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Immune checkpoint blockade (ICB) has gained unparalleled success in the

treatment of colorectal cancer (CRC). However, undesired side effects,

unsatisfactory response rates, tumor metastasis, and drug resistance still

hinder the further application of ICB therapy against CRC. Advancing ICB

with nanotechnology can be game-changing. With the development of

immuno-oncology and nanomaterials, various nanoplatforms have been

fabricated to enhance the efficacy of ICB in CRC treatment. Herein, this

review systematically summarizes these recent nano-strategies according to

their mechanisms. Despite their diverse and complex designs, these

nanoplatforms have four main mechanisms in enhancing ICB: 1) targeting

immune checkpoint inhibitors (ICIs) to tumor foci, 2) increasing tumor

immunogenicity, 3) remodeling tumor microenvironment, and 4) pre-

sensitizing immune systems. Importantly, advantages of nanotechnology in

CRC, such as innovating the mode-of-actions of ICB, modulating intestinal

microbiome, and integrating the whole process of antigen presentation, are

highlighted in this review. In general, this review describes the latest

applications of nanotechnology for CRC immunotherapy, and may shed light

on the future design of ICB platforms.

KEYWORDS

colorectal cancer, immune checkpoint inhibitors, nanotechnology, drug delivery,
tumor microenvironment
1 Introduction

Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths

worldwide (1, 2). CRC induced 0.94 million deaths all over the world in 2020 (3).

Moreover, more than 3.0 million new CRC cases are predicted in 2040 (2–4). To date, the

standard treatment for CRC patients still remains surgical resection, but one-third of

them are suffering from post-operative diseases. Challenges in the treatment of CRC are

the formation of distant metastasis and the development of drug resistance (4). CRC
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gradually shows no response to traditional chemotherapeutics,

thus novel therapies are urgently needed. Recently, therapy

strategies that harness the host immune system against CRC

seem to be beneficial for patients, especially those with high

mutations (5, 6).

Tumor cells utilize immune checkpoint pathways to dampen

T cell activation and evade attack by tumor-specific T cells (7).

Immune checkpoint inhibitors (ICIs) competitively bind to

checkpoint molecules and block the checkpoint-mediated

suppression of the immune system (8). Monoclonal antibodies

against checkpoint molecules such as programmed death 1

(PD-1)/programmed death ligand 1 (PD-L1) and cytotoxic T

lymphocyte antigen 4 (CTLA-4) have yielded unprecedent

success in CRC patients (9, 10). Some small-molecule

compounds that directly inhibit PD-1/PD-L1 interaction (11,

12) and its regulatory proteins, such as bromodomain and extra-

terminal domain (BET) (13, 14) and Src homology 2 domain

containing protein tyrosine phosphatase (SHP2) (15, 16), as well

as inhibitors of other immune checkpoints (CD47, CTLA-4, V-

domain Ig suppressor of T-cell activation (VISTA)) (17, 18), are

also under pre-clinical investigations. However, only highly

mutated CRC patients (about 15% of total cases) that are

mismatch repair deficient (dMMR) or exhibit high levels of

microsatellite instability (MSI-H) can benefit from ICIs. In

contrast, majority of CRC patients which are mismatch-repair-

proficient (pMMR) or microsatellite instability-low (MSI-L)

show negligible response to ICIs. Low tumor mutation and

lack of immune cell infiltration are hypothesized as underlying

mechanisms in these tumors (19–21). To date, nanotechnology

provides powerful devices to detect, diagnose, and treat cancer

(22, 23), and is considered as a potential strategy to reverse the

immune resistance of CRC (24).

Compared with conventional chemotherapeutics,

nanomedicines not only exhibit superior tumoricidal ability

and less side effects, but also present the potential to enhance

immune checkpoint blockage (ICB) therapies (25) (1): By

advancing the delivery of ICIs to CRC tumor sites,

nanotechnology can directly enhance checkpoint blockade.

During blood circulation, ICIs, especially small molecules, are

difficult to accumulate in tumor beds. Macrophage-mediated

phagocytosis system attenuates the delivery efficiency of ICIs

(13). Even after entering CRC tissues, the amphiphilic cell

membranes, lysosome degradation, and subcellular barriers

(such as nuclear membranes, mitochondrial membranes, and

endoplasmic reticulum membranes) also hinder the efficacy of

ICIs (26). On the contrary, micro and nanosized particles can

target to tumor tissue passively via the leaky tumor vasculature

or actively via binding to receptors on tumor cell surface (27).

Some systems can even deliver ICIs to certain subcellular

compartments (28) (2). By regulating the cell death pathways,

nanotechnology can transform immunologically tolerant cell

corpse into immunogenic tumor vaccines, therefore amplifying

ICIs efficacy (29, 30). Different from apoptosis, some engineered
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nano-systems can induce immunogenic cell death (ICD). In

contrast to immune escape, tumor cells undergoing ICD will

recruit antigen presenting cells (APCs), accelerate immune cells

maturation, and initiate tumor antigen specific immune

response via releasing various cytokines (31). Some other types

of cell death such as ferroptosis, pyroptosis, and necroptosis

might also be beneficial for increasing tumor immunogenicity

(32–34) (3). By reprogramming immune-suppressive tumor

microenvironment (TME), nanotechnology can revive the

functions of ICIs (35–37). In order to respond to ICB,

sufficient tumoricidal immune cell infiltration is necessary

(38). In the progress of tumorigenesis, CRC tissues constantly

release chemokines, cytokines, and exosomes as systemic factors

to remold extracel lular matrix (ECM) and recruit

immunosuppressive cells, creating an immune desert milieu,

which also terms as “cold” tumors (39, 40). Nanoparticles (NPs)

can delivery agents that cut off the immune suppressive

pathways, reversing malignant hallmarks in TME and

reducing tumor-reside immunosuppressive cells (35, 41) (4).

By facilitating the immune response against tumor-exclusive

antigen pulses, NPs can potently provoke antigen specific

immunity against CRC. As prophylactic or therapeutic

interventions, NPs co-deliver antigens and immune-boosting

adjuvants to host, pre-sensitizing immune system and

systematically generating cytotoxic CD8+ T lymphocytes

(CTLs) (42, 43). These four mechanisms are schematically

illustrated in Figure 1.

In this review, we summarize the progress of nano

technology applied to ICB-based CRC treatment in recent

three years according to their underlying mechanisms.

Particular advantages of nanotechnology in CRC immuno

therapy, such as innovating the mode-of-actions of ICB,

modulating intestinal microbiome, and integrating the whole

process of antigen presentation, are highlighted. This review is

expected to clarify the cross-interactions among drugs,

materials, and organisms in CRC immunotherapy, and further

improve the future design of ICB nanoplatforms.
2 Nanotechnology facilitates
immune checkpoint
blockade therapy

2.1 Targeting immune checkpoint
inhibitors to tumor foci

Although ICIs have shown considerable clinical potency in

prolonging survival of patients (44), growing evidences indicate

that systemic administration of checkpoint blockade antibodies

such as anti-PD-1 antibodies (aPD-1), anti-PD-L1 antibodies

(aPD-L1), and anti-CTLA-4 antibodies (aCTLA-4) may cause

undesirable autoimmune and inflammatory responses, such as
frontiersin.org
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colitis, dermatitis, and hypophysitis (45–47). Once happened,

these unbearable adverse effects would seriously weaken

therapeutic outcomes, or even fail the whole treatment (48,

49). Nanotechnology offers an attractive approach to bypass

these side effects. Antibodies can be conjugated on or

encapsulated in natural/artificial drug carriers, therefore

avoiding antibody exposure in blood circulation (50, 51). In

addition, nanosized drug delivery systems (DDSs) can passively/

actively accumulate in solid tumors post systemic

administration. Some DDSs can even be locally applied within

tumor tissues (52, 53). Collectively, these formulations would

remarkably elevate the selectivity of ICIs to tumors.

Checkpoint antibody-loaded NPs have been extensively

studied. Early in 2010, Hellstrom et al. leverage functionalized

mesoporous silica (FMS) to entrap aCTLA-4 (54–56). High

drug loading and sustained drug release were achieved via

adjusting the pore size of FMS, which minimize the risk of

autoimmunologic toxicity (56). In addition to serving as drug

reservoirs, antibody-conjugated NPs play significant roles in

tumor theranostics. In colon tumor-bearing mice models,

Popovtzer et al. demonstrated that the accumulation level of

aPD-L1 conjugated gold NPs in tumors is an important

parameter to predict the response of ICB therapy (57). Kang

et al. attached methoxy poly (ethylene glycol) (MePEG) and
Frontiers in Immunology 03
chlorin e6 (Ce6) to Atezolizumab, a PD-L1 antibody, with a

cathepsin B responsive linker (58). This immune checkpoint

inhibitor nanocomposites (ICI NCs) avoided the ICI exposure in

normal tissues, and exhibited tumor-activated fluorescence

imaging (FI) and photodynamic therapy (PDT) on murine

colon tumor #26 (CT26) tumor xenografts. Schneck et al.

developed immuno-switch NPs that modified with aPD-L1
and anti 4-1BB antibodies on their surface (59). These dual-

targeting NPs exhibited prolonged tumor retention than soluble

free antibodies. After administration, immuno-switch NPs

inhibited PD-L1 signal in tumor cells, and concurrently

activated 4-1BB signal in CD8+ T cells, activating immune

response against murine colon carcinoma 38 (MC38) in a

two-pronged pathway.

Solid tumors exhibited higher vascular density than normal

tissues, and the wall of blood capillaries are highly leaky.

Therefore, blood-circulating macromolecules (above 40 kDa)

and NPs tend to extravasate and retain in tumor tissues (60).

Moreover, the lymphatic drainage system is dysfunctional in

tumors, which prevents the clearance of intra-tumoral NPs (61).

This phenomenon is termed as the enhanced permeability and

retention (EPR) effect. In general, the tumor accumulation

efficiency depends on the blood circulation time of NPs and the

tumor volume (62). NPs with prolonged blood circulation as well
FIGURE 1

Schematic depiction of advancing ICB in CRC therapy with nanotechnology. The underlying mechanisms can be divided into four aspects: (i)
targeted delivering various ICIs (such as antibodies, small molecules, peptides, and SiRNAs) into tumor foci; (ii) reinforcing the immunogenicity
of dying tumor cells by cytotoxic agents and other drugs; (iii) remolding the immunosuppressive TME, including eliminating immunosuppressive
factors and depleting immunosuppressive cells; (iv) pre-sensitizing the host immune system by delivering tumor vaccines and adjuvants to APCs.
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as decreased clearance by liver and kidney have more opportunity

to be transported into tumor capillaries. And larger tumors have

more disorganized vasculatures for NPs accumulation. Although

this effect has been widely-acknowledged in mice models, its

contribution to drug delivery in human is still controversial

(62). The carrier with active tumor-homing capability is a better

choice for ICI delivery. Wang et al. developed platelets as the

carrier for aPD-L1 delivery (63, 64). Platelets have inflammation-

targeting ability, and can secret various chemokines to boost T cell

immunity, which is very favorable for delivering aPD-L1 into

residual microtumors. Platelets binding with aPD-L1 (P-aPD-L1)
aggregated in tumor tissue, turning into platelet-derived

microparticles (PMPs) for tumor-specific antibody release (64).

Treatment of P-aPD-L1 effectively prevented tumor metastasis

and recurrence in incomplete tumor resection and thermal

ablation (TA) models (Figure 2A).

Rather than systemic delivery, local application of antibodies

within tumoral and peritumoral regions is an excellent approach

to obviate the overactivation of the immune system (66). Melief

et al. formulated aCTLA-4 into a water in oil emulsion

composed of Montanide ISA-51 for subcutaneous (s.c.)

injection in the tumor area (67, 68). This sustained-release

platform had similar therapeutic consequences with systemic

administration, but the dosage was only one-eighth of
Frontiers in Immunology 04
intravenous injection (i.v.), which contrastingly decreased

antibody titers in serum and improved therapeutic safety.

Similarly, Hubbell et al. prepared peptide-functionalized ICB

antibodies for peritumoral injection (69, 70). A peptide derived

from placenta growth factor-2 (PlGF-2123–144) showed super

affinity with ECM. They showed the conjugation of PlGF-2123–

144 elevated the tissue retention and decreased the plasma

concentration of therapeutic antibodies (aPD-L1 and aCTLA-
4), reducing the risk of systemic adverse effects, such as

autoimmune diabetes. PlGF-2123–144 functionalized antibodies

facilitated the infiltration of CD8+ and CD4+ T cells into tumors,

resulting in delayed growth of primary and distance tumors. Gu

et al. reported a microneedle (MN) patch for the transdermal

delivery of aPD-1. Glucose oxidase (GOx) and aPD-1 were co-

encapsulated into pH-sensitive dextran NPs, and these NPs were

further loaded into hyaluronic acid MN arrays (65). GOx

catalyzed the conversion of blood glucose to gluconic acid,

forming a local acidic milieu for the self-disintegration of

dextran NPs, leading to a sustained release of aPD-1 for three

days. This simple and biocompatible platform could also be

applied to co-deliver aPD-1 and aCTLA-4, achieving synergic

antitumor effects (Figure 2B).

As the biological drugs, administration of antibodies may

lead to infusion reactions and anti-drug antibodies (71, 72).
A

B

FIGURE 2

Nanotechnology targets ICIs to tumor foci to advance ICB in CRC therapy. (A) Left: schematic depiction of delivering aPD-L1 (aPDL1) to
postsurgical tumor bed by platelets (P-aPDL1). Right top: P-aPDL1 sustainedly accumulated in tumor tissues. Right bottom: P-aPDL1 (blue curve)
effectively inhibited tumor growth as compared with PBS-treated group (black curve). Reprinted with permission from reference (64). (B). Left:
schematic depiction of the composition of aPD-1 loaded microneedle (MN-GOx-aPD1). Right top: scanning electron microscope (SEM) images
of aPD-1 loaded nanoparticles, microneedle patch, and magnified microneedle apex (from left to right). Right bottom: MN-GOx-aPD1
significantly inhibited tumor growth and prolonged mice survival. Reprinted with permission from reference (65). *p<0.05 versus untreated.
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Peptide-based ICIs, especially antagonists against PD-1 and PD-

L1, are more preferable options. In comparison with antibodies,

peptide drugs have deeper tumor penetration due to their low

molecule weight (Mw). Given the lacking of Fc fragments,

peptides exhibited lower immunogenicity and better safety.

Moreover, peptide ICIs are more stable in structure, and cost

less in manufacture, storage, and drug administration (73, 74).

Even though, peptide ICIs have weaknesses including

insufficient affinity, short body circulation, and a lack of

tumor selectivity, which requires to be solved by suitable

delivery systems. Kim et al. designed ferritin nanocages

(PpNF) tha t d i sp l a y ed PD-L1 - b ind ing pep t i d e

(CLQKTPKQC) with multivalency on their surface (75). PpNF

specifically accumulated in tumor tissues, and restored the

antitumor activities of T cells. Notably, PpNF loaded with

doxorubicin (DOX) had better tumor inhibition effect than

aPD-L1 in CT26 tumor models (75). Huang et al. synthesized

a liner polymer-drug conjugate of PD-L1 antagonistic peptide

MSP (CPLGVRGSGQYASYHCWCWRDPGRSGGSK) (76).

Th i s po lymer (P-MSP-DMA) in te r tw ined wi th a

mitochondria-targeted polymer-drug conjugate (P-D-R8MTS)

via electrostatic interaction to form a nanocomplex (SNV). SNV

specifically dissociated in tumors in response to the charge

reversal of dimethylmaleic anhydride (DMA) group triggered

by acidic TME. This nanoplatform integrated PD-L1 blockade

with mitochondria-targeted induction of ICD, resulting in

considerable inhibition of tumor growth and metastasis (76).

NPs incorporated with PD-L1-binding peptides can also be

combined with photothermal therapy (PTT), which was

exemplified by Zhang et al. and You et al. (50, 52). Zhang

e t a l . con juga t ed a PD-L1 an t agon i s t i c p ep t id e

(NYSKPTDRQYHF) on the surface of IR780-loaded NPs

(aNP@IR780) (50). And You et al. co-encapsulated aN anti-

PD-1 peptide ((SNTSESF)2 KFRVTQLAPKQIKE-NH2) and the

hollow gold nanoshell (HAuNS) into NPs (AA@PN) (52). Both

strategies simultaneously triggered tumor ablation and blocked

PD-1/PD-L1 interaction between tumor cells and T cells,

exhibiting an abscopal effect to suppress distant tumor growth

in a bilateral CT26 tumor model.

Besides peptides, nuclei acid-based therapeutics against

checkpoint molecules is another therapeutic alternative for

ICB therapy. Wang et al. used poly (ethylene glycol)-block-

poly (d,l-lactide) (PEG-PLA) and N-bis(2-hydroxyethly)-N-

methyl-N-(2-cholesteryloxycarbonyl aminoethyl) ammonium

bromide (BHEM-Chol) to encapsulate CTLA-4 siRNA (77).

The prepared NPs (NPsiCTLA-4) were capable to deliver siRNA

cargos to both CD8+ and CD4+ T cells in vivo, facilitating their

activation and proliferation. Ahn et al. prepared poly (lactic-co-

glycolic acid) (PLGA) NPs to co-loading PD-1 siRNA and PD-

L1 siRNA (siRNA@PLGA) (78). In the MC38 tumor model, they

found the concurrent silencing of PD-1 and PD-L1 by siRNA@

PLGA had better antitumor effect than single silencing of each

one. Han et al. reported a nanoplatform with a novel PD-L1
Frontiers in Immunology 05
binding aptamer, PL1 (51). In their design, PL1 single-stranded

oligonucleotides were hybridized with folic acid (FA) and siRNA

against proprotein convertase subtilisin-kexin type 9 (PCSK9) to

obtain DNA tetrahedral nanoparticles (TDN-FA/PL1/Pcsk9-

siRNA). TDN-FA/PL1/Pcsk9-siRNA were guided to CT26

CRC cells by FA, ensuring the synergy between PD-L1

blockade and Pcsk9 downregulation.

More than merely serving as a carrier for ICIs delivery and a

plat form for combinatory tumor immunotherapy ,

nanotechnology provides an opportunity to innovate the

mode-of-action of ICB therapeutics. For example, Yang et al.

leveraged lysosome-mediated receptor degradation to realize a

durable PD-L1 downregulation. PD-L1 peptide antagonists

(PPA, NYSKPTDRQYHF) were conjugated to the linear

polymer composed of N-2 hydroxypropyl methacrylamide

(HPMA) (79). By this way, PPA were transformed into a

multivalent polymer-peptide antagonist against (MPPA).

MPPA could gather and crosslink PD-L1 on tumor cell

surface, biasing their trafficking to lysosome degradation and

preventing their recycling to cell surface. This polymer-assisted

receptor crosslinking strategy produced a long-lasting

elimination of PD-L1 checkpoint, and strongly facilitated

polymer-epirubicin (EPI) conjugate (KT-1) mediated chemo-

immunotherapy. Nanotechnology may foster the druggability of

ICI-like agents (79). Huang et al. designed a engineered PD-L1

trap as a novel ICB protein (53). In order to address the side

toxicities of systemic PD-L1 blockade, the coding plasmid of PD-

L1 trap was encapsulated in lipid-protamine-DNA nanoparticles

(LPD). This system specifically distributed in tumor tissues,

enabling the local production of the PD-L1 trap. In a CT26

murine colon tumor model, this strategy not only improved the

tolerance of ICB therapy without inducing Th17 cells

accumulation in spleen, but also achieved potent PD-L1

inhibition to potentiate oxaliplatin (OXA)-mediated

chemotherapy (53).
2.2 Reinforcing tumor immunogenicity

In CRC, highly immunogenic tumors showed relatively good

response to ICB-based immunotherapy (1, 80, 81). In contrast,

the effect of ICIs in tumors with low immunogenicity requires

further improvement (82). Recently, ICD has been reported to

transform originally immunotolerant cell debris into

immunogenic vaccines (83). ICD induced by anthracyclines

was first reported by Guido Kroemer et al. in 2007 (84).

Different from immune tolerant apoptosis, ICD can provoke

the immune system to generate response against antigens from

dead tumor cells, which is also known as “bystander effect” (85).

Briefly, tumor cells undergoing ICD expose calreticulin (CRT)

on the outer leaflet of the cell membrane, secreting adenosine

triphosphate (ATP) and releasing high mobility group box 1

(HMGB1) into extracellular microenvironment (29, 30, 86).
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These markers facilitate APCs recruitment, antigen engulfment

and presentation during immune initiation (87).

DOX is of ten adminis tra ted a long with other

chemotherapeutics to elevate efficacy. Although DOX is found to

facilitate effector T cells infiltration and synergize with ICIs via ICD

induction, applications of free DOX are still hindered by cardiac

toxicity and unsatisfactory tumor accumulation (29). Jeffrey A.

Hubbell et al. reported a collagen-binding serum albumin

platform for advanced colon carcinoma therapy (88). Serum

albumin (SA) based carrier can passively deliver drug to tumor

sites via the extravasation through pathological vasculature. To

further endow SA active targeting capacity, a collagen-binding

domain (CBD) was fused recombinantly to give CBD-SA. Lastly,

DOX was loaded to CBD-SA via a pH-sensitive linker (DOX-CBD-

SA). Surprisingly, when combing with aPD-1, a complete

eradication of MC38 colon carcinoma was observed. To

understand the underlying mechanism, T cells and natural killer

(NK) cells in treated tumors were extracted. The numbers of CD8+

T cells, CD4+ T cells and NK cells per unit tumor mass increased

after DOX-CBD-SA treatment. The increased tumor-infiltrating

lymphocytes subsequently potentiated therapeutic efficiency of

immune-checkpoint blockade. Generally, DOX-CBD-SA can

potently kill tumor cells and simultaneously stimulate host

antitumor immunity, decreasing adverse events. To further

improve the immunogenicity, subcellular level targeting strategy

was considered. Mitochondria is one of the most important

organelles and serves as the source of damage associated

molecular patterns (DMAPs) such as ATP, heat shock protein 70

(HSP70), and HSP90. The released DMAPs facilitate the

presentation of tumor-associated antigens. Zhan et al. engineered

a mitochondria-targeted polymeric nanoparticle (R848@cRGD-

PDCS) (89). Under near-infrared irradiation exposure,

mitochondria were destroyed by photothermal-mediated

hyperthermia, causing the release of tumor-associated antigens

and DMAPs. aPD-L1 therapy showed limited inhibitory effects

in tumor growth, but the combination with R848@cRGD-PDCS

(under irradiation) exhibited favorable ability to eradicate primary

tumors and prevent metastasis (Figure 3A).

Chemotherapeutics (such as OXA and DOX) and PDT were

reported to induce ICD synergistically. Lin et al. proposed a core-

shell nanoscale coordination polymer (NCP@pyrolipid) which not

only directly eliminated tumor cells but also promoted the

checkpoint blockade immunotherapy (91). In the study, OXA in

the core and the photosensitizer pyropheophorbide-lipid conjugate

(pyrolipid) in the shell synergistically eradicate cancer cells,

resulting in robust ICD and subsequent abscopal effects.

Moreover, after integrating PD-L1 blockade with NCP@pyrolipid,

tumor regression was observed in both light-irradiated primary

tumors and distant tumors without light-irradiation, indicating that

a potent tumor-specific immunity was evoked. The authors

observed increased portions of antigen-specific CTLs in the CRC-

bearing mice injected with NCP@pyrolipid (with irradiation) plus

aPD-L1. The immunogenic environment induced by both OXA
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and PDT remarkably enhanced PD-L1 therapy via spurring

systemic antitumor immune response. Yu et al. reported an

prodrug-based polymeric nanoparticle to realize optimal

administration of OXA combining with PTT (92). Besides,

fluorescence -guided PTT can further enhance tumor

immunogenicity and release drug in a spatiotemporally

controllable way. A donor-spacer-acceptor-space-donor (D-S-A-

S-D) type fluorophore was farther inserted to improve

immunogenicity and amplify the efficacy of aPD-L1 therapy.

This combinatory chemo/photothermal therapy with PD-L1

blockade (PBOXA@TQTCD+L-aPDL1) was tested in vivo.

Results revealed that the combinatory therapy not only inhibit

tumor growthmuchmore potently thanaPD-L1 therapy alone, but
also improve the survival rate of mice with tumor.When it comes to

the tumor recurrence inhibition, the central memory CD8+ T cells

(TCM) in spleen representing long-term immune memory was

analyzed. TCM ratio in the combinatory therapy was at least two

times higher than that of aPD-L1 alone, indicating the activation of
a long-term immune surveillance against tumor recurrence. This

combinatorial therapy might enlighten clinical CRC management.

However, the PDT or PTT is a localized therapy and

restricted by light penetration. Alternatively, Lin et al. reported

another tactic that using reactive oxygen species (ROS) based

chemotherapeutic to induce potent ICD and synergize with

OXA. The author engineered self-assembled coordination

polymer nanoparticles (OxPt/DHA) loading OXA in the core

and ROS-generating dihydroartemisinin (DHA) in the shell for

CRC treatment (93). In a tumor rechallenge experiment, mice

vaccinated with OxPt/DHA-treated cells showed a potent

immune resistance against live MC38 cells and no tumor

formation was observed. The efficacy of OxPt/DHA combining

with a-PD-L1 blockade therapy was tested in tumor models of

CT26 and MC38 on immunocompetent BALB/c and C57BL/6

mice, separately. In both CT26 and MC38 models, the a-PD-L1
therapy alone failed to control tumor growth. In the contrary, all

of the tumors treated with OxPt/DHA plus a-PD-L1 regressed

and ultimately disappeared on days 40~50. Until 120 days, no

recurrence was found. Results revealed that OxPt/DHA is a

potential clinical candidate to synergize with ICIs.

Besides inducing ICD in situ in tumor sites to enhance

immunogenicity and amplify immune checkpoint blockade

(ICB) therapy, immunogenically dying tumors cells themselves

can also be transformed into a powerful platform for cancer

vaccination. Moon et al. have manufactured dying tumor cells

surface-modified with adjuvant-contained NPs (94). Results

revealed that dying tumor cells undergoing ICD could be

further filled with adjuvant nano-depots to successfully initiate

antigen cross-presentation by dendritic cells and activate potent

antigen-specific CD8a+ T cells in mice model bearing CRC.

Additionally, the combinatory regimen using this whole tumor-

cell vaccination and immune checkpoint inhibition resulted in a

complete tumor eradication in about 78% of mice inoculated

with CT26. A long-term immunity was also observed, indicating
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the potential to prevent tumor recurrence. This strategy might

shed light on “personalized” therapy which is tailored according

host’s own tumor cells. The inflammatory microenvironment

after surgery and residual tumor “seeds” were responsible for

post-operative metastasis. To solve this dilemma, Li et al.

embedded autologous cancer cells succumbing to ICD and

anti-inflammatory drug dexamethasone in hydrogel, the

hydrogel could be injected into a resection site, in which it was

rapidly solidified and gradually degraded (95). The dying cells

provided a whole array of tumor-associated antigens and

became highly immunogenic vaccines which enabled antigen

specific immunization. After combining with aPD-L1 therapy, a
complete tumor regression was observed, which might be

attributed to their complementary functions to evocate and

unleash tumoricidal T cells. This strategy provides a novel

option for inhibiting metastasis after surgery.
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Autophagy refers to the process by which cells degrade their

constituents by autophagosomes. Autophagy is necessary in

sustaining and modulating cell homeostasis. In addition,

autophagy facilitates the release of ATP from lysosome in ICD

inducing, promoting antitumor immune response. However,

autophagy can destroy tumor-associated antigens, therefore

attenuating antitumor immunity. To overcome this difficulty,

Wang et al. designed a liposome named as LipHCQa which

encapsulated shikonin (ICD inducer), hydroxychloroquine

(autophagy inhibitor), and ATP for the treatment of colon

cancer (90). This compensatory liposome showed enhanced

immune infiltration when compared with shikonin loaded

liposome alone, indicating the importance of blocking

autophagy on ICB amplification (Figure 3B).

Specific series of intracellular suicide process was named as

programmed cell death (96, 97). In the past few decades, apoptosis
A

B

FIGURE 3

Nanotechnology reinforces tumor immunogenicity to advance ICB in CRC therapy. (A) Left: schematic depiction of mitochondria-targeted and
photo-activated nanoparticles (R848@cRGD-PDCS) that triggered ICD to potentiate ICB therapy. Right: R848@cRGD-PDCS (G8) inhibited the
growth of both primary tumor and distant tumor in combination with aPD-L1. Reprinted with permission from reference (89). ***p<0.001 versus
G1. (B) Left: schematic depiction of the mechanism of recovering tumor immunogenicity by autophagy inhibition. Right: impacts of different
autophagy inhibition therapies on tumor growth and the percentage of CD8+ and CD4+ T cells. Reprinted with permission from reference (90).
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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had been assumed as the sole modality of programmed cell death

(84, 98). Recently, several other pathways of programmed cell

death were identified, such as ferroptosis and pyroptosis (99, 100).

These particular cell death pathways might be used to enhance the

immunogenicity of tumor cells and synergize with ICB (101).

Since firstly proposed in 2012 by Stockwell and co-workers,

ferroptosis has attracted numerous attentions in the field of

oncology and biochemistry (102, 103). Ferroptosis is an iron

and ROS dependent dell death. Cells undergoing ferroptosis

showed increased lipid peroxidation products and ROS that is

derived from iron metabolism. Han et al. designed core-shell

nanoparticles (ZnP@DHA/Pyro-Fe) loaded with a cholesterol

derivative of dihydroartemisinin and pyropheophorbide-iron

(Pyro-Fe) to potentiate CRC immunotherapy via inducing

ferroptosis. ZnP@DHA/Pyro-Fe treated cancer cells showed

increased DAMPs release and result into intra-tumoral immune

cell infiltration (104). Further combination with aPD-L1

checkpoint blockade led to better therapeutic effect. Different

from caspase-dependent apoptosis, necroptosis is featured by

expanded cell volume, organelle swelling, cell membrane

fracture, and leaking of intracellular components. Nowadays,

mixed-lineage kinase domain like protein (MLKL), receptor

interacting protein-1 (RIPK1), and RIPK3 pathways were

thought to be essential in tumor necrosis factor-a (TNF-a)
mediated necroptosis. Compared with poorly immunogenic

apoptosis failing to activating antitumor immunity, necrosis

showed great potential in priming immune response due to the

increase immunogenicity (105). Sun et al. prepared dimethyl

fumarate loaded star-PCL-azo-mPEG (sPCEG-azo) polymeric

micelles (106). The micelles are colon-targeted and induce

necroptosis in colon cancer cells via a mechanism characterized

with increased ROS. The elevated ROS generation result in

immunogenicity and contribute to antitumor immunity, which

may further augment ICB. Another necroptosis-inducible

nanoparticle was reported by Park et al. The nanobubbles (NBs)

contains Ce6 as the sonosensitizer and perfluoropentane as the gas

precursor (107). After ultrasound exposure, NBs could

disintegrate plasma membrane and lead to damage-associated

molecular patterns release, inducing acoustic cavitation mediated

necroptosis and ROS-mediated tumor regression. The NBs

promoted antitumor immunity via accelerating dendritic cells

maturation and CD8+ T cells activation. Further combinatory

regimen including PD-L1 blockade plus NBs even led to complete

eradication of primary CT26 tumor and metastasis.
2.3 Remodeling tumor
microenvironment

TME is an intricate milieu including tumor and immune cells,

bacteria, as well as multiple soluble signal mediators (108, 109). All

of them contribute to the distinct physiological characteristics
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(hypoxia, acidity, inflammation, and immune escape) of TME.

Mounting evidence reveal that the heterogeneity of TME is an

important factor for the low responsiveness of ICB therapies, and

reversing immunosuppressive TME is very promising to overcome

ICI resistance (110). Considering the close interaction between

components in TME, nanoplatforms that counteract these

suppressors in multi-pronged ways are very promising (36, 111,

112). Nanoplatforms that potentiated ICB against CRC by

modulating TME are summarized in Table 1.

2.3.1 Hypoxia
Hypoxia reduced the therapeutic efficiency of ICIs in many

aspects. It increased the expression of PD-L1 and CTLA-4 via

hypoxia inducible factor-1a (HIF-1a) pathway, and weakened

antigen presentation of APCs (124, 125). You et al. adopted three

strategies to alleviate hypoxia (113): (i) directly deliver oxygen

into tumors by a perfluorocarbon-loaded liposome (PFC@lipo);

(ii) directly deliver oxygen into tumors by a hemoglobin-loaded

liposome (Hb@lipo); and (iii) indirectly inhibit HIF-1a in

tumors by a small molecular inhibitor PX-478. They found

systematic administration of Hb@lipo was the most ideal

strategy to combine with aPD-1 for the treatment of murine

triple-negative breast cancer (4T1) and CT26 tumors. Due to the

hypoxia milieu, tumor cells are glycolytic and produce plenty of

lactate as the metabolite, resulting in anergy of tumor-infiltrated

immune cells. Dhar et al. developed a mitochondria-targeted

NPs (T-Mito-DCA-NPs) for the delivery of dichloroacetate

(DCA), an inhibitor of pyruvate dehydrogenase kinase 1

(PDK1) (126). This formulation selectively inhibited tumoral

glycolysis without affecting immune cells. As a result, T-Mito-

DCA-NPs significantly elevated the intra-tumoral infiltration of

CD8+ and CD4+ T cells and downregulated the expression of

checkpoint molecules including PD-1, CTLA-4, LAG3, and

Tim3 on their surface. Combination of mitochondria-targeted

DCA and aPD-1 effectively improved the infiltration of CD8+

and CD4+ T cells in CT26 tumors.

2.3.2 Inflammation
Inflammation is an important hallmark in TME that promote

tumorigenesis, expansion, metastasis, and immune escape (127).

Tumor cells highly expressed cyclooxygenase-2 (COX-2) and

secreted a large amount of prostaglandin E2 (PGE2) to recruit

myeloid-derived suppressor cells (MDSCs) (128, 129). MDSCs

generate several immunosuppressive cytokines, such as ROS,

transforming growth factor-b (TGF-b), and interleukin 10 (IL-

10), leading to failure of ICB therapy (130–132). Chen et al.

synthesized a self-assembled polymeric prodrug (P3C-Asp) of

aspirin, a classical non-steroidal anti-inflammatory drug (NSAID)

(114). P3C-Asp released aspirin in response to high ROS level in

tumor tissues, decreasing PGE2 secretion and reversing tumor

immunosuppression. Combination therapy of P3C-Asp+aPD-L1
eradicated CT26 tumors in 100% of mice.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1027124
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2022.1027124
2.3.3 Intestinal microbiome
Different from other cancers, the progress of CRC is closely

associated with intestinal microbiome. The species and

abundance of intestinal microbiome highly affected the balance

in GI track, contributing to several gut diseases, such as colitis,

fibrosis and CRC (133). Fusobacterium nucleatum, Bacteroides

fragilis, and Escherichia coli are the main pathogenic bacteria in

gut that promote tumor progression and hinder the

responsiveness of CRC to aPD-L1 therapy (134–136). Bacteria

colonized in cancerous GI tracts produced massive endotoxin,

also known as lipopolysaccharide (LPS). LPS accelerated the

growth and liver metastasis of colorectal tumors via Toll-like

receptor 4 (TLR4) and nuclear factor kappa-B (NF-kB) pathway
(137–139). Moreover, chemotherapeutic agents are able to

disrupt the mucus barrier in gastrointestinal (GI) track,

facilitating the colonization and invasion of gut bacteria (140).

Huang et al. designed an LPS-binding fusion protein as the trap
Frontiers in Immunology 09
to deplete LPS in orthotopic CRC tissues (115). For tumor

selectivity, they encapsulated the coding sequence of LPS trap

protein into lipid–protamine–DNA nanoparticles (LPD). This

system passively accumulated in CT26 tumors, enabling LPS

trap protein expressed within malignant tissues. They found LPS

trap treatment elevated the infiltration of T cells, which favored

ICB therapy. Combinatory treatment of the LPS trap and aPD-
L1 not only retarded the growth of orthotopic CT26-FL3 tumors

but also inhibited their spontaneous liver metastasis. Zhang et al.

identified Fusobacterium nucleatum (Fn) as pro-tumoral gut

bacteria that restricted T cell infiltration and enriched MDSCs in

CRC tissues (116). They screened a Fn-binding M13

bacteriophage by phage display technology and modified

antibacterial silver nanoparticles (AgNP) on its surface. The

obtained M13@Ag could specifically eliminate Fn in GI track to

reduce MDSCs in TME, and facilitate antigen presentation due

to its intrinsic immunogenicity. In orthotopic CRC models,
TABLE 1 Summary of nanoplatforms that remolds TME to advance ICB in CRC therapy.

Target Nanoplatform Route of
administration

Mechanism of TME remolding Reference

Hypoxia perfluorocarbon-loaded liposome (PFC@lipo),
hemoglobin-loaded liposome (Hb@lipo),
hypoxia inducible factor-1a (HIF-1a) inhibitor
(PX-478)

Liposomes: i.v.
Free drug: i.p.

PFC@lipo and Hb@lipo loaded and delivered oxygen to
tumor,
PX-478 inhibit the hypoxia signal pathway

(113)

cyclooxygenase-2
(COX-2)

Self-assembled polymeric prodrug of aspirin
(P3C-Asp)

i.v. P3C-Asp released aspirin in response to high ROS level and
specifically inhibited COX-2 in TME

(114)

Intestinal
microbiome

lipid–protamine–DNA nanoparticles (LPD) that
loaded the plasmid encoding lipopolysaccharide
(LPS)-binding protein

i.v. The nanoparticles accumulated in tumor, and then expressed
protein which depleted LPS in CRC tissues

(115)

M13 bacteriophage coated with silver
nanoparticles (M13@Ag)

p.o. The M13 specifically bound with Fusobacterium nucleatum
(Fn) and then Ag nanoparticles eliminated Fn

(116)

Indoleamine 2,3-
dioxygenase 1
(IDO-1)

Boolean logic prodrug nanoparticles (BLPNs)
incorporated with IDO-1 inhibitor NLG919 and
photosensitizer pheophorbide a (PPa)

i.v. BLPNs released NLG919 in response to the high glutathione
(GSH) level in tumor cells, which inhibited the metabolism
of tryptophan

(117)

Cationic lipid-assisted nanoparticles loaded
with siRNA of IDO-1 (CLANsiIDO1) and
oxaliplatin (OXA)

i.v. CLANsiIDO1 accumulated in both tumor tissues and tumor-
draining lymph nodes (TDLNs), downregulating IDO-1 that
upregulated after OXA treatment in these two tissues

(118)

phosphatidylserine
(PS)
externalization

Annexin A5-modified and neoantigen-loaded
nanoparticles (AnnV_PLGA(Nbea)_NPs) and
cisplatin

AnnV_PLGA
(Nbea)_NPs: i.v.
Cisplatin: i.p.

The surface Annexin A5 of AnnV_PLGA(Nbea)_NPs
blocked the immunosuppressive effects of PS on dying
tumor cells treated by cisplatin

(119)

Tumor-associated
macrophages
(TAMs)

Pexidartinib-loaded nanoparticles (PLX-NPs)
and aPD-L1 conjugated platelets (P-aPD-1)

s.c. after
incorporation
together into
hydrogel or i.v.
separately

Pexidartinib blocked the colony-stimulating factor 1
receptors (CSF1R) on TAM surface and depleted TAM

(120)

Red blood cell (RBC) membrane-coated
Porphyromonas gingivalis (cmPg)

Intra-tumoral
injection

Pg promoted the polarization of TAM towards anti-tumoral
M1 phenotype

(121)

Signal pathways
and bacteria

polymeric metformin (Polymet) p.o. Polymet activated adenosine 5’-monophosphate activated
protein kinase (AMPK) pathway, inhibited mammalian
target of rapamycin (mTOR) pathway, and increased anti-
tumoral Lactobacillus in CRC tissues

(122)

Hypoxia, IDO-1,
and myeloid-
derived suppressor
cells (MDSCs)

MnO2 mineralized nanocage co-encapsulated
with IDO-1 SiRNA and gemcitabine (GEM),
the surface of nanocage was modified with
antibody against PD-L1/CD47

i.v. MnO2 catalyzed the generation of oxygen in TME, inhibited
HIF-1a and promoted M1 macrophage polarization; SiRNA
silenced IDO-1 and suppressed regulatory T cells (Tregs);
GEM eliminated MDSC

(123)
fro
i.v., intravenous injection; i.p., intraperitoneal injection; p.o., oral administration; s.c., subcutaneous injection.
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combination therapy of M13@Ag and aPD-1 significantly

improved the overall survival of mice (Figure 4A).

2.3.4 IDO-1
Indoleamine 2,3-dioxygenase 1 (IDO-1) is highly

overexpressed on tumor cells (141, 142). It is a rate-limiting

enzyme in the kynurenine pathway that convert tryptophan to

kynurenine (143). The accumulation of kynurenine in TME

contributed to dendritic cells (DCs) deactivation, CTL apoptosis,

and regulatory T cells (Tregs) increment (144, 145). Due to its

key role in tumor immunosuppression, IDO-1 is termed as the
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“metabolic immune checkpoint” (118). Inhibiting IDO-1 have

been demonstrated to potentiate ICD-based chemo/photo-

immunotherapy and PD-1/PD-L1 blockade therapy, but the

therapeutic consequence is strongly relied on well-designed

delivery strategies. Yu et al. developed boolean logic prodrug

nanoparticles (BLPNs) that logically gated by matrix

metalloproteinase (MMP), acid, and glutathione (GSH) to

release photosensitizer pheophorbide a (PPa) and IDO-1

inhibitor NLG919 to treat CT26 tumors (117). PPa induced

ICD to trigger T cell response, which was further amplified by

NLG919. Wang et al. accomplished the concurrent inhibition of
A

B

FIGURE 4

Nanotechnology remolds TME to advance ICB in CRC therapy. (A) Left: schematic depiction of engineered bacteriophage (M13@Ag) that
regulated intestinal microbiome to modulate TME against CRC. Right: M13@Ag significantly inhibited tumor growth and prolonged mice survival
in combination with aPD-1. Reprinted with permission from reference (116). (B) Left: schematic depiction of the composition of versatile nano-
modulator (GSZMP) and its mechanism in potentiating ICB therapy. Right: GSZMP potently inhibited tumor growth and prolonged mice survival.
Reprinted with permission from reference (123).
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IDO-1 in both tumors and tumor-draining lymph nodes

(TDLNs) by siRNA-loaded cationic lipid-assisted nanoparticles

(CLANsiIDO1) (118). They found OXA treatment aggravated

IDO-1 overexpression in tumors and TDLNs, which was in

accordance with other immune checkpoints like PD-L1 and

CTLA-4. CLANsiIDO1 accumulated in TDLNs and tumors,

downregulated IDO-1 in both tissues, and improved tumor

inhibition by OXA in the CT26 colon cancer model.

2.3.5 PS externalization
Chemotherapy triggers phosphatidylserine (PS) externalization

on the surface of tumor cells undergoing apoptosis (146, 147). In

line with canonical immune checkpoints, the exposed PS

consolidated the immunosuppressive TME, restricted the

phagocytosis of APCs and upregulated the expression of PD-L1

(148, 149). Recently, Park et al. developed annexin A5-labeled NPs

(AnnV_PLGA_NPs) as the inhibitor to this innate immune

checkpoint. Mutant neoantigen peptides (Nbea, PAPRAVLT

GHDHEIVCVSVCAELGLVI) were loaded in NPs (AnnV_PLGA

(Nbea)_NPs) to elicit antigen-specific antitumor immunity (119).

In company with cisplatin (Cis)-mediated chemotherapy,

AnnV_PLGA(Nbea)_NPs spurred the infiltration of immune-

activate cells and the secretion of pro-inflammatory cytokines,

while depleting immune-suppressive MDSCs and Tregs and

decreased the production of anti-inflammatory cytokines at the

same time. The immunostimulatory effect of AnnV_PLGA(Nbea)

_NPs can be amplified by aPD-L1, and the triple-therapy of Cis +

AnnV_PLGA(Nbea)_NPs + aPD-L1 resulted in noticeable

rejection of CT26 tumor growth.

2.3.6 TAMs
Tumor-associated macrophages (TAMs) represented a large

population in intra-tumoral immunosuppressive cells (150).

Generally, TAM can be divided into anti-tumoral M1

phenotype and pro-tumoral M2 phenotype via their different

markers. M1 macrophages not only killed tumors in an innate

manner, but also presented tumor antigen to T cells and

activated adaptive tumor immunity (151). M2 macrophages

are the major TAMs in immunosuppressive tumors, such as

triple-negative breast cancer (TNBC) and CRC (152). They

affected the function of tumor and immune cells in TME by

secreting vascular endothelial growth factor (VEGF), IL-10,

TGF-b, and arginase-1 (153). There are three paradigms for

targeting TAMs: (i) inhibiting TAMs recruitment, (ii) depleting

pre-existing TAMs, and (iii) re-educating TAMs from pro-

tumoral M2 macrophages to anti-tumoral M1 phenotype (151,

152). Results of Hu et al. revealed that locally depleting TAMs in

postsurgical tumor beds by Pexidartinib-loaded nanoparticles

(PLX-NPs) created an appreciable condition for the local and

systemic PD-1 blockade therapy (120). Pexidartinib eliminated

TAMs by blocking colony-stimulating factor 1 receptors

(CSF1R) on TAM surface. Alginate hydrogel incorporated
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with PLX-NP (PLX-NP@Gel) decreased F4/80+ macrophages

and increased IFN+CD8+ CTLS in tumor beds. aPD-1

conjugated platelets (P-aPD-1) were co-encapsulated into

hydrogel for local implantation (PLX-NP-P-aPD-1@Gel) or

systematically injected (PLX-NP- @Gel+P-aPD-1). Both

regimes considerably inhibited post-surgery tumor recurrence

in murine melanoma (B16F10), CT26, and 4T1 tumor models.

Conventional TAM-modulating strategies employed small

molecules, peptide, antibodies, and nuclei acids, while Zhou

et al. reported a bacteria-based approach to repolarize TAMs

(121). They prepared a red blood cell (RBC) membrane-coated

formulat ion of Porphyromonas g ing iva l i s (cmPg ) .

Porphyromonas gingivalis (Pg) not only promoted the

conversion of TAMs to M1 phenotype, but also secreted

melanin for tumor PTT. With the help of PD-L1, cmPg

retarded the growth of primary and secondary CT26

colon tumors.
2.3.7 Multiple targets
Because of the intricate crosstalk between various immune

cells, it is plausible to manipulate versatile targets by one

nanoplatform. Huang et al. developed an orally delivered

polymeric metformin (Polymet) that notably reinforced aPD-
L1 therapy (122). The underlying mechanism of Polymet

involved reprograming the immunosuppressive TME via

adenosine 5′-monophosphate activated protein kinase

(AMPK) pathway and mammalian target of rapamycin

(mTOR) pathway, as well as lifting the abundance of anti-

tumoral Lactobacillus in CRC tissues. In comparison with this

single-mode therapy, it is more preferable to design multi-

modular nanodrugs that counteracted several immune

suppressors in TME. To this end, Jiang et al. developed a

versatile nano-modulator, GSZMP. SiRNA targeting IDO-1

(siIDO) and gemcitabine (GEM) were co-encapsulated in a

nanocage composed of Zinc 2-methylimidazole (ZIF-8) metal

organic frameworks (MOFs) (123). The surface of drug-loaded

nanocage was further tattooed with MnO2 mineralization and

electrostatically modified with aPD-L1 or anti-CD47 antibody

(aCD47) for the treatment of TNBC and colon adenocarcinoma

(COAD), respectively. MnO2 catalytically generated O2 to

alleviate hypoxia in TME, which promoted the repolarization

of TAMs into M1 phenotype. GEM selectively depleted MDSCs,

and siIDO inhibited the activity of Tregs. Overall, GSZMP

reversed the “cold” TME in a multi-pronged pathway, which

effectively potentiate ICB therapy (Figure 4B).
2.4 Pre-sensitizing host immune system

Tumor vaccines exhibit unique prophylactic effect against

tumorigenesis and have showed combinatory therapeutic effect

with immune checkpoint therapies (154–156). The aim of them
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is to pre-sensitize the immune system before tumor expansion

and generate sufficient antigen-specific T cells, which creates a

condition for subsequent invigoration of these T cells (157).

Advantages of tumor vaccines can be summarized as follows: (i)

tumor vaccines greatly decrease the risk of tumorigenesis; (ii)

tumor vaccines induce systemic antitumor immunity that is able

to attack undetectable tumor foci and metastasis (158); (iii)

tumor vaccines elicit durable immune surveillance that against

tumor recurrence for a long time (159); (iv) tumor vaccines can

be personalized by using autologous components, which is more

favorable to address the mutation of tumor antigens (158, 160).

Nowadays, several tumor-exclusive neoantigens have been

identified for vaccine design, but their immunostimulatory

efficiency are still limited in in vivo studies (161). Codelivery

with adjuvants will potently enhance T-cell-spurring by tumor

vaccines, wherein the contrasting different drug properties

between antigen and adjuvant should be concerned (159, 162).

Most tumor-specific antigens are water-soluble macromolecules,

such as peptides, proteins, and long chain ribonucleic acids. TLR

agonists are a class of well-studied adjuvants with multiple drug

forms: polyinosinic-polycytidylic acid (poly I:C, double-stranded

RNA analogue, TLR3 agonist), monophosphoryl lipid A (MPLA,

lipid, TLR4 agonist), Resiquimod (R848, hydrophobic small

molecule, TLR7/8 agonist), and cytosine phosphate guanidine

(CpG, oligodeoxynucleotides, TLR9 agonist) (163, 164).

Therefore, it is highly challenging to synchronize the

pharmacokinetics of antigens and adjuvants in their codelivery.

Chen et al. synthesized a bi-adjuvant neoantigen nano-

vaccine (banNV) that co-loaded peptide neoantigen Adpgk

and two adjuvants R848 and CpG in one nanoplatform (165).

Because of the activation of two TLR pathways, immunization

with bi-adjuvant banNV elicited stronger T cell response than

single adjuvant vaccines. As a result of immune activation, PD-1

was profoundly upregulated on Adpgk-specific CD8+ T cells,

which led to the incomplete MC38 tumor regression after

banNV treatments. Coordination withaPD-1 significantly

improved the therapeutic outcomes of this bi-adjuvant vaccine

therapy (Figure 5A). Lee et al. demonstrated the synergism of

PD-L1 blockade with DC vaccine (168). They developed an

immunoadjuvant nanocomplex (PSPEI-PIC) consisted of

polysorbitol-co-PEI (PSPEI) polymer and poly(I:C). PSPEI-

PIC assisted DC vaccines to activate tumor-specific T cells, but

undesirably increased PD-L1 expression in tumor beds.

Accordingly, combination of PDPEI-PIC, DC vaccine, and

aPD-L1 achieved considerable therapeutic efficacy on MC38

tumor model.

Co-delivery of cytotoxic agents and immune adjuvants

provides another template for tumor immunization. Chemical

drugs and photosensitizers that can trigger ICD are usually used

as cytotoxic agents in these nanomedicines, such as DOX, OXA,

and Ce6 (169, 170). After administration, tumor cells

succumbed to ICD inducers and released plenty of whole-cell

antigens. These in-situ generated tumor antigens were
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immediately captured and presented by APCs with the help of

adjuvant, such as imiquimod (R837, TLR7 agonist). It should be

noted that cytotoxic agents worked within tumor tissues but

immune adjuvants stimulated APCs in TDLNs, raising a

paradox in drug delivery (41, 171). To simultaneously fulfill

the site-of-actions of cytotoxic agents and adjuvants, Chen et al.

developed a programmable immune activation nanomedicine

(PIAN) (166). PIAN initially accumulated in tumor tissues,

releasing Pt (IV) compounds (PPCD) in response to ROS for

tumor killing and antigen release. Concurrently, CpG-loaded

dendrimers (CpG/PAMAM) also released, capturing antigen

and then transferred into TDLNs to facilitate antigen

presentation. PIAN resulted in strong antitumor immune

response, and completely cured 40% of colorectal tumor

bearing mice in combination with PD-L1 blockade (Figure 5B).

Except for co-delivery with tumor antigens or antigen

inducers, a sole-delivery of TLR agonists also functioned in

tumor beds and exhibited synergistic effect with checkpoint

inhibitors. Researches from Liu et al. revealed that intra-

tumoral injection of NPs loaded with R837 or MPLA (PLGA-

R837 or PLGA-MPLA) promoted DC maturation after surgery

or TA of tumors, while consolidated the immunosuppressive

TME (42). The anti-CTLA4 antibody (aCTLA4) were employed

to inhibit Tregs. Triple therapy of TA, PLGA-R837 and aCTLA4
exerted abscopal effect to eradicate the secondary CT26 tumors

and saved 100% mice from death. After primary tumor ablation,

immune memory against CT26 tumors was able to lasted for 80

days. Zhang et al. prepared platelet membrane-coated

nanoparticles (PNP-R848) to locally deliver R848 into tumors

(172). They found the coating of platelet membrane prolonged

tumor retention, improving the binding and uptake of NPs by

tumor-resided immune cells. Treatment with PNP-R848

tho rough l y e l im ina t ed MC38 mur ine co l o r e c t a l

adenocarcinoma and triggered a long-term immune memory

that allowed mice to reject tumor rechallenge for twice.

In addition to TLR agonists, some materials derived from

bacteria and virus intrinsically have adjuvant-like effects (164).

Moreover, their particulate properties enable drug

encapsulation. For example, Steinmetz et al. combined cowpea

mosaic virus (CPMV) with aPD-1 or agonistic OX40-specific

antibodies (aOX40) to combat several immunocompetent

tumor models (173, 174). CPMV upregulated PD-1 on CD4+

and CD8+ effector T cells and OX40 on Tregs, which sensitized

tumors to OX40 agonists and PD-1 inhibitors. In the CT26

colon cancer model, combination of aOX40 and CPMV realized

better therapeutic outcomes than aPD-1+CPMV. Similar results

were obtained in ovarian tumor and B16F10 melanoma models.

Sun et al. are devoted to exploit Salmonella Typhimurium as the

drug carrier for tumor immunotherapy (167, 175, 176).

Salmonella has intrinsic tumor-homing capability, and it can

release several pathogen-associated molecular patterns (PAMPs)

such as flagellin and LPS to stimulate immune cells via TLR

pathways (175). Many strategies have been developed to
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engineer Salmonella as a nanocarrier, including genetic

modulation, surface modification with therapeutic agents or

NPs (Figure 5C) (167), as well as extracting their bacterial

outer membrane vesicles (OMVs) as the adjuvant to coat
Frontiers in Immunology 13
nano-vaccines (177, 178). These pathogen-mimicking

strategies offer a simple method to achieve colocalization of

antigen and adjuvant in drug delivery, and strongly correlate

with the peptide-based local PD-1 blockade therapy.
A

B

C

FIGURE 5

Nanotechnology pre-sensitizes host immune system to advance ICB in CRC therapy. (A) Left: schematic depiction of bi-adjuvant nano-vaccine
(banNV) that sensitized antitumor T cells. Right: banNV remarkably facilitated aPD-1 in tumor growth inhibition and survival improvement.
Reprinted with permission from reference (165). **p<0.01, ***p<0.001 versus banNV+aPD-1. (B) Left: schematic depiction of the programmable
immune activation nanomedicine (PIAN) that generated tumor antigens in situ and transported these antigens to TDLNs. Right bottom: the
combination of PIAN and aPD-L1 achieved considerable tumor inhibition with a tumor suppression rate (TSR) of 95%. Reprinted with permission
from reference (166). ***p<0.001. (C) Left: schematic depiction of the combination therapy of anti-PD-1 peptide depot and bacteria-based PTT.
Right: the combination therapy notably inhibited tumor growth and prolonged mice survival. Reprinted with permission from reference (167).
****p<0.0001 versus Control. #p<0.05, ##p<0.01 versus pDA-VNP+P-AUNP+Laser.
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3 Conclusions and perspectives

Although ICB-based immunotherapy has revolutionized CRC

treatment, challenges such as side effects, tumor metastasis, low

response rate, and therapy resistance remain in clinic. Application

of nanotechnology might be ground-breaking. This review

systematically discusses the current strategies that utilize

nanotechnology to potentiate CRC therapy in combination with

ICIs, wherein four main mechanisms are involved, including

increasing delivery efficiency of ICIs, reinforcing tumor

immunogenicity, reprogramming TME, and directly initiating

immunity. In coming decades, we hope to witness the progress of

more advanced CRC immunotherapies. Further researches are

required to establish regimens that can benefit more CRC patients.
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