
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Jin-Wen Song,
Fifth Medical Center of the PLA
General Hospital, China

REVIEWED BY

Kundlik Gadhave,
Johns Hopkins University,
United States
Pärt Peterson,
University of Tartu, Estonia

*CORRESPONDENCE

Yang Li
yang.li@helmholtz-hzi.de

†These authors have contributed
equally to this work and share
first authorship

‡These authors have contributed
equally to this work and share
last authorship

SPECIALTY SECTION

This article was submitted to
Viral Immunology,
a section of the journal
Frontiers in Immunology

RECEIVED 24 August 2022
ACCEPTED 17 October 2022

PUBLISHED 03 November 2022

CITATION

Zoodsma M, de Nooijer AH,
Grondman I, Gupta MK, Bonifacius A,
Koeken VACM, Kooistra E, Kilic G,
Bulut O, Gödecke N, Janssen N,
Kox M, Domı́nguez-Andrés J,
van Gammeren AJ, Ermens AAM,
van der Ven AJAM, Pickkers P,
Blasczyk R, Behrens GMN,
van de Veerdonk FL, Joosten LAB,
Xu C-J, Eiz-Vesper B, Netea MG
and Li Y (2022) Targeted proteomics
identifies circulating biomarkers
associated with active COVID-19
and post-COVID-19.
Front. Immunol. 13:1027122.
doi: 10.3389/fimmu.2022.1027122

TYPE Original Research
PUBLISHED 03 November 2022

DOI 10.3389/fimmu.2022.1027122
Targeted proteomics identifies
circulating biomarkers
associated with active
COVID-19 and post-COVID-19

Martijn Zoodsma1,2†, Aline H. de Nooijer3†, Inge Grondman3†,
Manoj Kumar Gupta1,2, Agnes Bonifacius4,
Valerie A. C. M. Koeken1,2,3, Emma Kooistra3, Gizem Kilic3,
Ozlem Bulut3, Nina Gödecke4, Nico Janssen3, Matthijs Kox5,
Jorge Domı́nguez-Andrés3, Adriaan J. van Gammeren6,
Anton A. M. Ermens6, Andre J. A. M. van der Ven3,
Peter Pickkers5, Rainer Blasczyk4, Georg M. N. Behrens1,7,8,
Frank L. van de Veerdonk3, Leo A. B. Joosten3,9,
Cheng-Jian Xu1,2,3, Britta Eiz-Vesper4‡, Mihai G. Netea3,10‡

and Yang Li1,2,3*‡

1Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz Centre
for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany,
2TWINCORE, a joint venture between the Helmholtz Centre for Infection Research (HZI) and the
Hannover Medical School (MHH), Hannover, Germany, 3Department of Internal Medicine and
Radboudumc Center for Infectious Diseases, Radboud University Medical Center,
Nijmegen, Netherlands, 4Institute of Transfusion Medicine and Transplant Engineering, Hannover
Medical School, Hannover, Germany, 5Department of Intensive Care Medicine and Radboudumc
Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands,
6Department of Clinical Chemistry and Hematology, Amphia Hospital, Breda, Netherlands,
7Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany,
8German Center for Infection Research (DZIF), partner site Hannover-Braunschweig,
Hannover, Germany, 9Department of Medical Genetics, Iuliu Haţieganu University of Medicine
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The ongoing Coronavirus Disease 2019 (COVID-19) pandemic is caused by the

highly infectious Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-

CoV-2). There is an urgent need for biomarkers that will help in better

stratification of patients and contribute to personalized treatments. We

performed targeted proteomics using the Olink platform and systematically

investigated protein concentrations in 350 hospitalized COVID-19 patients, 186

post-COVID-19 individuals, and 61 healthy individuals from 3 independent

cohorts. Results revealed a signature of acute SARS-CoV-2 infection, which is

represented by inflammatory biomarkers, chemokines and complement-

related factors. Furthermore, the circulating proteome is still significantly

affected in post-COVID-19 samples several weeks after infection. Post-

COVID-19 individuals are characterized by upregulation of mediators of the

tumor necrosis (TNF)-a signaling pathways and proteins related to

transforming growth factor (TGF)-ß. In addition, the circulating proteome is
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1027122/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1027122/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1027122/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1027122/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1027122&domain=pdf&date_stamp=2022-11-03
mailto:yang.li@helmholtz-hzi.de
https://doi.org/10.3389/fimmu.2022.1027122
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1027122
https://www.frontiersin.org/journals/immunology


Zoodsma et al. 10.3389/fimmu.2022.1027122

Frontiers in Immunology
able to differentiate between patients with different COVID-19 disease

severities, and is associated with the time after infection. These results

provide important insights into changes induced by SARS-CoV-2 infection at

the proteomic level by integrating several cohorts to obtain a large disease

spectrum, including variation in disease severity and time after infection. These

findings could guide the development of host-directed therapy in COVID-19.
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1 Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-

CoV-2) is the causative agent of coronavirus disease-2019

(COVID-19), which was classified as a pandemic in March

2020 (1). While COVID-19 is often asymptomatic or mild in

healthy individuals, elderly individuals or those with pre-existing

co-morbidities are at risk of severe disease. Earlier outbreaks of

related coronaviruses (severe acute respiratory syndrome

[SARS] and Middle East respiratory syndrome [MERS])

indicated that the long-term effects of infection are

considerable (2). In line with these findings, recent studies also

demonstrated that individuals recovering from COVID-19

might experience fatigue or muscle weakness (63%), sleep

difficulties (26%), and anxiety/depression (23%) as long as six

months after symptom onset (3). Moreover, pulmonary

functional and radiological abnormalities were reported four

months after infection (4). Strikingly, long-lasting symptoms are

also reported in non-critical COVID-19 patients several months

after symptom onset (5, 6). These findings raise questions

regarding the long-term consequences of infection at the

molecular level.

Taken together, there is an urgent need for understanding

the mechanisms underlying COVID-19 and establishing

biomarkers for patient stratification, to be able to identify

patients who will progress to severe disease or take more time

to recover. Targeted proteomics has proven successful in

identifying key mediators of disease, also in COVID-19 (7–

12). However, most of these studies are confined to smaller

sample sizes, and few studies include individuals after the initial

phase of the disease.

In the present study, we used targeted proteomics to

systematically investigate circulating protein concentrations

from hospitalized patients (both ICU and non-ICU, n = 96

and 254, longitudinally sampled), post-COVID-19 individuals

(n = 186), and uninfected healthy individuals (n = 61) recruited

from three independent cohorts of Western European

background. We show that the circulating proteome differs
02
between COVID-19 patients with severe or critical disease.

Comparison of hospitalized COVID-19 patients to healthy

individuals reveals dysregulation of inflammatory and

complement-related factors. Interestingly, our study shows

that post-COVID-19 individuals are characterized by

dysregulation of mediators of the tumor necrosis factor-a
(TNFa) pathway and consistent upregulation of matrix

metalloproteinases (MMPs). These findings suggest ongoing

inflammation in post-COVID-19. Altogether, these results

provide insights in the circulating biomarkers associated with

disease severity and different phases of disease in COVID-19.

Our findings will contribute to the development of host-directed

therapy in COVID-19 and improve current healthcare strategies.
2 Materials and methods

2.1 Subject details and sample collection

Three cohorts from Breda, Nijmegen, and Hannover were

used to collect plasma samples from hospitalized COVID-19

patients, post-COVID-19 individuals and healthy controls to

perform thorough proteomic profiling. Hospitalized COVID-19

patients were stratified based on treatment in an intensive care

unit (ICU; critical COVID-19) or clinical ward (non-ICU; severe

COVID-19) (Figure 1A). All applicable study protocols were

approved by the local ethics board before initiation of the study,

and all patients or their legal representatives gave informed

consent for participation in this study. Information about age,

sex, COVID-19 specific information, and blood cell counts for

all cohorts are provided in Table 1.

2.1.1 Cohort 1: Breda
In this cohort, 59 COVID-19 ICU (mean age: 67 ± 9 years)

and 148 COVID-19 non-ICU (mean age: 70 ± 12 years) patients

were recruited in March and April 2020 (Table S1). Patients

were admitted based on a PCR-proven SARS-CoV-2 infection.

Ethylenediaminetetraacetic acid (EDTA) blood was collected
frontiersin.org
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FIGURE 1

Inflammatory proteomic profile of hospitalized COVID-19 patients. (A) Schematic overview of the study design. (B) Differential abundance
analysis on inflammation-related of ICU vs. non-ICU patients in cohorts 1 and 2, separately. Upregulation (red) indicates higher protein
concentrations in ICU patients, whereas downregulation (blue) indicates downregulation in ICU patients. Proteins that are not significantly
different are shown in grey. The vertical dotted line indicates log-fold change 0. The horizontal dotted line indicates significance at the adjusted
p-value level. For both cohorts, only the first time-point per patient was considered. Since we focus on the inflammation-related proteins in this
analysis, only proteins belonging to the Olink Inflammation panel are depicted. The complete differential abundance results are included in
Table S2. (C) Replication of the significantly regulated proteins from cohort 1 in cohort 2. The log-fold changes per protein are strongly
correlated (Pearson’s r2: 0.81). Overall, 62 proteins overlapped between the cohorts. 30 proteins were significant in cohort 1, of which 26 were
significantly replicated in cohort 2 (FDR<0.05 and the same direction of regulation, shown in black). (D) Heatmap of the 26 replicated proteins
(FDR < 0.05 & same direction of regulation in cohorts 1 and 2). Each column represents a patient, whereas rows represent proteins. The column
annotations indicate the condition of each patient and the cohort to which they belong. Samples were clustered based on correlation. (E)
Schematic overview of the training process for an elastic net linear regression model to discriminate between COVID-19 disease severity. The
larger cohort 1 was used as a training cohort, and the smaller cohort 2 for validation. 100 independent training iterations were performed and
combined to avoid potential bias. (F) Receiver-operating characteristic curve produced by one random iteration of the classification model on
the independent validation data from cohort 2. The AUC was 0.86 (sensitivity: 0.76, specificity: 0.86). (G) Mean coefficients per protein were
calculated over 100 independent training runs for the model. The top ten proteins with the highest absolute mean coefficients are shown. Dots
indicate the mean absolute mean coefficient per protein, and error bars indicate standard deviation.
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during routine venipuncture for laboratory testing and stored at

4°C until further processing in the laboratory. After

centrifugation for 10 min (3800rm) at room temperature,

plasma was stored at -80°C until further processing.

2.1.2 Cohort 2: Nijmegen
In this cohort, 38 COVID-19 ICU (mean age: 64 ± 12 years)

and 106 COVID-19 non-ICU (mean age: 63 ± 14 years) patients

were recruited between March and May 2020 (Table S2). This

cohort was presented and described in a recent publication (9). It

is important to note that this study partly repeats the analyses

presented by Janssen and colleagues. The novelty of our analyses

of cohort 2 lies in the analysis of the longitudinal sampling,

which were not considered by Janssen and colleagues. Patients

were admitted to the Radboud University Medical Center and

diagnosed with COVID-19 based on a PCR-proven SARS-CoV-

2 infection or suspected infection based on clinical features and

observations of computed tomography (CT) scans. On average,
Frontiers in Immunology 04
ICU patients were admitted 8 days (sd: 3 days), and non-ICU

patients were admitted on average 7 days (sd: 12) days after the

first COVID-19 symptoms. EDTA blood was collected three

times per week (ICU) or every 48 hours (non-ICU) during

routine venipuncture for laboratory testing. After centrifugation

for 10 minutes at 3800 rpm (2954 g) at room temperature,

plasma was stored at -80°C until further processing

2.1.3 Cohort 3: Hannover
In this cohort, 187 post-COVID-19 individuals (mean age:

43 ± 12) and 61 healthy individuals (mean age: 46 ± 14) were

recruited between April and October 2020 in the Institute of

Transfusion Medicine and Transplant Engineering (ITT),

Hannover Medical School (Table S3). This cohort was partially

presented in a recent publication (13). Healthy individuals were

considered SARS-CoV-2 unexposed since they were (i) recruited

early during the pandemic, (ii) regular blood and platelet donors

and hence carefully and frequently evaluated with respect to the
TABLE 1 Quality assessment of individual cohort study.

Cohort 1: Breda Cohort 2: Nijmegen Cohort 3: Hannover P

ICU non-ICU ICU non-ICU Post-COVID-19 Healthy

General

N 59 148 37 106 186 61

Age 67 ± 9 70 ± 12 64 ± 12 63 ± 14 43 ± 12 46 ± 14 <2x10-16

Gender (M / F) 45 / 14 88 / 60 28 / 9 69 / 37 99 / 87 36 / 25 0.002

BMI 28 ± 4 28 ± 5 27 ± 4 27 ± 4a – – 0.36

COVID-19

PCR-proven COVID-19 (n (%)) 59 (100%) 148 (100%) 34 (92%) 100 (93%) 186 (100%) –

Anti-SARS-CoV-2 Spike 1 antibody – – – – 3.23 ± 2.32 0.40 ± 0.20

Anti-SARS-CoV-2 Nucleocapsid protein antibody – – – – 2.32 ± 1.45 0.18 ± 0.16

Days since symptom offset (days) – – – – 37 ± 11 –

Hospitalization after COVID-19 symptom onset (days) – – 8 ± 3.4 7 ± 11.6 – –

Sampling post-hospitalization (days)

Timepoint 1 3 ± 3.4 3 ± 2.9 5 ± 3.4 3 ± 3.7 – –

Timepoint 2 6 ± 2.6 5 ± 2.3 7 ± 3.5 5 ± 4.1 – –

Timepoint 3 8 ± 3.4 7 ± 2.4 9 ± 3.6 7 ± 4.2 – –

Cell counts (* 109 / L)

Lymphocytes – – 0.8 ± 0.5b 1.2 ± 2.3b 2.1 ± 0.8c 1.3 ± 0.4d

Monocytes – – 0.5 ± 0.5b 0.6 ± 0.9b – –

Neutrophils – – 6.4 ± 3.8b 5.8 ± 3.5b – –

Eosinophils – – 0.005 ± 0.01b 0.01 ± 0.04b – –

Basophils – – 0.02 ± 0.02b 0.01 ± 0.02b – –

T cells – – – – 1.5 ± 0.6c 0.9 ± 0.3d

B cells – – – – 0.17 ± 0.14c 0.14 ± 0.06d

Plasmablasts – – – – 0.002 ± 0.004c 0.001 ± 0.001d
frontie
Continuous variables are represented as mean ± standard deviation. For the cell count information, superscript denoted values are obtained from (a) 101 / 105 (b) 106 / 143 (c) 156 / 186 (d)
35 / 61 individuals. Cohort 2 (Nijmegen) was described in Janssen et al (2021) (9). Cohort 3 (Hannover) was partially described in Bonifacius et al (2021) (13). P-values were calculated by
anova or chi-square test for continuous variables or categorical variables, respectively.
rsin.org

https://doi.org/10.3389/fimmu.2022.1027122
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zoodsma et al. 10.3389/fimmu.2022.1027122
health status and (iii) SARS-CoV-2 seronegativity. All post-

COVID-19 individuals had PCR-proven SARS-CoV-2

infection (Figure S1), and were sampled on average 37 days

(ranging from 13 – 75 days) after symptom clearance

(information available for 176/187 patients). Plasma was

collected after centrifugation of whole blood samples and

stored at -20°C until further processing. SARS-CoV-2 serology

test was performed by ELISA: anti- SARS-CoV-2 Spike protein 1

(S1) IgG and anti-SARS-CoV nucleocapsid protein (NPC), IgG

according to the manufacturer’s instructions (Euroimmun,

Lübeck, Germany). Antibody amounts are expressed as IgG

ratio (optical density divided by calibrator).
2.2 Initial demographic analysis

Initial demographic analysis was performed to investigate the

differences in age, sex, BMI and blood cell counts between

the conditions. In Table 1, ANOVA was used to calculate the

statistical difference in age and BMI, while the chi-square test was

used to test the difference in males and females for each condition.

In the text, one-sided Wilcoxon ranked-sum tests were used to

compare age and blood cell counts of specific conditions to

healthy individuals. P-values<0.05 were considered significant.
2.3 Proteomic analysis

The multiplex proximity extension assay (PEA) from Olink

Proteomics AB (Uppsala, Sweden) was used to quantify

circulating proteins in plasma (14). The PEA is designed for

high-throughput protein measurement in liquid samples. In this

assay, oligonucleotide-labelled antibodies (“probes”) bind the

protein of interest. The close proximity of two antibodies triggers

the linking of the probes, thereby limiting cross-reactivity. Upon

linking, the probe sequence hybridizes and is extended by DNA

polymerase. The resulting sequence acts as a unique identifier for

the protein and is quantified by a real-time polymerase chain

reaction. Proteins are expressed as normalized protein

expression (NPX) values, a relative value on a log2 scale.

In cohort 1, the Inflammation panel (v.3022) was measured.

In cohort 2, three unique Olink panels, namely Inflammation

v.3022, Cardiometabolic v.3603, and Cardiovascular II v.5006

were measured. In cohort 3, four unique panels, namely

Inflammation v.3022, Cardiometabolic v.3603, Cardiovascular

II v.5006, and Neurology v.8013 were measured. These targeted

proteomic panels were chosen based on their relevance in the

context of COVID-19. For instance, the connection between

inflammatory and cardiometabolic/cardiovascular processes

have been well-described for COVID-19 (15, 16). The

neurological panel was chosen in cohort 3 because headaches

and taste & smell dysfunctions are prevalent neurological

symptoms during COVID-19 (17).
Frontiers in Immunology 05
Quality control of the raw data was performed by Olink

(Incubation controls, extension controls, and detection controls;

detailed description available at: https://www.olink.com/

question/are-internal-controls-included-in-the-assay-and-if-so-

what-are-they). We removed protein assays where the target

protein was detected in less than 80% of the samples and samples

that were reported as unreliable by Olink per plate (Cohort 1: 7

samples, cohort 2: 25 samples, cohort 3: 14 samples removed).

Later, we manually inspected principal component analysis

(PCA) plots and removed apparent outliers (Cohort 1: 0

samples, cohort 2: 1 sample, cohort 3: 1 sample removed).

Overall, duplicated proteins across the selected panels were

consistent between replicates (Figure S2).

Subsequently, we merged three Olink cohorts together by

using bridging samples that were included in all cohorts. All

normalization procedures were performed in accordance with

instructions from Olink (full description available at: www.olink.

com/content/uploads/2018/05/Data-normalization-and-

standardization_v1.0.pdf). In summary, the median protein

abundance per protein is calculated for the bridging samples.

Any difference in median protein abundance between two

cohorts is considered technical variation and is corrected in

one of the two cohorts. We excluded protein assays where the

target protein was detected in less than 80% of the samples in

either cohort. After merging the cohorts, bridging samples were

removed from further analyses
2.4 Differential protein
abundance analysis

The R (v.4.0.3) package limma (v3.46.0 (18)) was used to

perform differential protein abundance analysis between (i)

COVID-19 ICU vs. COVID-19 non-ICU, (ii) COVID-19 ICU

vs. healthy (iii) COVID-19 non-ICU vs. healthy, and (iv) post-

COVID-19 vs. healthy using a linear model with age and sex as

covariates. limma uses an empirical Bayes method to moderate

the standard errors of the estimated log-fold changes.

Benjamini-Hochberg post-hoc correction was used to control

the false discovery rate. Adjusted p-values <0.05 were considered

statistically significant.
2.5 Replication of the post-COVID
proteome signature in single-cell
RNA sequencing

Post-COVID-19 single-cell RNA sequencing data published

by Yoshida and colleagues (19) was downloaded from the

COVID-19 cell atlas (https://www.covid19cellatlas.org). The

downloaded objects were converted to Seurat objects.

Differential expression was performed using Seurat ’s

Wilcoxon-test, comparing each disease severity (mild,
frontiersin.org
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moderate, severe) to healthy individuals. In total, 56 proteins

from the post-COVID-19 proteome signature were confidently

matched to their respective genes. Proteins were considered

replicated when the corresponding gene was nominally

significant and directionally concordant with the proteome.
2.6 Predictive modelling

Two separate linear regression models were used to predict

(i) COVID-19 disease severity and (ii) the time after SARS-CoV-

2 infection. The disease severity prediction model ’s

hyperparameters were selected based on training on all protein

concentrations from cohort 1 using a five-fold repeated cross-

validation strategy, and the final model’s performance was

evaluated in cohort 2. Hyperparameters were selected based on

the receiver-operator characteristics (ROC) metric. Both cohorts

used only the first timepoint available for each patient. For the

time after infection prediction, missing values were imputed

using K-nearest neighbor imputation. The model ’s

hyperparameters were selected on 70% of the post-COVID-19

samples in cohort 3 using a five-fold repeated cross-validation

strategy. The final model’s performance was evaluated on the

remaining 30%. Hyperparameters were selected based on the

“RMSE”metric. The R packages glmnet (20) and caret (21) were

used to fit the models using standard parameters .

Hyperparameters alpha and lambda were constrained to

ranges [0.01, 0.09] and [0, 1], respectively. This entire process

was repeated 100 times to calculate the mean and standard

deviations of predictors included in the model between

independent runs. Proteins were ranked based on their average

coefficient over 100 independent training iterations.

Subsequently, receiver-operating characteristics (ROC) analysis

was performed to investigate whether the identified proteins had

significant diagnostic effectiveness for separating critical patients

(ICU) from severe patients (non-ICU). The R package pROC

was used to generate the ROC curve and calculate the area under

the curve (22). To predict the time after infection the correlation

between reported and predicted values was taken as a measure

of performance.
2.7 Longitudinal analysis

Repeated-measure ANOVA was used to investigate protein

dynamics over time. We identified a subset of patients within

cohort 2 that were consistently sampled over time (n = 78) and

used median imputation to even the number of longitudinal

measurements per patient (15 measurements imputed, 6.4% of

the data). We only considered proteins that were significantly

differentially abundant between COVID-19 ICU or COVID-19

non-ICU patients compared to healthy individuals. We tested

these proteins for three effects: (i) Time effect, where the protein
Frontiers in Immunology 06
differs over time regardless of conditions. (ii) Condition effect,

where the protein differs between COVID-19 ICU and COVID-

19 non-ICU patients. (iii) The interaction between time and

condition, where the protein differs over time but in different

ways between the disease groups. We fitted an ANOVA model

(aov function in base R, type I ANOVA) using the formula:

va lue ~ condi t ion + t ime + condit ion×t ime +

Error(sampleID),

where value is the protein abundance level expressed in

NPX. Condition is a categorical variable indicating whether

patients are admitted to the ICU or not. Time represents the

sampling time. We started from cohort 2 where more proteins

were measured and replicated the overlapping proteins in cohort

3 (n = 45 proteins in total).
2.8 Co-expression networks and protein-
protein interactions

The R package igraph (23) was employed to calculate

Pearson’s correlation between all protein concentrations in

both healthy, post-COVID-19 and hospitalized COVID-19

patients, separately. This in turn was used to generate co-

expression networks for each condition. Subsequently, the

generated networks were imported to Cytoscape 3 for visual

alterations (24). We identified hub genes by ranking the proteins

based on their betweenness centrality as calculated by Cytoscape.

Betweenness centrality is a widely employed measure that

captures each node’s role in allowing information to pass from

one part of the network to the other and helps us to identify

nodes of importance in the network.
3 Results

3.1 Baseline characteristics of the
studied populations

We enrolled hospitalized COVID-19 patients, post-COVID-

19 symptom-free individuals and healthy controls from two

independent cohorts collected at the Amphia Hospital Breda

and Hannover Medical School (n=207 hospitalized COVID-19

patients, n=186 post-COVID-19 patients and n=61 healthy

individuals). Furthermore, we included and re-analyzed a

recently published cohort of hospitalized COVID-19 patients

(n=143) (9) (Figure 1A; Table S4). Hospitalized patients were

included based on polymerase chain reaction (PCR)-proven

SARS-CoV-2 infection or clinical features and computed

tomography (CT) scan observations, and were admitted either

to intensive care units (ICU) or clinical wards (non-ICU). Blood

was taken every two to three days from the moment of

hospitalization, with a mean of three longitudinal samples per

patient. In this study, we include the first three time-points after
frontiersin.org
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hospitalization, thus representing the peak of the disease directly

after hospitalization. Post-COVID-19 individuals were enrolled

on average 37 days (standard deviation: 11 days) after clearance

of mild COVID-19 symptoms. The time after infection is

defined as the time between symptom offset and sampling, and

thus indicates the time after self-reported recovery per

individual. Healthy individuals were all SARS-CoV-2

immunoglobulin-G (IgG) seronegative at the time of

enrollment. Overall, including the first three longitudinal

samples of hospitalized patients, our cohorts include

1002 samples.

In our study, ICU (mean age: 65 ± 10 years) and non-ICU

(mean age: 67 ± 13 years) patients were older compared to

healthy individuals (mean age: 46 ± 14 years). Blood lymphocyte

counts were significantly lower in ICU (0.8×109/L, p=7×10-5)

and non-ICU patients (1.2×109/L, p=2×10-9), whereas post-

COVID-19 individuals (2.1×109/L, p=7×10-13) displayed

higher lymphocyte counts compared to healthy individuals. A

detailed description of demographics and clinical characteristics

can be found in Table 1.
3.2 Inflammatory proteomic profiling of
hospitalized COVID-19 patients

To characterize the immune response during COVID-19, we

used the proximity extension assay (PEA)-based immunoassay

(Olink platform) to investigate the inflammatory proteomic

signature in both ICU and non-ICU patients from Breda

(n=207, cohort 1) and Nijmegen (n=143, cohort 2). Within

each cohort, differential abundance analysis on 62 circulating

inflammation-related proteins revealed substantial differences

between the ICU and non-ICU patients (Figure 1B; Table

S5). To assess the reproducibility of our findings, we used the

larger cohort 1 as the discovery cohort and validated the findings

in the smaller cohort 2. The log-fold changes per protein were

strongly correlated between the two cohorts (r2 = 0.88,

Figure 1C). Out of 30 significant proteins in cohort 1, 26

proteins replicated significantly in cohort 2 (False discovery

rate (FDR) <0.05 and the same direction of regulation). In

both cohorts, ICU patients were marked by significantly

increased circulating concentrations of hepatocyte growth

factor (HGF, adj. p=7×10-13 & 1×10-14 in cohort 1 and 2,

respectively), CCL20 (adj. p=2×10-7 & 2×10-14), and MMP10

(adj. p=3×10-5 & 1×10-3). In contrast, ICU patients in both

cohorts had significantly lower concentrations of stem cell factor

(SCF, adj. p=2×10-7 & 1×10-10), Delta and Notch-like epidermal

growth factor-related receptor (DNER, adj. p=5×10-5 & 1×10-8),

and TNF-related weak inducer of apoptosis (TWEAK, adj.

p=2×10-2 & 1×10-2). Protein concentrations of the 26

replicated proteins were visualized in a heatmap (Figure 1D).

For both ICU and non-ICU patients, we observed substantial

heterogeneity in terms of the circulating protein concentrations.
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Unsupervised clustering on the protein concentrations revealed

that samples did not cluster respective to their cohort, but rather

by condition. However, the separation between the conditions

was gradual: some ICU patients clustered together with non-

ICU patients, and vice-versa. This suggests a gradual change in

the inflammatory circulating proteome from severe COVID-19

(non-ICU patients) to critical COVID-19 (ICU patients).

Subsequently, we investigated the capacity of the

inflammatory signature to discriminate between ICU and non-

ICU patients across cohorts. A linear regression model with

elastic net regularization was trained on the protein

concentrations of all 62 proteins in cohort 1, and validated in

cohort 2 (Figure 1E). The model classified 98% of patients

correctly in the training cohort and 83% in the validation

cohort (Figure S3). This demonstrates the capacity of

inflammatory proteins to discriminate disease severity in

COVID-19 (Figure 1F, area under the curve (AUC): 0.87,

sensitivity: 0.76, specificity: 0.86). Proteins with the largest

power (highest average coefficient over 100 independent

iterations) to discriminate between ICU and non-ICU patients

are HGF, transforming growth factor (TGF)-a and CXCL9

(Figure 1G). Interestingly, we also identified age as a critical

determinant of disease severity, in line with previous research

that identifies age as a risk factor for COVID-19. Seven out of the

ten proteins with the highest average coefficients were also

significantly different between ICU and non-ICU patients in

both cohorts in our previous analysis. Altogether, these results

provide a comprehensive overview of the inflammatory

proteomic signature in hospitalized COVID-19 patients.
3.3 Identification of biomarkers for
COVID-19 disease severity and
post-COVID-19

Next, we compared hospitalized patients and post-COVID-

19 individuals to healthy controls to investigate proteomic

dynamics in the early phase of SARS-CoV-2 infection and

after infection, respectively. We examined up to 220

circulating proteins related to inflammation, cardiovascular &

cardiometabolic disease in 390 individuals. Principal component

analysis (PCA)-based dimensionality reduction revealed a clear

separation between hospitalized patients and post-COVID-19/

healthy individuals based on the circulating proteome. ICU and

non-ICU patients were moderately separated, consistent with

our previous findings. Re-embedding of the post-COVID-19 and

healthy individuals showed gradual separation between the two

groups (Figure 2A). These results indicate that the proteome of

hospitalized patients is remarkably different from post-COVID-

19 or healthy individuals, while the differences between post-

COVID-19 and healthy individuals are more subtle.

Subsequently, differential abundance analysis was performed

to compare each disease class to healthy individuals separately
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FIGURE 2

Identification of biomarkers for COVID-19 severity and post-COVID-19. (A) PCA on the protein concentrations of COVID-19 hospitalized
patients, post-COVID-19 individuals, and healthy individuals (left). We performed PCA-based dimensionality reduction on cohort 3 separately to
highlight the differences between healthy and post-COVID-19 individuals (right). (B) Significantly different proteins in ICU, non-ICU and post-
COVID-19 individuals compared to healthy individuals. Upregulation (red) indicates higher protein concentrations compared to healthy
individuals, whereas downregulation (blue) indicates lower proteins concentrations compared to healthy individuals. Proteins that do not
significantly differ are shown in grey. The vertical dotted line indicates log-fold change 0. The horizontal dotted line demonstrates significance
at the adjusted p-value level. For ICU and non-ICU patients, only the first time-point per patient was considered. (C) Shared and exclusive
significantly abundant proteins between the conditions, compared to healthy individuals. Venn diagrams are colored with respect to the number
of proteins. (D) Heatmap of the significantly differentially abundant proteins. Each row represents a protein that is significantly different in any of
the conditions: ICU, non-ICU or post-COVID-19 individuals compared to healthy. Columns represent patients, and the column annotations
indicate the condition of each patient. For ICU and non-ICU patients, only the first time point was considered. (E) Barplot showing replication of
the post-COVID-19 proteome signature in publicly available single-cell RNA sequencing data. We replicated the post-COVID-19 signature in
post-COVID-19 patients who experienced three different COVID-19 severities: Mild, Moderate or Severe. Proteins were considered replicated
when the corresponding gene was nominally significant compared to healthy individuals and directionally concordant with the proteome. Red
lines indicate the average replication rate calculated over these cell types. Only the most abundant cell types are shown.
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(Figure 2B; Table S5). The analysis revealed that both ICU and

non-ICU patients are characterized by differences in

inflammatory cytokines and chemokines (among others

TNFa, CXCL10, CXCL11 and CCL19), complement-related

factors (SERPINA5, F2, CR2, C1QTNF1, C2), as well as

consistent upregulation of MMP7. Albeit to a lesser extent, the

circulating proteome from post-COVID-19 individuals showed

clear differences compared to healthy individuals, revealing the

differences between these groups at the proteome level. Using a

recently published study that compared critical and severe

COVID-19 patients to healthy controls (8), 49% and 11% of

differentially abundant proteins can be replicated for ICU and

non-ICU patients (FDR<0.05 in both studies and the same

direction of change), respectively, while 77% (ICU) and 54%

(non-ICU) of our significant proteins showed the same direction

of abundance change.

We then assessed the overlap between significantly up- and

downregulated proteins per group compared to healthy

individuals (Figure 2C; Table S6). In total, 196 proteins were

significantly regulated in one or more conditions. We observed a

shared disease signature in ICU and non-ICU patients: 97% (191/

196) of proteins were significantly regulated in at least one of these

conditions, of which 72% (138/191) was shared. 64% (123/191) of

the significant proteins in hospitalized patients are no longer

significantly different in post-COVID-19 individuals. In post-

COVID-19 individuals, 37% (73/196) of proteins are

significantly different compared to healthy individuals. Among

these, 41% (30/73) are specific to post-COVID-19. 17% (33/196)

of proteins are significantly dysregulated among all disease classes

in the same direction, suggesting these proteins play an important

role during the disease, while potentially influencing immune

responses after the infection phase as well. Highly significant

proteins in this group are related to the proteolytic balance in

the extracellular matrix (ECM) (MMP7 and MMP1) and TNFa
signaling pathways (TNFa, TWEAK). Subsequently, the protein

concentrations of the differentially regulated proteins were

visualized to show their dynamics across conditions (Figure 2D).

The proteomes of ICU and non-ICU patients followed largely the

same patterns, showing that the difference was mainly at the

quantitative level. These findings are consistent with earlier claims

that the difference between critical and severe COVID-19 patients

is a magnitude difference rather than a mechanistic difference (9).

Finally, unsupervised clustering on the protein concentrations

(Figure 2D; Table S7) revealed three unique proteomic dynamics:
Fron
(i) Clusters 1 and 3 contain 167 proteins with significant

regulation in hospitalized patients (97%, 163/167). The

concentrations of most of these proteins return to

normal levels in post-COVID-19 individuals, although

the concentrations of 35% (58/167) of them remain

significantly different compared to healthy individuals.

These two clusters contain mainly inflammatory

markers, such as IL-18, IFN-g, TNFa and chemokines,
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including IL-8, CXCL1, CXCL5, CXCL6, CXCL9, CCL3,

and CCL17, and represent the acute infection proteomic

signature.

(ii) Cluster 2 includes 10 proteins with consistent

upregulation in both disease as well as post-COVID-

19 compared to healthy individuals. The most

significant proteins in this cluster were vascular

endothelial growth factor D (VEGFD), MMP1,

TWEAK, and proteins related to metabolism, e.g.,

glutaminyl-peptide cyclotransferase (QPCT) and

peptidyl-glycine alpha-amidating monooxygenase

(PAM). These proteins are consistently upregulated in

both the acute infection phase and after the infection,

and thus represent the proteomic signature that remains

perturbed over a longer period of time after SARS-CoV-

2 infection (together with the 35% proteins from clusters

1-3 that remain upregulated). From here on, we will

refer to these proteins as the post-COVID-19 signature.

(iii) Cluster 4 consists of 19 proteins that are mostly

significantly downregulated, although not all are

significant in all conditions. Proteins in this cluster are

related to angiopoietin signaling: angiopoietin like 3

(ANGPTL3) and tyrosine kinase with immunoglobulin-

like and EGF-like domains 1 (TIE1) and lymphatic vessel

endothelial hyaluronic acid receptor 1 (LYVE1).
Finally, we replicated our proteome post-COVID-19

signature in publicly available single-cell RNA sequencing data

(19) (Figure 2E, Figure S4). From our proteome signature, 69%

of the proteins were replicated (nominal P<0.05 & directionally

concordant) in at least one celltype, indicating good consistency

between targeted proteomics and the single-cell transcriptome.

Overall, we found that our post-COVID-19 proteome signature

was best replicated in diverse CD4+ T cell populations, as well as

CD8+ T cells and monocytes. These results underline the

robustness of our proteome signature and highlight the

cellular populations that contribute to this proteomic signature.

In summary, these findings reveal the influence of SARS-

CoV-2 infection at the proteome level for both hospitalized and

post-COVID-19 individuals. Strikingly, post-COVID-19

individuals remained markedly different from healthy

individuals at the proteomic level more than one month after

SARS-CoV-2 infection.
3.4 Circulating protein concentrations
are associated to time after
SARS-CoV-2 infection

Next, we aimed to identify proteins that play an important

role after the infection phase of the disease. We investigated

whether protein concentrations correlated with time after

infection and anti-SARS-CoV-2 antibody titers in post-
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COVID-19 individuals, thereby indicating the importance of

these proteins in the post-infection phase. In total, eleven

proteins were significantly correlated to the time after

infection (Figure 3A, Pearson’s r2, FDR<0.05). For instance,

positive correlation indicates protein concentrations increase

over time after infection. Subsequently, we assessed the

correlations of the proteome with anti-SARS-CoV-2 antibody

concentrations (Figure 3B). Concentrations of the spike (S1) and

nucleocapsid (NCP) antibodies were strongly correlated to each

other (Pearson’s r2 = 0.73, p<2×10-16). Eleven unique proteins

were significantly correlated to either S1 or NCP antibody
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concentrations (Pearson’s r2, FDR<0.05), highlighting the

proteins that could be associated to protective immunity

against COVID-19.

Furthermore, we intended to strengthen this line of evidence

by investigating whether the proteome could predict time after

infection. Linear regression models with elastic net

regularization were trained on the concentrations of all 304

proteins within cohort 3 (Figure 3C). Using cross-validation, the

model achieved an average correlation of r=0.45 between the

reported and predicted time after infection (Figure 3D). The

average coefficient in the prediction model was calculated over
B

C D E

A

FIGURE 3

Circulating proteins predict COVID-19 recovery time. (A) Proteins significantly correlated to time the after infection in post-COVID-19
individuals. The time after infection is defined as the time between symptom offset and sampling and thus indicates the time after self-reported
recovery per individual. Each row represents a protein, and each column represents a sample. Individuals are ordered by increasing time after
recovery. (B) Proteins significantly correlated to either SARS-CoV-2 Spike 1 (S1) antibody or nucleocapsid protein (NCP) antibody concentrations
in post-COVID-19 individuals. Each row represents a protein, and each column represents a sample. Samples are ordered in increasing NCP
antibody concentrations. (C) Schematic overview of the training process for an elastic net linear regression model to predict time after SARS-
CoV-2 infection. 70% of the data from post-COVID-19 individuals was used for training, and 30% for validation. Hundred independent training
iterations were performed and combined to avoid potential bias. (D) Scatterplot showing the relation between the reported time after SARS-
CoV-2 infection in days (x-axis) versus the predicted time after SARS-CoV-2 infection in days (y-axis) of one random run of the predictive
model. The blue line represents a linear regression model fitted to the data, with standard error depicted in gray. Correlation between these
values is a good indicator of the quality of the prediction. The boxplot shows the correlation between the predicted and reported values in the
validation data over 100 independent runs. Boxplot center line: median, box limits: 1st and 3rd quartiles. Whiskers: 1,5 x interquartile range. (E)
Mean coefficients per protein were calculated over 100 independent training runs for the model. The top ten proteins with the highest absolute
mean coefficients are shown. Dots indicate the mean absolute mean coefficient per protein, and error bars indicate standard deviation.
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100 independent iterations. The top ten most influential

proteins, selected based on their coefficient, are shown in

Figure 3E. We identified VEGFD, C1q tumor necrosis factor-

related protein 1 (C1QTNF1), and angiotensin-converting

enzyme 2 (ACE2) as proteins of interest because of their

previous associations with COVID-19. Recently, VEGFD was

proposed as a biomarker for COVID-19 due to growing evidence

for its implications in acute respiratory distress syndrome

(ARDS) and acute lung injury (25–27). The anticoagulant

C1QTNF1 regulates blood coagulation, a well-described

complication in COVID-19 patients (28). ACE2 is crucial in

SARS-CoV-2 infection as this protein facilitates entry to the cell

for the virus (29). Interestingly, predictor variables age and sex

were consistently excluded from the model during variable

selection, suggesting that their contribution in predicting the

time after infection is less significant than plasma proteins. This

is consistent with the fact that we do not find significantly

different self-reported recovery times between males and females

in cohort 3 (Wilcoxon rank-sum test, p=0.9). In summary, we

identified proteins that are associated to the time after infection

through correlation analyses and supervised machine

learning approaches.
3.5 Dynamic changes in circulating
proteins can be used to monitor disease
severity in COVID-19 and serve as
potential therapeutic targets

Intending to present a comprehensive overview of

longitudinal proteomic dynamics from the point of

hospitalization to post infection, we leveraged the longitudinal

sampling of hospitalized patients and compared the circulating

protein concentrations in hospitalized patients with post-

COVID-19 and healthy individuals, separately. First, we

applied ANOVA-PCA (30) to visualize the patterns of plasma

proteins during the first three time-points after hospitalization

(Figure 4A). Samples were collected every two to three days, and

thus represent the first week of hospitalization. Overall, the main

dynamic observed is upregulation along the first principal

component, corresponding to an upregulation of circulating

protein concentrations.

Next, we aimed to quantify the longitudinal protein

dynamics during hospitalization. We identified three types of

dynamic protein patterns: proteins that differ (i) over time in

both ICU and non-ICU patients (Figure 4B), (ii) between

conditions but not over time, (Figure 4C), and (iii) over time

but in different ways between ICU vs. non-ICU patients

(Figure 4D). Starting from cohort 2, we systematically tested

for these effects in 189 proteins that were significantly different

between ICU or non-ICU patients compared to healthy controls.

Out of 69 overlapping proteins within cohort 1, 46 proteins were

validated (FDR<0.05). Subsequently, we combined the
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longitudinal dynamics with the protein concentrations in post-

COVID-19 and healthy individuals to generate an overview of

the dynamic changes per protein over time and condition.

With the availability of good coverage of post-infection

sampling times in cohort 3, we further hypothesized that

highly variable proteins during the post-COVID-19 phase are

likely to be influenced by infection. To assess this, we visualized

eight proteins with the highest variance in post-COVID-19

samples (Figure 4E). Five out of eight proteins were regulated

in a significantly different manner in post-COVID-19

individuals compared to healthy individuals. Six out of eight

proteins were significant in the longitudinal analysis for at least

one effect (time [ITGB1BP2, AXIN1, MMP1, STAMBP] or

condition [GH, ITGB1BP2, 4E-BP1]), suggesting their

importance both during hospitalization and after infection.

Furthermore, two proteins (STAM binding protein (STAMBP)

and ITGB1BP2) were significantly correlated to the time after

SARS-CoV-2 infection within cohort 3 (FDR<0.05). None of the

eight proteins were significantly correlated with antibody

concentrations in post-COVID-19 individuals.

Finally, we highlighted two groups of proteins related to

TNF-signaling and regulation of the ECM, respectively, because

of their importance in COVID-19 (31, 32) (Figure 4F). We

identified CD40-Ligand (CD40-L), TNFa, TNF-related

apoptosis-inducing ligand (TRAIL), and TWEAK as proteins

involved in TNF-signaling. All proteins were significantly

upregulated in both ICU and non-ICU patients, except

TRAIL, which was significantly downregulated in ICU, but not

in non-ICU patients, showing a consistent condition effect over

time. Moreover, we identified proteins related to the degradation

and regulation of the ECM, namely EFEMP1, bone

morphogenetic protein 6 (BMP-6), and MMP1. All proteins

associated with these two processes were highly significantly

regulated between post-COVID-19 and healthy individuals.
3.6 Modules of co-expressed proteins
change over conditions

We aimed to assess whether modules of co-expressed

proteins differed between hospitalized patients, post-COVID-

19 and healthy individuals. To this end, we visualized changes in

co-expression between conditions and constructed co-

expression networks for each condition. Firstly, we constructed

protein-protein correlation matrices per condition.

Subsequently, hierarchical clustering was performed to identify

strongly co-expressed protein clusters (Figure 5A). ICU and

non-ICU patients displayed comparable clusters of co-expressed

proteins. However, this was not consistent over all conditions as

there was little overlap with co-expressed protein clusters in

post-COVID-19 and healthy individuals.

Subsequently, we constructed co-expression networks to

identify hub proteins per condition, which in turn may help us
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FIGURE 4

Dynamic changes in circulating proteins can be used to monitor disease severity in COVID-19 and serve as potential therapeutic targets. (A)
ANOVA-PCA on the protein concentrations of the first three time-points after COVID-19 hospitalization in cohort 2. The time-points are taken
at 48-hour intervals, and thus represent the first six days after hospitalization. 61 patients were selected who were consistently samples three
times. The mean protein abundance per patient was subtracted from the measurements for these patients. The first principal component of this
data was plotted against the time. (B) Representative example of a protein (CXCL10) that significantly differs over time during COVID-19
hospitalization, both in ICU and non-ICU patients. The pie chart indicates the proportion of proteins found to be significant for this effect. Red
and orange colors indicate protein concentrations in COVID-19 ICU patients and non-ICU patients, respectively. (C) Representative example of
a protein (stem cell factor, SCF) that significantly differs between conditions (ICU and non-ICU). The pie chart indicates the proportion of
proteins found to be significant for this effect. Red and orange colors indicate protein concentrations in COVID-19 ICU patients and non-ICU
patients, respectively. (D) Representative example of a protein (fetuin B precursor, FETUB) that significantly differs over time and between
conditions. The pie chart indicates the proportion of proteins found to be significant for this effect. Red and orange colors indicate protein
concentrations in COVID-19 ICU patients and non-ICU patients, respectively. (E) Longitudinal dynamics of heterogeneous proteins in post-
COVID-19 individuals. The variance of normalized protein abundance values was calculated and the top eight were selected for visualization.
Five out of eight proteins were significantly upregulated in post-COVID-19 individuals as indicated by the significance stars. (F) Longitudinal
dynamics of proteins related to TNF-signaling and regulation of the extracellular matrix. These proteins were selected based on their highly
significant differential abundance in post-COVID-19 individuals compared to healthy individuals. In all figures, significance is shown when the
protein is significantly differentially expressed in post-COVID-19 individuals compared to healthy individuals: *adj. p < 0.05, **adj. p < 0.01,
***adj. p < 0.001, ****adj. p. < 0.0001. Boxplot center line: median, box limits: 1st and 3rd quartiles. Whiskers: 1,5 x interquartile range. For the
hospitalized patients, error bars indicate standard deviation.
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understand the molecular basis of COVID-19 disease and recovery

(Figure 5B). Protein co-expression clusters in hospitalized patients

were distinct and non-overlapping compared to post-COVID-19

and healthy individuals. Measurement of betweenness centrality

suggests that metalloproteinase inhibitor 1 (TIMP1), vascular

endothelial growth factor A (VEGFA), TRAIL-R2, CD40,

latency-associated transforming growth factor (LAP-TGF-ß),

galectin-9 (Gal-9), TNFa, CD46, and thrombomodulin (TM)

were hub proteins in ICU and non-ICU networks. Hub

proteins for post-COVID-19 individuals included cytastatin 3

(CST3), Notch homolog 1, translocation-associated (NOTCH1),

complement factor H-related 5 (CFHR5), and ST6 beta-galactoside

alpha-2,6-sialyltransferase 1 (ST6GAL1). Interestingly, TIMP1 was

detected as a hub protein in three out of four networks. TIMP1 has

been shown to interact with MMPs and inhibit the proteolytic

activity of MMPs in the ECM (33). Furthermore, strongly co-

expressed clusters with CD40 as hub protein were detected in both

ICU and non-ICU patients (marked clusters in Figure 5B). In both

networks, this cluster contained several proteins related to TNF

signaling pathways, such as TNF receptor superfamily member 9

(TNFRSF9, CD137), 11A (TNFRSF11A, RANK), 10A

(TNFRSF10A, TRAIL-R1)), and TRAIL-R2. These proteins have

been related to various biological processes such as apoptosis, cell

proliferation & differentiation (34). Interestingly, this cluster was

not detected in post-COVID-19 or healthy individuals. While the

individual proteins were contained within all networks, no strong

co-expression of these proteins was observed in post-COVID-19/

healthy individuals.
4 Discussion

In this study, we associated circulating protein concentrations

in COVID-19 hospitalized patients, post-COVID-19 individuals

and healthy individuals to disease severity and time after SARS-

CoV-2 infection in three independent, large cohorts. Altogether,

the data reveal the proteomic changes induced by SARS-CoV-2

infection both during the acute phase and after the infection

phase. The main findings in our study are presented in Figure 6. In

addition to differential abundance analysis, we showed that

circulating proteins are associated to disease severities across

cohorts, and that the proteome is associated to the time after

SARS-CoV-2 infection. Good predictive power of marker proteins

suggests a robust contribution to the disease and argues that these

proteins are therefore important to further investigate in

future studies.

One of the most interesting findings of this study is the

identification of a SARS-CoV-2 acute infection signature and a

post-COVID-19 signature. The acute effects of SARS-CoV-2 are

mainly marked by dysregulation of inflammatory markers and

complement factors, as has been described before (9, 35).

Consistent with earlier research in COVID-19 patients after

the infection phase (12), our results suggest that a substantial
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proportion of proteins (109/220, ~50%) return to normal levels

as they do not show statistical difference compared to controls in

the post-infection phase. A note of caution for this conclusion is

that we cannot completely exclude that for some proteins this

may be caused by other factors such as a lack of statistical power

to detect differences. The remaining post-COVID-19 signature

shows good agreement with single-cell RNA sequencing data

and contains, among others, proteins related to TGFb signaling,

maintenance of the ECM (TGFb1, BMP-6, MMP1, MMP7), and

TNF-signaling (TNFa, TWEAK). These signaling pathways

have been related to other chronic inflammatory disease such

as chronic fatigue syndrome (36, 37) and Q-fever fatigue

syndrome (38), as well as pulmonary complications such as

pulmonary fibrosis (39, 40), ARDS (41, 42) and asthma (43).

Our data indicates that these signaling pathways regulate

important biological processes that remain dysregulated

several weeks after SARS-CoV-2 infection. It remains an open

question whether modulation of these broad pathways could be

beneficial for COVID-19 patients with chronic symptoms.

It is pertinent to note that many of the proteins discussed in

this study have been described before in the context of acute

COVID-19, attesting to their importance in this disease. Among

others, we identified HGF, TWEAK, MMPs and TNFa as

proteins that still remain enhanced after the infection phase of

the disease. HGF promotes alveolar epithelial and endothelial

repair after acute lung injury and was reported to be significantly

upregulated in COVID-19 patients (44, 45). TWEAK, a negative

regulator of interferon-g (IFN-g), was significantly elevated in

COVID-19 patients compared to healthy controls and associated

with disease severity (46, 47). Together with the current study,

these findings may reflect the diminished IFN-response (48) and

impaired T-cell functionality observed in COVID-19 (13, 49).

MMPs, involved in the proteolytic degradation and maintenance

of the ECM, as well as ECM-receptor interactions were found to

be enhanced in acute COVID-19 (50, 51). Our analyses suggest

these pathways remain enhanced during post-COVID-19.

Our study showed a consistent upregulation of MMPs

(MMP1, MMP7, MMP10, and MMP12) in post-COVID-19

individuals, suggesting ongoing remodeling processes in

individuals that experienced mild disease (52, 53). Previous

research has shown the infiltration of profibrotic macrophages

in the lung tissue of severe COVID-19 patients, and also

highlighted MMPs as key mediators (54). Furthermore, other

respiratory viruses such as Influenza and respiratory syncytial

virus (RSV) induce upregulation of MMPs, suggesting similar

pathways are influenced by different viruses (55, 56). Our study

also identified uPA to be of importance of hospitalized COVID-

19 patients. This is important because the interplay between

MMPs and uPA, regulated by TGF-ß, plays a key role in the

proteolytic degradation of the ECM (57). Progression of

COVID-19 patients to respiratory insufficiency has been

associated to uPA (58), and uPA-guided treatment with

anakinra has proved successful in a large phase 3 randomized
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FIGURE 5

Modules of co-expressed proteins change over conditions. (A) Visualization of modules of co-expressed proteins per condition. Protein-protein
correlations were calculated for each condition separately. Hierarchical clustering was performed on the matrix of correlation values for one
condition as indicated by the box. The same protein order was kept for all heatmaps in the same row to visualize how modules change over
condition relative to one condition. This was performed systematically for all four conditions: COVID-19 ICU, non-ICU, post-COVID-19, and
healthy individuals. (B) Co-expression network of each condition. The top five hub genes for each network are highlighted in red. Only the top
2.5% highest correlated connections are shown, corresponding to 576 edges.
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trial (59). Further research should consider the mechanisms

through which disturbed regulation of the ECM persists after

COVID-19 infection, and whether these pathways provide

potential therapeutic targets.

Finally, our results support previous findings that highlight

TNFa as a key mediator of disease in acute COVID-19 (32, 42).

TNFa is a major regulator of immunological processes and has

been reported in RSV as a mediator in infection-related illness

(60). TNFa, among other pro-inflammatory cytokines, was also

upregulated following influenza infection in vitro (61). We

observed significant dysregulation of TNFa and closely related

mediators of the TNF signaling pathways (TNFa, TWEAK,

TRAIL and TRANCE) in ICU and non-ICU patients

compared to healthy individuals. Strikingly, our data showed

that those same proteins remain upregulated in post-COVID-19

individuals. Furthermore, we have shown that TNFa is closely

connected to many dysregulated proteins in the post-infection

phase, although these results have to be interpreted with caution

since TNFa regulates many functions also under healthy

conditions. Nevertheless, other studies have associated TNF-

mediated inflammation with chronic fatigue before (36), which

is one of the most commonly reported symptoms in individuals

who suffer from long-lasting COVID-19 symptoms (3).

While most randomized trials in COVID-19 have focused in

modulating the IL-1/IL-6 pathway, data from multiple studies

suggest that anti-TNF treatments may also play a role in the

therapeutic armamentarium (32, 42). At this time, the

randomized trials still focus on immunotherapy in acute

COVID-19: in contrast, our data suggests continuous

upregulation of TNFa after the infection phase. The effect of

anti-TNF in long COVID-19 patients could be a potential target

for further research to establish the relationship between TNFa
and COVID-19 recovery.

Despite the high impact of this research, several important

limitations should be considered. First of all, although bridging

sample normalization has been performed to alleviate the batch

effects between cohorts, comparison between conditions
Frontiers in Immunology 15
(hospitalized versus post-COVID-19/healthy) could have been

confounded between cohorts. Nevertheless, we did not observe

significant batch effects within conditions that were properly

divided across cohorts. Second, our healthy/post-COVID-19

cohort is younger compared to COVID-19 hospitalized

patients, presenting a possible confounding factor. Third,

proteomics data on its own are not able to provide a complete

overview of COVID-19 pathology and recovery, requiring

integrating with other type of omics data (e.g. transcriptome,

metabolome) to uncover COVID-19 progression and recovery

mechanisms. Fourth, most samples are of Western European

ancestry, which may limit the generalization of our conclusions

to populations of other ancestries. Fifth, our study demonstrated

the associations between circulating protein concentrations,

COVID-19 disease severity and time after infection. We are

not able to relate the protein concentrations to chronic COVID-

19 symptoms since the enrolled post-COVID-19 patients were

largely symptom-free. Further research is needed to establish

causal relationship between phenotypes and biomarkers. Lastly,

individuals from our acute COVID-19 cohorts were admitted

into care at the peak of the pandemic in 202022. In this hectic

period, ICU/non-ICU stratification was the standard, and we

continue with this stratification in the current work.

Complementary clinical information could be used in future

studies to assist in patient stratification.

In summary, our study provides insight into the changes

induced by SARS-CoV-2 infection at the proteomic level by

incorporating a large disease spectrum, including variation in

disease severity, course and recovery. We highlight the protein

biomarker candidates and biological pathways affected

immediately upon infection and those that remain perturbed

after viral clearance. Acute COVID-19 is primarily characterized

by activation of the complement system and inflammatory

markers. Post-COVID-19 individuals show continued

perturbation of proteins related to maintenance of the ECM

and TNF signaling. These results suggest ongoing remodeling

processes and inflammation during post-COVID-19. Further
A

FIGURE 6

Graphical summary of our findings. Graphical summary of the main findings in this study. By integrating a large disease spectrum including
variation in disease severity, course and recovery we show the proteomic changes induced by SARS-CoV-2 infection during the acute phase
and the post-COVID-19 phase.
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research and patient cohorts are needed to investigate the precise

connection between these biological pathways and the lingering

COVID-19 symptoms previously reported.
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Muñoz-Hernández O, Giacoman-Martıńez A, et al. IL-17A and TNF-a as
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