the

averages of 50 testing sets. It is observed that in Figure 1B, the

model based on 61 immune signatures retained at least 80 times

showed significantly superior performance than others. It yields

the highest ACC and F1 values of 0.8605 and 0.8599,

respectively. So, the optimal model of RBF-based SVM with 61

signatures (Supplementary Table S6) was obtained. Moreover,

the robustness of this model was also confirmed by the

prediction results of 50 individual testing sets, which is shown

in Figure 1C. The distributions of ACC and F1 values indicate

that the 50 models all give a slightly varying performance,

although they were constructed based on different training
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sets. The standard deviation (std) values are both only 0.026. So,

the selected optimal model is robust.
Construction of the final classifier

Since the best ML method of RBF-based SVM and the

optimal feature subset with 61 immune signatures were

selected, the final classifier was constructed using 10-fold
Frontiers in Immunology 07
cross-validation on the whole dataset, including 397 GBM

samples. The prediction results of the final classifier are shown

in Table 2, indicating a promising prediction performance. The

ACC, Precision, Recall, and F1 scores in 10-fold cross-validation

are 0.8538, 0.8519, 0.8621, and 0.8525, respectively. Especially,

the Precision and Recall values for the MES subtype are 0.9071

and 0.8841, respectively, indicating the high recognition success

rate for MES by the final classifier, so the final classifier gives

satisfactory performance for resolving the triple-class problem.
A

B C

FIGURE 1

(A) Performance comparisons of different ML models based on 73 immune signatures retained at least 50 times in SVM-RFE 100 times. The ACC
and the F1 values of each model are the averages of those for 50 different testing sets generated by randomly dividing each subtype dataset into
training and testing sets 50 times. (B) Comparisons of RBF-based SVM models based on five feature subsets containing immune signatures
retained at least 50, 70, 80, 90, and 100 times, respectively. The ACC and the F1 values of each model are the averages of those for 50 different
testing sets generated by randomly dividing each subtype dataset into training and testing sets 50 times. (C) The distributions of ACC and F1
values of 50 different testing sets based on the RBF-based SVM model with 61 optimal immune signatures retained at least 80 times.
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Prognostic value determination and
establishment of immune signature-
based risk score

We explored the potential prognostic values of 61 immune

characteristics employed in the diagnostic classifier. The prognostic

value determination was performed on all GBM samples by

univariate Cox regression analysis. The forest plot in Figure 2A

demonstrates that there are 26 immune signatures that are

significantly associated with the OS of GBM. Stepwise

multivariate Cox regression analysis was then implemented to

further select an optimal combination from these 26 immune

signatures. Thus, 13 were identified and used to construct the risk

score classifier model. Based on the risk score model, we divided

patients into high-, medium-, and low-risk groups using cutoff risk

scores determined by X-tile. From the Kaplan–Meier curve analysis

in Figure 2B, it can be seen that high-risk patients have a shorter

survival rate compared to those in the medium- and low-risk

groups (p< 0.0001). The ROC curves in Figures 2C–E indicate

that an immune signature-based risk score could sensitively predict

OS with AUC values of 0.663, 0.781, and 0.903 for 1-, 3-, and 5-year

OS, respectively. In addition, as shown in Figures 2F, G, univariate

andmultivariate Cox regression analyses revealed that the risk score

developed by us is independent of MGMT status and age. So these

immune signatures could be the prognostic indicators for GBM

patients’ OS.
Differences across GBM subgroups on
immune, clinical, and molecular features

Since the immune signatures have been proven to give

diagnostic and prognostic values, a differential analysis was

performed on them among the three subtypes. Moreover, the

clinicopathological characteristics and molecular functions of

three subtypes were also proposed. Figure 3A displays the

heatmap of clinical and immune-related features across three

subgroups. It is clear that the proportion of MES patients with

IDH mutations is much lower than that of IDH-mutant PN

patients. Exactly, there are seven of 131 CL patients, nine of 140

MES patients, and 25 of 126 PN patients with IDH mutations.

The previous study has shown that IDH-mutant GBM patients

are enriched in the PN subgroup, and those with IDH mutations
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show a better prognosis than IDH-wildtype cases (53).

Moreover, 30 of 131 CL patients, 29 of 140 MES patients, and

29 of 126 PN patients have methylated MGMT promoter, so the

percentage of PN patients with methylated MGMT promoter is

higher than those of CL and MES; to be more exact, MGMT

promoter methylation status has been indicated to be associated

with better survival in GBM (54). As shown in Figure 3B, the

Kaplan–Meier curve analysis reveals that PN patients have a

favorable prognosis of OS, which was consistent with previous

studies. So, based on the clinical difference between the three

subtypes, we can conclude that PN samples exhibit better

prognosis than the other two subtypes.

For the nine major immune-associated scores shown in

Figures 3C–E, compared to CL and PN, MES has been

revealed to have higher CYT, ICG, APM, adaptive immune,

innate immune, immune, and stromal scores. As seen in

Figure 3F, except for LAG3, the other four T-cell exhaustion

markers are all differentially expressed among three types with p-

values of<0.0001, although FC values did not exceed 2. Among

them, HAVCR2 and PDCD1LG2 are significantly upregulated,

while ADORA2A is downregulated in the MES subtype. The

differences in antigens are displayed in Figures 3G, H which

indicate that there is only one antigen, DSE, that is

overexpressed within the MES subset. Inversely, several

antigens are significantly overexpressed in CL and PN subsets,

containing AIM2, BIRC5, MAGEA1, MGAT5, and SART1 in

the PN subset and EPHA2, ERBB2, and EGFR in the CL subset.

Given the vital role of TIME, the associations between GBM

subtypes and immune infiltration were explored. Figures 3I, J

illustrate that most immune cells and stromal cells used for

constructing the final classification model have remarkable

differences in proportions across three GBM subtypes.

Compared with CL and PN, MES has a significant higher

percentage of myeloid-derived suppressor cells (MDSC), T

follicular helper cells, astrocytes, fibroblasts, and macrophages

but a much lower proportion of CD56bright natural killer cells

and CD56dim natural killer cells. It is consistent with the

research by Maria et al. (6) that GBM gives high levels of

intratumor heterogeneity in immune infiltration and MES has

the highest proportion of macrophage and lymphocyte

infiltration. Furthermore, it has been reported that MDSCs can

inhibit the immune response by inhibiting the antitumor activity

of cytotoxic T cells, NK cells, macrophages, and dendritic cells
TABLE 2 The prediction results of the final classifier constructed by RBF-based SVM using a 10-fold cross-validation test on the whole
dataset (397 samples).

GBM subtypes ACC Precision Recall F1

CL – 0.8467 0.8151 0.8306

MES – 0.9071 0.8841 0.8955

PN – 0.8019 0.8870 0.8423

Overall 0.8538 ± 0.0280 0.8519 ± 0.0297 0.8621 ± 0.0229 0.8525 ± 0.0292
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1027631
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.1027631
while inducing Tregs and Bregs, and increased circulating

MDSCs are relevant with poor prognosis and survival in GBM

patients (55, 56). The accumulation of MDSCs may induce

immunosuppressive mechanisms and lead to GBM

progression (57). Astrocytes, the main component of the GBM

microenvironment, actively participate in the development of

this disease through modulation of, for example, migration,

invasion, angiogenesis, and therapeutic resistance (58, 59). As
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the major components of the cancer stroma in solid organ

tumors, fibroblasts are called cancer-associated fibroblasts

(CAFs), and a variety of biologically active substances,

including proteins of the extracellular matrix and growth

factors produced by them, may promote glioma cell growth

(60). Moreover, CAFs may have a significant role in the

invasiveness of GBM and may cause resistance to traditional

therapy (9). The findings of Di Ianni et al. reveal that
A B

D E

F G

C

FIGURE 2

Construction and evaluation of the risk prognostic model based on immune features for GBM patients. (A) Forest plot summary of univariate
Cox regression analysis of immune features significantly associated with overall survival. (B) Kaplan–Meier survival analysis of GBM patients that
were divided into high-, medium-, and low-risk groups using a cutoff determined by X-tile. (C–E) ROC validation of the prognostic value of the
predictive signature for predicting 1-, 3-, and 5-year survival of GBM patients, respectively. (F) Forest plot summary of the univariable analysis of
IDH status, MGMT status, gender, age, and risk score. (G) Forest plot summary of the multivariable analysis of risk score, IDH status, MGMT
status, and age. Here, the wildtype and mutant status of IDH and the unmethylated and methylated status of MGMT promoter were both
converted to 1 and 0 respectively.
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macrophages play a vital role in GBM relapse in a significantly

immunosuppressive context (61). The previous study has shown

that tumor-associated macrophages comprise 36.39% of the

tumor tissue cells and have a subtype-specific role in GBM

(62). According to the above findings, we can speculate that MES

may be more immunosuppressive than CL and PN subtypes.

Lastly, the dysregulated biological functions and signaling

pathways were investigated by GSVA analysis. Overall, there is

no obvious difference between CL and PN, but MES gives a

significant difference from CL and PN, respectively, as shown in
Frontiers in Immunology 10
Figures 4A, B. For KEGG pathways, the immune-associated

pathways are highly enriched in MES, such as complement and

coagulation cascades, the NOD-like receptor signaling pathway,

leukocyte transendothelial migration, and Toll-like receptor

signaling pathway. Moreover, interleukin 10 signaling,

signaling by interleukin, interleukin 4, and interleukin 13

signaling are also enriched in MES, suggesting a significant

association with immune and inflammation responses in MES

patients. Except for immune-related Reactome terms, MES is

also involved in cancer-associated Reactome terms, such as
A B
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FIGURE 3

Landscapes of tumor immune microenvironment and clinicopathological characteristics of three GBM subtypes. (A) Heatmap depicting the
association between GBM subtypes and immune cell infiltration. (B) The Kaplan–Meier curve for the OS of 397 GBM patients in three GBM
subgroups. (C–E) Box plots for exploring the differences of CYT, ICG, APM, TIS, adaptive immune, innate immune, immune and stromal scores,
and tumor purity among GBM subtypes. (F) Differences in the expressions of T-cell exhaustion markers between the three GBM subtypes.
(G, H) Differences in the expressions of glioma antigens across the three GBM subtypes. (I, J) Different proportions of various immune and
stromal cells in the GBM subgroups. For all box plots, the Kruskal–Wallis test was used to determine the significance of differences among GBM
subtypes, and p-values are shown on the top of each box plot. *p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001; ns, no significant difference.
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A

B

FIGURE 4

Analysis of the differences in the enrichment scores of KEGG pathways, Reactome categories, and GO terms demonstrated by GSVA among
GBM subtypes. (A) Heatmap describing the top 10 significantly differential signatures, including KEGG pathways, Reactome, and GO terms
between MES and CL. (B) Variants in KEGG pathways, Reactome categories, and GO terms between MES and PN.
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regulated necrosis, integrin cell surface interactions, regulation

by c-FLIP, and extracellular matrix organization, which indicates

that patients within MES may be inclined to apoptosis and

migration. In addition, immune-related biological processes,

such as T helper 2 cell differentiation, regulation of T helper 1

cell differentiation, regulation of T helper 1 type immune

response, and regulation of macrophage activation, and

cancer-associated biological processes of I-kappaB kinase/NF-

kappaB signaling, as well as cell–cell adhesion mediated by

integrin, are also enriched in the MES subset. For molecular

function, MES is correlated with those that are associated with

cancer cell migration and immune response, such as fibronectin

binding, cytokine binding, integrin binding, and cytokine

receptor binding. Based on the above results, the MES subtype

is probably more proinflammatory and invasive than others.
Analysis of the status of exhausted CD8
+T cells and anti-PD-1 immunotherapy
response prediction

Exhausted CD8+T cells are uniquely marked by distinct PD-

1 upregulation. A GET signature was constructed, including 21

genes showing significantly positive correlations with PD-1

levels. They are CD27, SIRPG, CXCR6, ICOS, RUNX2,

TNFRSF9, CD70, CD200R1, CD80, TNS3, KIR2DL4, ZBED2,

TNIP3, SEMA4A, BATF, TIGIT, VDR, CTLA4, LAG3, KLRB1,

and TNFRSF18, respectively. Among them, some are closely

correlated to T-cell dysfunction and coregulation, such as CD27,

ICOS, RUNX2, CTLA4, etc. Thus, the GET score of each patient

was established using the ssGSEA method. We compared the
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GET score distributions of samples in three subtypes to

quantitatively illustrate the status of exhausted CD8+T cells in

each subtype. Figure 5A shows that there are significant

differences in average GET scores across CL, MES, and PN. In

particular, GET scores of patients within the MES subtype are

remarkably higher than others, suggesting that patients with the

MES subtype may have a positive effect on the immunotherapy

response. Thus, relationships between the GET scores of MES

samples and APM score, CYT score, innate immune score,

stromal score, TIS score, and tumor purity were further

estimated (Figures 5B–G). We can see that the GET score

yields positive correlations with the APM score, CYT score,

innate immune score, and stromal score, but negative

correlations with the TIS score and tumor purity. It has been

pointed out that the APM score is associated with inflammatory

activities, whereas cytolytic activity represented by the CYT

score is relevant to T-cell exhaustion to make the inflamed

TME (18, 49). Therefore, we could draw the conclusion that

there are probable coordinate interactions among T-cell

exhaustion, antigen presentation, and cytolytic activity that

could shape the high inflammation in the TME of MES.

The anti-PD-1 immunotherapy response prediction was

then conducted. Based on the SubMap analysis, MES patients

share a higher similarity with the expression profile of patients

that are responsive to PD-1 inhibitor treatment (p = 0.021) in

Figure 5H, so patients belonging to the MES subtype may have

significantly better anti-PD-1 responses than others of CL and

PN. In fact, previous studies have indicated that patients with

high CYT/ICG/APM scores may respond particularly well to

immunotherapy, such as immune checkpoint blockade (18, 63).

These findings further demonstrate that MES patients with
A B D
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C

FIGURE 5

(A) Comparisons of GET scores among the three GBM subtypes. (B–G) The correlations between GET score and the APM, CYT, innate immune,
stromal, TIS scores, and tumor purity, respectively, in MES patients by Pearson’s correlation analysis. (H) Immunotherapy response prediction by
SubMap analysis indicates a significant difference in anti-PD1 therapy response across the GBM subtypes.
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higher CYT/ICG/APM scores may have a better potential

response to anti-PD-1/L1 immunotherapy.
Drug sensitivity prediction and
determination of therapeutic drugs

Genes with expressions influencing clinical response to drug

treatments may be potential biomarkers for drug screening

expressions. Since patients within the MES subtype show high

immune heterogeneity compared to CL and PN, the potential

drugs for MES were finally explored. Firstly, we screened the
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upregulated genes of MES and calculated the correlations

between upregulated gene expressions and drug sensitivity-

associated expression profiles from the GSCA database. The

results in Figure 6A indicate that the overexpression of most

genes is negatively correlated with the IC50 values of most drugs

in GDSC. Among them, 17-AAG, docetaxel, and erlotinib are the

top three most negatively related drugs, and all of them are

already used in clinical treatments. It has been confirmed that 17-

AAG is able to inhibit the growth of both human glioma cell lines

and glioma stem cells in vitro and could cross the BBB because of

its highly lipophilic nature, suggesting that GBM patients may

benefit from 17-AAG either as a single agent or in combination
A B
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C

FIGURE 6

Drug sensitivity evaluation based on hub genes and potential drug prediction for patients within the MES subtype. (A) The bubble plot showed
the correlation between the mRNA expression of genes that were upregulated in the mesenchymal subtype and GDSC drug sensitives.
(B–D) Structures of the three most significant bioactive chemicals sharing common MOA of MEK inhibitor by CMap analysis.
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with other drugs (64–66). As a semisynthetic taxane, docetaxel is

a class of anticancer agents that bind to and stabilize

mocrotubules, thereby causing cell-cycle arrest and apoptosis

(67). For GBM, although docetaxel could inhibit brain tumor

growth following local injection in a mouse brain tumor model, it

is unable to accumulate in the brain at adequate concentrations

required for tumor regression due to the blood–brain barrier

(BBB) and consequently has not been applied to treat brain

tumor (68). However, the work by Gajbhiye et al. has revealed

that docetaxel-loaded polysorbate 80-anchored dendritic

nanoconjugate has the potential to cross BBB significantly and

can deliver a higher amount of drug to the brain for a higher

therapeutic outcome (69). Erlotinib is an inhibitor of EGFR and

has been approved to treat non-small cell lung and pancreatic

cancers and was shown to exert multifarious antineoplastic effects

in glioblastoma in preclinical studies (70, 71). Erlotinib could be

co-delivered with curcumin via nanomicelles and show anti-

GBM activity in the U87 cell line (72).

Moreover, the CMap database was used to predict potential

drugs for patients belonging to the MES subtype. CMap mode of

action (MoA) analysis disclosed a total of 43 mechanisms of

action in the top 50 compounds. It is noted that three

compounds including AS-703026, PD-0325901, and MEK1-2-

inhibitor share MEK inhibitors and target two common genes of

MAP2K1 and MAP2K2. The chemical structures of the three

compounds are shown in Figures 6B–D, and the detailed

information about them derived by CMap analysis is listed in

Table 3. AS703206 is a novel, selective, and orally bioactive

MEK1/2 inhibitor that has potent cytotoxicity on tumor cells for

the majority of patients with relapsed and refractory multiple

myeloma (73). Moreover, AS703026 could also effectively inhibit

the growth of colorectal tumor cell lines in vitro and in vivo (74).

As an ATP noncompetitive selective inhibitor of MEK1/2, PD-

0325901 displays significant antitumor effects in melanoma,

head and neck, and BRAF-mutated papillary thyroid cancer

(75, 76). It has been reported that PD-0325901 could block the

dispersal of GBM by inhibiting the MAPK/EPK pathway, so it is

a promising candidate drug as a treatment for intracranial

malignancies (77, 78).
Discussion

GBM is a common intracranial tumor with a high degree of

malignancy, fast growth, a high frequency of recurrence, and few
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long-term survivors (79). At present, the standard of care (SOC)

management of GBM is based on the maximum safe surgical

removal, radiotherapy, and chemotherapy with temozolomide.

However, patients with GBM still have a poor prognosis, and

SOC will lead to irreversible toxicity, such as neurological deficits

due to surgery, neurocognitive impairments with radiotherapy,

and systemic toxicity (80, 81). It has been confirmed that

immunotherapy is highly effective in inhibiting cancer

regression and improving patient quality of life (16). However,

GBMs exhibit a high degree of inter- and intratumor

heterogeneity. Different GBM subtypes exhibit different

characteristics of immune landscapes. Hence, a complete

understanding of the immune landscape of patients within

different GBM subgroups may be beneficial for personalized

therapeutic strategies. However, no comprehensive analysis of

the immune landscapes of GBM subtypes by integrating various

immune characteristics has been reported.

In the present study, we tried to collect a variety of immune

signatures to describe the immune landscape of GBM. The

comprehensive immune landscape, including 109 immune

characteristics, was established for 397 GBM samples compiled

from different datasets. Among the 109 immune signatures, 64

immune and stromal cell infiltrations can systematically

represent the TME of GBM. The various immune-related

scores were calculated. For example, the CYT score assesses

the cytotoxic T-cell infiltration, the TIS score quantifies T-cell

infiltration levels, the APM score estimates the immunogenicity

of tumor cells, the ICG score figures immune checkpoint genes

expression, the innate and adaptive immune scores evaluate the

levels of innate and adaptive immune activity, and the immune

and stromal score represents the overall level of immune and

stromal cells. Moreover, T-cell exhaustion markers (11 genes)

and 17 genes of glioma antigens were also achieved for the

integrative immunogenomic analysis.

The accurate recognition of GBM subtypes is essential for

the precise diagnosis and correct treatments of GBM. Here, ML

methods were proposed to construct an optimal immune

feature-based classification model for simultaneously

distinguishing three GBM subtypes of CL, MES, and PN,

respectively. Usually, when there are too many features in an

ML model, there may be some that are redundant or irrelevant,

which probably reduces the classification performance of the ML

model. Feature selection could obtain a high-quality feature

subset by removing irrelevant and redundant data (82). A

high-quality feature subset could improve learning accuracy,
TABLE 3 Three bioactive compounds with one common action mode by CMap analysis.

Name Score Description Target MOA

AS-703026 −99.58 MEK inhibitor MAP2K1, MAP2K2 MEK inhibitor

PD-0325901 −98.73 MEK inhibitor MAP2K1, MAP2K2 MEK inhibitor, MAP kinase inhibitor, and protein kinase inhibitor

MEK1-2 inhibitor −98.03 MEK inhibitor MAP2K1, MAP2K2 MEK inhibitor
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reduce computational overload, and simplify learning results

(83); hence, feature selection is the key step in model

construction. The diagnostic values of these collected immune

signatures were investigated using SVM-RFE, and 61 optimal

immune signatures were selected. Seven different ML methods

were compared, and the RBF-based SVM model gives the best

performance, with an overall prediction accuracy of 85.38% in

the final model by 10-fold cross-validation. For the MES

subtype, the recognition precision is as high as 0.9071,

indicating the high diagnostic value of these immune

signatures. In addition, there have been existing ML models

for GBM subtype classification based on different data; for

example, Munquad et al. (84) utilized transcriptome and

methylome data to construct classifiers through several ML

algorithms, and the best model presents an accuracy of 87.5%

on the testing data and 94.48% on external data. Macyszyn et al.

(85) employed magnetic resonance imaging and the ML method

to identify molecular subtypes in GBM with a prediction

accuracy of 76%. Zhang et al. (86) constructed an SVM

classifier for dividing GBM into seven subtypes based on DNA

methylation status with an overall accuracy of 85.2% on the

independent test dataset. It can be observed that our classifier

based on immune signatures yields comparable performance

with the existing ML models based on other feature information.

However, so far, no other research has been reported combining

immune features and ML algorithms for GBM subtypes

classification. The model constructed by us could be a

promising supplementary tool for the accurate recognition of

GBM subtypes.

The clinical relevance of the 61 immune features in GBM

was assessed by survival analysis, and 26 of them were found to

be correlated with the OS of GBM patients. Therefore, a

prognostic signature was constructed for predicting GBM’s

OS. The Kaplan–Meier analysis suggests significant differences

in survival times among high-, medium-, and low-risk patients.

Furthermore, the ROC analysis proved that the prognostic

signature could precisely predict long-term survival than

short-term survival of GBM patients, with an AUC of 0.903

for a 5-year OS of GBM. In addition, the risk score could be an

independent, applicable prognostic indicator of GBM after

adjusting for clinical factors including gender, age, IDH, and

MGMT status. The 26 immune signatures may be potential

prognostic indicators for GBM patients’ OS.

TME of cancers has been known as a crucial aspect for

understanding antitumor response and sensitivity to

immunotherapy (15). Through analyzing the difference in

immune and stromal cell infiltration across three GBM

subgroups, it has been found that patients within MES have

much higher percentages of MDSC, T follicular helper cell,

astrocytes, fibroblasts, and macrophages, which could inhibit

immune response and promote invasion, migration, and cancer

development. Moreover, the comparisons of enriched pathways

among GBM subgroups show that a number of oncogenic and
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immune-associated pathways are significantly upregulated in

MES, such as I-kappaB kinase/NF-kappaB signaling, regulation

by c-FLIP, extracellular matrix organization, NOD-like receptor

signaling pathway, Toll-like receptor signaling pathway, and

leukocyte transendothelial migration. The activation of the I-

kappaB kinase/NF-kappaB signaling pathway could not only

lead to the induction of target genes associated with apoptosis,

cell cycle regulation, cell invasion, and metastatic growth but

also regulate cancer-related inflammation, hyperplasia, and

neoplasia (87, 88). As a master regulator of death receptor

networks, c-FLIP plays a key role in apoptosis, necroptosis,

NF-kB activation, and tumorigenesis, and high c-FLIP levels are

correlated with a more progressive tumor and critical for

inflammation (89, 90). It has been indicated that NOD-like

and Toll-like receptors are essential players in the innate

immune response to invading pathogens and are linked with

human diseases, including infections, cancer, and autoimmune

and inflammatory diseases (91). In cancer, NOD-like receptors

are initiators of the inflammasome pathway and directly

facilitate tumor cell growth and metastasis, then help prevent

any antitumor immune response (92). Toll-like receptors can

activate NF-kB and promote tumorigenesis and proliferation

(93). To sum up, these findings indicate that there is a more

immunosuppressive and inflammatory TME in the MES subtype

than in CL and PN. Fan et al. (94) have proven that patients with

a high risk of glioma are observed to retain a more activated

inflammatory state but more suppressive TME, which is

consistent with our conclusion that patients within the MES

have a poorer prognosis than those within the CL and PN.

As for the differences in immune-associated scores among

GBM subgroups, MES is revealed to have higher APM, CYT, and

ICG scores but a lower tumor purity. Chen et al. (25) show that

the APM signature score could predict an immunosuppressive

and onco-inflammatory microenvironment supporting tumor

growth and progression. In contrast to other cancers like

hepatocellular carcinoma, a high CYT score is associated with

higher expressions of immunosuppressive PD1/PDL1 axis in

GBM and also relates to worse OS. However, it has been

indicated that patients with a high CYT/ICG score may

respond particularly well to immunotherapies because GBM

patients have a complex microenvironment with increased ICG

expression and protumoral immune cell infiltration (63).

Additionally, tumor purity is observed to significantly correlate

with the reduced survival time in GBM (95). Thus, MES patients

might have a poor prognosis and be more sensitive to

checkpoint-related immunotherapy.

Meanwhile, we established a GET score to investigate the

dysfunctional immune state among GBM subtypes. MES yields a

higher GET score and gives more significant correlations

between the GET score and the APM score, CYT score, innate

immune score, stromal score, TIS score, and tumor purity,

respectively, which proves that T-cell exhaustion, antigen

presentation, and cytolytic activity may corporately shape the
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1027631
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.1027631
complex and inflamed TME in MES. Since the GET score is

correlated with better clinical benefit for ICI agents (50), MES

may have a positive effect on the immunotherapy response,

which is further confirmed by SubMap analysis, which shows

that MES patients are more likely to benefit from anti-

PD1 treatment.

Considering the high immune heterogeneity of MES,

disclosing the potential drugs may improve the medical

therapy and prognosis of MES patients. We finally examined

the drug sensitivity of several anticancer drugs based on

upregulated genes in the MES subgroup. The GSCA analysis

demonstrates that drugs such as 17-AAG, docetaxel, and

erlotinib exert antitumor activity with corresponding genes.

These drugs have been approved to treat various cancers after

extensive research. As an analog of geldanamycin, 17-AAG has

been widely investigated in the preclinical and clinical research

as a single agent or in combination/noncombination with other

anticancer agents for various cancers, such as breast cancer,

ovarian cancer, prostate cancer, glioblastoma, etc. (96).

Docetaxel has shown profound benefits in the treatment of

diverse cancers (breast, head, neck, lung, and prostate cancer),

and erlotinib have been approved to treat non-small cell lung

and pancreatic cancers (70). Moreover, used CMap was used to

disclose potential drugs for MES patients. Three compounds

(AS-703026, PD-0325901, and MEK1-2-inhibitor) were

identified that share MEK inhibitors and target two common

genes (MAP2K1, MAP2K2). However, the practical applicability

of those drugs would be experimentally confirmed in

future studies.

In summary, this study comprehensively analyzed the

immune landscape in GBM and found that the MES subtype

could be considered an immunosuppressive, proinflammatory,

and invasive subtype. However, MES has better responses to

anti-PD-1/L1 immunotherapy. This research could provide a

theoretical basis for identifying GBM subtypes by the immune

signatures, followed by the development of more effective,

targeted clinical treatment strategies, and finally, achieving

precision medicine.
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