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Background: Allergic rhinitis (AR) and asthma are closely related, and AR is

regarded as an important risk factor for the onset of asthma. However, the

pathogenesis of the development of asthma from AR is still undefined.

Objective: The aim of this study was to investigate the mechanisms underlying

the development of asthma from AR by comparing the transcriptome features

of patients with AR with and without asthma.

Methods: Patients with AR with or without asthma caused by weed pollen who

presented to the Allergy Clinic of Peking Union Medical College Hospital were

recruited for this study. Peripheral blood samples of all the patients were

collected during the weed pollen season (September) when the patients had

allergic symptoms and outside the pollen season (November) when the

patients had no symptoms. Transcriptomic analysis was conducted, and the

differentially expressed genes (DEGs) and enriched immune pathways between

the patients with AR with asthma (AR-asthma group) and those without asthma

(AR group) were identified. In addition, the expression levels of some pivotal

differentially expressed RNAs were quantified using quantitative polymerase

chain reaction (PCR).

Results: During the weed pollen season, the immune-related Gene Ontology

(GO) terms with P value < 0.05, enriched by the upregulated genes in the AR-

asthma group compared to the AR group included antifungal humoral

response, neutrophil-mediated killing of bacterium, antibacterial humoral

response, antimicrobial humoral immune response mediated by

antimicrobial peptides, and regulation of the T cell receptor signaling

pathway. The immune-related GO terms with P values <0.05 enriched by

downregulated genes were positive regulation of natural killer cell-mediated

cytotoxicity, microglial cell activation, natural killer cell activation, and

leukocyte-mediated cytotoxicity. The GO term of antimicrobial humoral
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immune response mediated by antimicrobial peptides was upregulated both

during and outside the pollen season, and the upregulated expression of three

DEGs (LTF, PF4, and ELANE) included in this term was verified through

quantitative PCR.

Conclusions: The activation of the antimicrobial immune response mediated

by neutrophils and the depression of cytotoxicity mediated by natural killer cells

may play roles in the progression from AR to asthma.
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Introduction

Allergic rhinitis (AR) is a common allergic airway disease

that affects 14% of adults in the United States (1) and

approximately 17.6% of people in major Chinese cities (2).

The incidence of epidemiologic AR in the grasslands of

northern China is 32.4%, and the most common allergen is

weed pollen (3). Asthma is also a common airway disease and its

prevalence ranges between 5% and 16% worldwide (4). It is well

known that AR and asthma frequently coexist and are closely

related because of their shared physiology and pathology (5). In

addition, it has been reported that AR is an important risk factor

for the onset of asthma. In a 10-year retrospective study of 436

participants, diagnosis of AR at baseline was found to be a

significant predictive factor for the development of asthma at the

end of follow-up with the OR of 7.8 (6). Yin et al. investigated the

natural course of AR caused by weed pollen in 1096 patients and

found that 37% of the patients developed asthma within 5 years

(7). Both AR and asthma severely affect the quality of life of

patients and exert heavy financial burdens on patients, their

families, and the society (8, 9).

The pathogenesis underlying the development of asthma

from AR is unclear. Some authors have discussed the predictors

for the progression from AR to asthma and reported that

cigarette smoking, female sex, and bronchial hyper-

responsiveness are possible risk factors for the onset of asthma

in patients with AR (10–12). Panganiban et al. (13) identified 30

circulating microRNAs that are differentially expressed among

healthy controls, patients with AR, and patients with asthma. In

that study, miR-125b, miR-126, miR-21, miR-16, miR-223, miR-

148a, and miR-146a were upregulated in the asthma group

compared to the AR or healthy groups. Sobkowiak et al. (14)

found that the expression of four proteins associated with airway

fibrosis is significantly different between children with AR and

those with asthma. In another study of patients with dust mite

allergy, patients with asthma had higher neutrophil counts and

IL-8 levels in the sputum than those without asthma both at
02
baseline and 24 h after bronchial allergen challenge; however, the

sputum eosinophil count and eosinophil cationic protein levels

of the two groups were indistinguishable (15). However, more

intensive studies are still necessary for the acquisition of

repeatable and consistent results and the clarification of the

specific mechanism of the progression from AR to asthma.

The aim of this study was to investigate the mechanisms

underlying the development of asthma from AR by comparing

the features of gene expression through transcriptome

sequencing between patients with weed pollen induced AR

and asthma and patients with weed pollen induced AR only.

Because of the existence of persistent inflammation in the airway

of patients with seasonal AR and asthma during and outside the

pollen season (16, 17), the transcriptomic data both during and

outside the season will be analyzed.
Materials and methods

Subjects

All the patients included in this study were recruited from

the Allergy Clinic of Peking Union Medical College Hospital.

The inclusion criteria were as follows: 1) adult patients; 2)

patients with typical symptoms of rhinitis (18), including

rhinorrhea, sneezing, and itchy nose and eyes, with or without

asthma, during the weed pollen season (from August to

September in Northern China); 3) positive results of

intradermal tests for one or more kinds of weed pollen,

including artemisia, humulus, and chenopodium pollen

(diameter of wheal ≥10 mm); or specific immunoglobulin E

(IgE) level to one or more kinds of weed pollen ≥ 0.7 KUA/L

(ImmunoCAP system, Thermo Fisher Scientific, US).

Concomitant asthma in patients with AR was diagnosed based

on typical respiratory symptoms and variable expiratory airflow

limitations during the weed pollen season, according to the

criteria of the Global Initiative for Asthma report (19). The
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exclusion criteria were as follows: 1) pregnant or lactating

women and 2) pa t i en t s wi th chron ic in fec t ions ,

immunodeficiency diseases, autoimmune disorders, or tumors.

This study was approved by the Peking Union Medical College

Hospital Review Board (ZS-1917). All patients provided written

informed consent for participation in this study.
Study design

This was a cross-sectional study conducted during the

autumn and winter seasons of 2020. Peripheral blood samples

of the patients were collected at two time points: during the weed

pollen season, when all the patients had AR symptoms with or

without concomitant asthma (September), and after the weed

pollen season, when all the patients had no allergic symptoms

(November). Transcriptomic analysis of all blood samples was

conducted, and the transcriptomic features of the patients with

AR and asthma (AR-asthma group) were compared with those

of patients with AR only (AR group) during and outside the

pollen season. The expression levels of some pivotal differentially

expressed ribonucleic acids (RNAs) identified through

transcriptome sequencing were further quantified using

quantitative polymerase chain reaction (qPCR).
Transcriptomic RNA sequencing and
bioinformatics analysis

Total RNA was isolated from the blood sample which was

stored at −80 °C. Messenger RNA (mRNA) was purified from

total RNA using polyT and fragmented into 300–350 bp

fragments. First-strand complementary deoxyribonucleic acids

(cDNAs) were reverse-transcribed with fragmented RNA and

deoxynucleotide triphosphates (dNTPs), and second-strand

cDNA synthesis was subsequently performed. After

adenylation of the 3’ ends of the DNA fragments, sequencing

adaptors were ligated to the cDNA and the library fragments

were purified. The template was enriched using PCR, and the

PCR product was purified to obtain the final library. After library

construction, high-throughput sequencing was performed using

the Illumina Novaseq6000 sequencing platform (Illumina, San

Diego, CA, USA).

For quality control of sequencing data, we analyzed the

quality of raw data using FastQC v0.11.5 and obtained clean

reads after removal of low-quality (quality score < 20) and

adaptor sequences using Cutadapt v2.7. Thereafter, clean reads

were mapped to the human reference genome GRCh38 using

HISAT2 v2.1 (20). Uniquely mapped reads were utilized for the

quantification of gene expression, which was performed using

featureCounts v2.0.0 (21). Expressed genes were obtained by

setting average fragments per kilobase of transcript per million

fragments mapped (FPKM) ≥ 1 across all samples, followed by
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identification of differentially expressed genes (DEGs) within

these genes using DESeq2 v1.30.1 (22) under the condition of |

fold change| ≥ 1.2 and P value < 0.05. Gene Ontology (GO)

enrichment analysis of immune-related process was conducted

using ClueGO v2.5.8 (23) in Cytoscape v3.9.0 with “GO-

ImmuneSystemProcess-EBI-UniProt-GOA-ACAP-ARAP-

15.02.2022” as the input ontology file and visualized with ggplot2

v3.3.2. Then the GO terms were ordered based on the rich factor,

which is calculated by number of genes enriched in a specific

item divided by total number of genes in this term.
Quantitative PCR

Reverse transcription was conducted with the PrimeScript

RT reagent Kit with gDNA Eraser for RT-PCR (RR047A, Takara

Bio Inc., Beijing, China) and the thermal cycler (Thermo Fisher

Scientific, Waltham, MA, USA) in a volume of 20 µL. The single

cycle was 35 °C for 15 min and the incubation period was 85 °C

for 5s. Relative qPCR was done with the Bio-Rad CFX Opus 96

Instrument and TB Green® Premix (RR820A, Takara Bio Inc.,

Beijing, China). Fold induction was calculated using the

comparative Ct method and the formula 2-(DDCt).
Statistical analysis

Normally distributed data are expressed as mean and

standard deviation, while non-normally distributed data are

expressed as median and interquartile range. Pearson c2 test

was used to compare sex ratios at baseline, whereas the

differences in patient body mass index (BMI), length of AR

course, and visual analog scale (VAS) scores between the AR and

AR-asthma groups were verified using the Mann-Whitney U

test. The expression levels of critical DEGs measured using

quantitative PCR were compared between the two groups

using t-tests. Statistical significance was set at P < 0.05. All

statistical analyses were performed using SPSS statistical

software (v23; SPSS Inc., Chicago, IL, USA).
Results

Demographic characteristics and clinical
manifestations of the patients

Twenty-five patients with AR allergic to weed pollen were

recruited for this study. Of these, seven patients had

concomitant asthma. As shown in Table 1, there were no

significant differences in age distribution, male-to-female ratio,

BMI, length of AR course, and VAS score of AR symptoms in the

previous pollen season between the AR (n = 18) and AR-asthma

(n = 7) groups. However, the VAS score of the AR-asthma group
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1026121
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.1026121
tended to be higher than that of the AR group (7.5 [7.0, 9.0] vs.

7.0 [5.0, 8.0]; P = 0.087).
Transcriptomic differences between the
AR-asthma and AR groups during the
pollen season

Transcriptomic RNA sequencing and bioinformatics

analysis showed that during the weed pollen season when all

the patients had allergic symptoms, 158 genes were upregulated

and 200 genes were downregulated in the AR-asthma group

compared to the AR group (Figure 1). GO enrichment analysis

of these DEGs was conducted and the GO terms related to

immune reactions were screened out. The following five

immune-related GO terms with a P value < 0.05 were enriched

from the 158 upregulated genes and ordered based on the rich
Frontiers in Immunology 04
factor: antifungal humoral response, neutrophil-mediated killing

of bacterium, antibacterial humoral response, antimicrobial

humoral immune response mediated by antimicrobial

peptides, and regulation of the T cell receptor signaling

pathway. Four immune-related GO terms with a P value <

0.05, which included positive regulation of natural killer cell-

mediated cytotoxicity, microglial cell activation, natural killer

cell activation, and leukocyte-mediated cytotoxicity, were

enriched from the 200 downregulated genes and ordered based

on the rich factor (Figure 2).
Transcriptomic differences between the
AR-asthma and AR groups outside the
pollen season

During winter (outside the weed pollen season), when all

the patients had no symptoms, 378 genes were upregulated and

507 genes were downregulated in the AR-asthma group

compared to the AR group (Figure 3). GO enrichment

analysis of these DEGs was also performed. Six immune-

related GO terms with a P value < 0.05 were enriched from

the 378 upregulated genes, and the top five based on the rich

factor were as follows: regulation of inflammatory response to

antigenic stimulus, megakaryocyte differentiation, toll-like

receptor 4 signaling pathway, leukocyte tethering or rolling,

and antimicrobial humoral immune response mediated by

antimicrobial peptides. Thirty-six immune-related GO terms

with a P value < 0.05 were enriched from the 507

downregulated genes, and the top five based on the rich
TABLE 1 Comparison of baseline characteristics between the AR
group and AR-asthma group.

Indexes AR group
(n=18)

AR-asthma
(n=7)

P
value

Women (n, %) 9, 50.0% 3, 42.9% 1.000

Age (years old) 34 ± 8 32 ± 9 0.551

BMI (kg/m2) 22.8 (20.6, 24.2) 26.4 (22.1, 30.0) 0.064

Course of AR (years) 5 (3, 9) 7 (4, 9) 0.745

VAS of past AR
symptoms

7.0 (5.0, 8.0) 7.5 (7.0, 9.0) 0.087
AR, allergic rhinitis; BMI, body mass index; VAS, visual analogue scale.
FIGURE 1

Volcano plot showing DEGs of the AR-asthma group compared to the AR group during the pollen season. Significantly up- and down-regulated
genes (|fold change| ≥ 1.2, P value < 0.05 and average FPKM, fragments per kilobase of transcript per million fragments mapped ≥ 1) were
labeled as red and blue dots, respectively. AR, allergic rhinitis; DEGs, differentially expressed genes; FC, fold change.
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FIGURE 3

Volcano plot showing DEGs of the AR-asthma group compared to the AR group outside the pollen season. Significantly up- and down-
regulated genes (|fold change| ≥ 1.2, P value < 0.05 and average FPKM, fragments per kilobase of transcript per million fragments mapped ≥ 1)
were labeled as red and blue dots, respectively. AR, allergic rhinitis; DEGs, differentially expressed genes; FC, fold change.
A B

DC

FIGURE 2

Immune-related GO terms enriched from up-regulated DEGs between the AR-asthma group and AR group during the pollen season (A). Immune-
related GO terms enriched from down-regulated DEGs between the AR-asthma group and AR group during the pollen season (B). Immune-related GO
terms enriched from up-regulated DEGs between the AR-asthma group and AR group outside the pollen season (C). Immune-related GO terms
enriched from down-regulated DEGs between the AR-asthma group and AR group outside the pollen season (D). AR, allergic rhinitis; DEGs, differentially
expressed genes; GO, gene ontology.
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factor were antibody-dependent cellular cytotoxicity (ADCC),

regulation of germinal center formation, regulation of memory

T cell differentiation, regulation of complement activation, and

the Fc-g receptor signaling pathway (Figure 2).
Quantitative PCR validation

The above-mentioned results indicated that the GO term of

antimicrobial humoral immune response mediated by

antimicrobial peptides was upregulated in the AR-asthma

group compared to the AR group both during and outside the

pollen season. The results also showed that if the DEGs between

the two groups identified during and outside the pollen season

were intersected, 39 DEGs were upregulated and 21 were

downregulated at both time points (Figure 4). Only one

immune-related GO term— the antimicrobial humoral

immune response mediated by antimicrobial peptides— could

be enriched from the 39 upregulated DEGs. This immune-

related GO term included three DEGs, namely: LTF, PF4, and

ELANE. However, no immune-related GO term was enriched

from the 21 downregulated DEGs.

Based on the above results, LTF, PF4, and ELANE were

considered possible key DEGs between the AR-asthma and AR

groups, and their expression levels were validated through

qPCR. The results of the qPCR showed that during the weed

pollen season, the expression levels of ELANE and LTF in the

AR-asthma group were significantly higher than those in the AR

group, whereas the expression levels of PF4 in the two groups

were not significantly different. Outside the weed pollen season,

the expression levels of LTF, PF4, and ELANE in the AR-asthma

group were significantly higher than those in the AR

group (Figure 5).
Frontiers in Immunology 06
Discussion

In this study, we compared the transcriptome features

between the AR-asthma group and the AR group and found

that the GO term, antimicrobial humoral immune response

mediated by antimicrobial peptides, was upregulated in the

AR-asthma group compared to the AR group during and

outside the pollen season. Most DEGs of this term, including

DEFA3, DEFA4, ELANE, and LTF, encode antimicrobial

peptides in neutrophils, indicating that the upregulated

antimicrobial immune response in the AR-asthma group is

mainly mediated by neutrophils. The results also showed that

the GO term of neutrophil-mediated killing of bacterium was

upregulated in the AR-asthma group during the pollen season.

The important role of airway mucosal neutrophils in the

pathogenesis of allergic asthma has been reported in several

studies. In animal models of allergic asthma, allergen challenge is

associated with the recruitment of neutrophils to the airway

mucosa (24, 25). In addition, the interaction between pathogenic

allergens and IgE/FcϵRI on the surface of neutrophils in patients

with asthma could promote the secretion of neutrophil products,

including elastase, myeloperoxidase, and reactive oxygen species

(26–28), which induce epithelial cell damage and exacerbate

airway mucosal inflammation (29). Impediment of neutrophil

recruitment to the airway in asthmatic mice reduces eosinophil

infiltration and Th2 cytokine levels, whereas supplementation of

neutrophils restores type 2 inflammation and airway hyper-

responsiveness (30). However, the difference in neutrophil-

mediated immune reactions between patients with AR only

and those with AR and asthma has not been widely discussed.

It is well known that the development of both AR and allergic

asthma are closely associated with increased levels of IgE

antibodies and eosinophil inflammation, and that the
FIGURE 4

Venn diagram showing the intersection of DEGs between the AR-asthma group and AR group during the pollen season and outside the pollen
season. AR, allergic rhinitis; DEGs, differentially expressed genes.
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difference in airway mucosal inflammation in the two conditions

may be related to neutrophil-mediated immune response (18). It

was reported that patients with allergic asthma showed higher

levels of neutrophils and IL-8 in the sputum and more intensive

neutrophil chemotaxis than patients with AR without asthma,

both at baseline and after bronchial allergen challenge (15, 31).

Our findings are consistent with the above-mentioned results,

which suggest that the pathway related to neutrophil-mediated

antimicrobial immune response is upregulated in patients with

AR with asthma compared to patients with AR without asthma,

both prior to the weed pollen challenge (outside the pollen

season) and during the pollen challenge (during the

pollen season).

The enrichment analysis of downregulated DEGs in the AR-

asthma group compared to the AR group showed that during the

pollen season, the GO terms related to NK cell activation and

NK cell-mediated cytotoxicity were downregulated in the AR-

asthma group, whereas outside the pollen season, the GO term

ADCC was downregulated in the AR-asthma group. ADCC

reactions are mainly mediated by NK cells, suggesting that the

top downregulated GO terms during and outside the pollen

season are consistent and closely related to the activities of NK

cells. Compared to the AR group, the AR-asthma group showed

depressed cellular cytotoxicity mediated by NK cells. It has been

reported that the number and activities of NK cells in patients
Frontiers in Immunology 07
with asthma are downregulated relative to those in healthy

individuals, which is consistent with our findings (32). Duvall

et al. (33) reported that the number of NK cells in the

bronchoalveolar lavage fluid (BALF) of patients with asthma is

lower than that in the BALF of healthy subjects. Also the

cytotoxicity of NK cells reflected by killing of K562 myeloid

target cells in patients with asthma is impaired compared to that

in healthy controls. However, studies on the differences in NK

cell activity between patients with asthma and those with AR are

lacking. The results of the present study provide new evidence of

the role of decreased NK cell-mediated cellular cytotoxicity in

the progression from AR to asthma.

It has been reported that ELANE and PF4 are closely related

to the pathogenesis of asthma. ELANE is a gene that encodes the

protein elastase, which is a serine protease mainly found in

neutrophils (34) and can damage the integrity of the airway

epithelium (32). Weng et al. (35) found that neutrophil elastase

(NE) induces the expression of eosinophil chemokines, thus

promoting eosinophil infiltration and type 2 inflammation. In

patients with asthma, the level of elastase is significantly

correlated with the proportion of neutrophils in the sputum

and negatively correlated with the forced expiratory volume in

one second (34). PF4 encodes platelet factor 4, which is

produced from activated platelets and is increased in the

peripheral blood or BALF of patients with asthma (36).
FIGURE 5

Quantitative PCR validation of three key DEGs between the AR-asthma group and AR group during the pollen season and outside the pollen
season. AR, allergic rhinitis; DEGs, differentially expressed genes; PCR, polymerase chain reaction; *P < 0.05; **P < 0.01.
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Additionally, platelet factor 4 has been found to induce airway

hyper-responsiveness in an asthma model (37, 38).However,

studies on the comparison of the expression levels of ELANE or

PF4 between patients with AR and those with asthma are rare. In

the present study, the AR-asthma group showed upregulated

ELANE and PF4 expression compared to the AR group in the

transcriptomic analysis, suggesting that increased elastase and

platelet factor 4 may contribute to the development of allergic

asthma from AR. We notice that in the qPCR tests, the measured

expression level of PF4 in the AR group and AR-asthma group

during the pollen season were not significantly different, and this

might be related with the partial degradation to varying degrees

in different RNA samples after several months of storage.

The protein encoded by LTF is lacto-transferrin, which is

derived from the granules of neutrophils. Lacto-transferrin can

inhibit eotaxin-stimulated eosinophil migration into the airway

(39) and prevent the development of mucin-producing cells

(40). Kruzel et al. found that lacto-transferrin relieved pollen-

induced allergic airway inflammation (40). Thus, the

phenomenon observed in the present study, which is the

higher expression of LTF in the peripheral blood cells of

patients in the AR-asthma group than in those of the AR

group, may be the protective reaction of the body against

asthma inflammation and self-balance. Tsokos et al. (38)

reported that patients with asthma show enhanced lacto-

transferrin expression in their pulmonary tissues during fatal

asthma attacks compared to controls, which is consistent with

the findings of the present study.

This study had some limitations. First, the sample size is

relatively small, which may lead to bias. In this condition the

heterogeneity among different patients may have interfered with

the data analysis. Second, there are no healthy controls in this

study, and the transcriptomic differences between the AR-

asthma group and healthy subjects will provide more

supportive evidence for the current findings. Third, we did not

validate the results of RNA sequencing and qPCR with specific

protein quantitation using western blot assay.

This study focused on the GO terms related to immune

reactions while analyzing the difference of transcriptome data

between AR and asthma group, and found that the activation of

the antimicrobial immune response mediated by neutrophils

and the depression of cytotoxicity mediated by NK cells may be

involved in the development of asthma from AR. However,

prospective studies should be conducted in the future to verify

the current findings, in which patients with only AR are

recruited and followed up for years until asthma develops. The

essential factors involved in the development from AR to asthma

could be confirmed through the pair comparison between the

AR stage and AR-asthma stage in the same person. Also further

experiments in protein level and in animal models are needed to

investigate the underlying specific mechanism in the future.
Frontiers in Immunology 08
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