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In the last two decades, the exponential progress in the field of genetics could

reveal the genetic impact on the onset and progression of several diseases

affecting the immune system. This knowledge has led to the discovery of more

than 400 monogenic germline mutations, also known as “inborn errors of

immunity (IEI)”. Given the rarity of various IEI and the clinical diversity as well as

the limited available patients’ material, the continuous development of novel

cell-based in vitro models to elucidate the cellular and molecular mechanisms

involved in the pathogenesis of these diseases is imperative. Focusing on stem

cell technologies, this review aims to provide an overview of the current

available in vitro models used to study IEI and which could lay the foundation

for new therapeutic approaches. We elaborate in particular on the use of

induced pluripotent stem cell-based systems and their broad application in

studying IEI by establishing also novel infection culture models. The review will

critically discuss the current limitations or gaps in the field of stem cell

technology as well as the future perspectives from the use of these cell

culture systems.

KEYWORDS

inborn errors of immunity, iPSCs, diseasemodeling, cell therapies, immune cells,macrophages
Introduction

In the last decades, the major progress in the field of genetics and the availability of high-

throughput DNA sequencing techniques contributed to the discovery of more than 400

monogenic germlinemutations affecting our immune system. Thesemutations are referred to

as inborn errors of immunity (IEI) and can lead either to the loss of expression or loss/gain of

function of the respective protein (1–3). The prevalence of IEI in the overall population is in

the range of 1/10,000-1/50,000 (4). Inmost cases, IEI are identified early in life upon recurring
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infections such as bronchitis or sinusitis and can be life-threatening

if the patients do not receive proper treatment. The clinical

phenotype of IEI shows a variety of disorders, including

autoimmune or inflammatory diseases, allergies, cancer, and

increased susceptibility to several pathogens.

According to the International Union of Immunological

Societies, the IEI are classified into the following ten categories

of conditions: Combined immunodeficiencies; Combined

immunodeficiencies with syndromic features; Predominantly

antibody deficiencies; Diseases of immune dysregulation;

Congenital defects of phagocytes; Defects in intrinsic and

innate immunity; Autoinflammatory diseases; Complement

deficiencies, Bone marrow failure, and Phenocopies of IEI (2–5).

Due to the variable clinical features of IEI-related disorders, the

medical care and treatment of these young patients is extremely

challenging and requires a careful fine-tuning of the immune

system. Children with IEI are usually treated with

immunosuppressants, such as rapamycin or corticosteroids to

decrease inflammation, however, this leads to a broad range of

side effects. In addition, these types of treatment can only alleviate

the symptoms but do not offer a curative solution for the patient.

Other therapeutic strategies include the long-term usage of anti-

fungal, anti-viral, or anti-bacterial agents, increasing the risk for the

development of drug-resistant pathogens, which can cause life-

threatening infections. In some cases, like in the severe combined

immunodeficiency (SCID) syndrome, allogenic hematopoietic stem

cell transplantation (HSCT) (or autologous HSC-gene therapy) is

the only curative therapy (6, 7). However, HSCT always lurks the

risk of immunological rejection or development of graft versus host

disease with devastating consequences for the patient, pointing

towards the need of suitable alternatives.

For these reasons, more targeted therapeutic approaches, which

can directly modulate specific cell types or intracellular pathways,

are preferred. These approaches include the use of specific

inhibitors or biologics (antibodies or recombinant proteins). For

the safe use of these emerging therapeutic agents, a detailed study of

the pathophysiological mechanisms of the diseases is necessary.

Given the rarity of IEI and the technical difficulties (obtaining

sufficient samples from children or the low number of affected cells),

the study of IEI-related diseases remains challenging. Thus, the

development of novel systems to unravel the cellular and molecular

mechanisms involved in the pathophysiology of the various IEI is of

great importance.
Cell-based in vitro systems to
study IEI

In the last years, the establishment of novel IEI in vitro systems

has contributed enormously to the current understanding of the

immunopathology involved in the various clinical features of

different IEI-related diseases. As a consequence, these insights
Frontiers in Immunology 02
allowed for the development of new therapeutic approaches. The

most appropriate in vitro models developed for these purposes are

stem-cell based since stem cells have the capacity for self-renewal

and differentiation into specialized cell types. The two main

approaches used are based either on adult hematopoietic stem

cells (HSCs) or induced pluripotent stem cells (iPSCs).

Adult HSCs are primary cells isolated fromdifferent sources such

as peripheral blood, bone marrow, or umbilical cord. Their low

number, inefficient long-term expansion, and heterogeneity however,

impact their use in disease modeling and clinical applications.

As an alternative, iPSC-based in vitromodels have proven to be

one of the most successful options to adequately study IEI (8).

Reprogramming of a few somatic cells, isolated from a patient, leads

to the generation of stable, pluripotent, and patient-specific iPSC

lines, which can give rise indefinitely to various cell types (Figure 1).

Thus, iPSC technology becomes a promising tool to investigate the

possible mechanisms involved in the pathophysiology of IEI using

various cell types generated through specialized differentiation

protocols from a single iPSC line. In addition, the fact that the

generation of iPSCs is based on less-invasive methods for the

patient renders the iPSC-derived cells preferable in comparison to

primary specialized cells isolated consecutively from patients with

more laborious and invasive procedures. Of note, this plays a

particular role when children are affected.

Studying the immune system using animal models has given

us insights into its function. However, in cases of IEI, which

affect hematopoiesis and immune development, the inter-species

differences within hematopoietic development are a considerable

limitation for the use of animal models to adequately study IEI

(9). In those cases, human iPSC-derived cells are better suited to

clarify the role of specific IEI in the hematopoietic system.

Furthermore, the use of iPSC-derived cells is not only

advantageous for studying IEI to unravel the pathomechanism

of various diseases but also introduces alternative therapeutic

strategies. The phenotypical and functional similarities of iPSC-

derived immune cells such as granulocytes, macrophages, and

dendritic cells with their respective primary counterparts (10)

further support the use of iPSC-derived cells to study the onset

of diseases and to develop novel cell therapy concepts. As a

consequence, in the last years continuous optimization of the

iPSC-based differentiation protocols improved both the quality

and quantity of the derived cell types, aiming to fulfill the

requirements for clinical application.
Hematopoietic differentiation
protocols for the generation
of iPSC-derived immune cells
to study IEI

The fact that various tissues and cell types may be affected in

different IEI underlines the complexity of IEI-related diseases
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and the growing need for specialized and highly standardized

immune cells to study the onset and progression of these

diseases. The high demand for adequate numbers of the

affected patient-specific immune cells led, upon the discovery

of iPSCs in 2006, to the establishment of numerous

hematopoietic differentiation protocols able to generate

different lineages of the lympho-hematopoietic system. In

recent years, several iPSC-based differentiation protocols have

been established for the generation of for instance macrophages,

granulocytes, dendritic cells (DCs), natural killer cells (NK),

NKT cells, and T lymphocytes. In general, the iPSC

differentiation protocols include as first step the differentiation

of iPSCs to hematopoietic progenitors either by the support of

stromal cells and the use of cytokines or by the formation of so-

called embryonic bodies (EBs), which are aggregates containing

cells of the three germ layers. As an example, in the context of

macrophages, recent differentiation techniques result in the

generation of cells using EBs. The differentiation to

hematopoietic or myeloid progenitors within the cell

aggregates happens either autonomously from factors

produced by the cell aggregates (11–13) or by the addition of

exogenous factors such as BMP4, VEGF, SCF, Flt3-ligand, and

TPO (13–15). Of note, using modern differentiation media

authentic macrophages can be generated from human iPSCs,

which share phenotypical and functional hallmarks with their in

vivo counterparts (16). Similarly, simplified two-step protocols

have also been established for the generation of iPSC-derived

NK cells. In these differentiation platforms, the cytokines IL-3,

IL-7, SCF, IL-15 and Flt3-ligand are often used for the
Frontiers in Immunology 03
differentiation of iPSC-derived progenitor cells towards NK

cells (17, 18). Although still quite challenging to generate from

human iPSC, some progress has been made to produce iPSC-

derived T lymphocytes (19–28). Some of the strategies that have

been developed include the reprogramming of antigen-specific T

cells to iPSCs and the subsequent differentiation to T cells with

the respective antigen-specificity (20, 23, 27) or the generation of

custom-made antigen-specific T cells using T-cell receptor

(TCR)-transduced iPSCs (22, 26). Of note, the functional

resemblance of the iPSC-derived lymphocytes to the in vivo

lymphocytes raises hopes for the use of these cells for the

treatment of several diseases.

Moving from the use of iPSC-derived immune cells for

disease modelling towards cell-based therapies targeting IEI,

required the development of differentiation protocols which

allow a continuous and scalable production of iPSC-derived

immune cells such as macrophages (12, 29), NK cells (30), and T

lymphocytes (22). The successful use of iPSC-derived immune

cells as a cell-based therapy requires authentic immune cells,

which are functionally indistinguishable from their in vivo

counterparts. For instance, iPSC-derived macrophages show

typical morphological and phenotypical characteristics. When

tested for their ability to secrete cytokines and to perform

phagocytosis, iPSC-macrophages showed a similar cytokine

secretion profile to the monocyte-derived macrophages and

high phagocytic capacity, respectively (11, 12, 31). In addition,

iPSC-macrophages have been shown to react highly similar to

monocyte-derived macrophages to a variety of pathogens (12,

32–34). Similarly, iPSC-derived NK cells show typical NK
FIGURE 1

Schematic representation of the generation and differentiation of patient’s-specific iPSCs to different cell types (Macrophages, T cells, NK cells,
Granulocytes) for various applications (Disease modeling; Cell and Gene therapy; Drug screening) to study IEI and improve the patient’s care by
developing novel host directed therapies. IEI, inborn errors of immunity; iPSC, induced-pluripotent stem cells.
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characteristics and full functionality, as proven in several studies

to be able to eradicate HIV-infected CD4+ T cells (17), myeloma

or pancreatic tumor cells (18) as well as ovarian cancer cells (35).

Likewise, iPSC-derived antigen-specific cytotoxic T cells (CTLs)

directed against the melanoma epitope MART1 (25) or the WT1

antigen (20), showed antigen-specific reactivity upon

stimulation with the respective antigen, proving their

functional similarity to in vivo CTLs. These protocols are

constantly adapted and pave the way for the generation of

highly standardized, well-characterized cells from iPSCs, which

are derived from healthy or diseased individuals and which can

now be used to model IEI in vitro. Furthermore, the existence of

such differentiation protocols makes these iPSC-derived cell

products promising therapeutic agents for “bench to

bedside” applications.
iPSC-based in vitro systems to
study IEI

The role and importance of iPSC-derived immune cells for

the field of IEI is constantly growing and opens new possibilities

to study novel forms of treatment. The establishment of

numerous disease models for the discovery of the responsible

molecular and cellular factors for the clinical phenotype and, at

the same time, establishment of promising alternative

therapeutic strategies either through the discovery of potent

drugs by drug screening approaches or through genetic

manipulation of the cells for cell-based therapies, are of great

importance. In the chapter below, we cite representative studies

for most of the categories of IEI and for which iPSC-derived

immune cells have been used to study IEI. A broader overview of

the different studies published in this field in the last decade can

also be seen in Table 1.
Combined immunodeficiencies

One of the most common diseases of this category is severe

combined immunodeficiency (SCID), which is characterized by

a lack of CD3+ T cells. SCID is a life-threatening syndrome with

a prevalence of 1/50.000-100.000 worldwide. IL2RG, IL7R, JAK3,

ADA, RAG1/2, and DCLRE1C are the most common genes

identified to be impaired in SCID patients, resulting in various

clinical phenotypes. The current therapeutic approach for SCID

patients, apart from antimicrobial drugs, is HSCT partially in

combination with gene therapy. The first trial to generate iPSCs

from a SCID-patient (adenosine deaminase; ADA deficient-

SCID) was conducted in 2008 by Park et al. (83). Later, in

2015 Chang et al. used a patient-specific iPSC line with a

mutation in the JAK3 gene to generate T cells using a two-step

OP9 and OP9-DL4 system (39). Studying these iPSC-derived

JAK-deficient-T cells showed that JAK deficiency negatively
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impacts the differentiation of the cells into an early T cell

p rog en i t o r s t a g e , un r ave l i ng the mechan i sm o f

immunodeficiency in these patients (39). Correction of the

JAK3 mutation in iPSCs using CRISP/Cas9 technology

restored normal T cell development (39). This highlights the

importance of iPSC-based in vitro systems for studying human

lymphopoiesis while developing novel gene correction strategies

for human immunodeficiencies at the same time.

ADA deficiency causes abnormal differentiation and

function of T cel ls leading to a severe combined

immunodeficiency (84, 85). Recent data from ADA-deficient

patients indicated that ADA deficiency impacts myeloid cells,

such as neutrophils (43, 86). Given the difficulty in isolating

neutrophils from ADA-deficient patients for follow-up studies,

using patient-specific iPSCs for generating ADA-deficient

neutrophils is very beneficial. Here Tsui et al. could show that

ADA-deficient iPSCs generate lower numbers of neutrophils

with increased frequency of hyper lobular neutrophils,

characterized by decreased phagocytic capacity (43). Thus, the

iPSCs technology was able to further associate the contributing

mechanisms to the phenotype of ADA-deficient patients (43).
Combined immunodeficiencies with
syndromic features

Ataxia telangiectasia (AT) is an inherited disease

characterized by a severe neurological phenotype with a poor

prognosis and a lack of efficient accessible treatment. AT is

caused by a mutation in the ataxia-telangiectasia mutated gene

(ATM), leading to a combined immunodeficiency in patients

and an increased risk for the development of autoimmunity (87).

Not differentiated towards immune cells, iPSCs generated from

an AT patient were used as an in vitro model to study the

cytotoxic effects of the potentially effective immunomodulators

thioguanine, mercaptopurine, dexamethasone, mepacrine,

thalidomide, and lenalidomide (44). In detail, AT iPSCs were

more resistant to thioguanine compared to wild-type iPSCs and

at the highest tested concentration of thalidomide and

lenalidomide slightly higher cytotoxic effect was observed in

AT iPSCs (44). Both AT and wild-type iPSCs were resistant to

dexamethasone (44).

As another example, Wiskott-Aldrich syndrome (WAS) is

an X-linked inherited immunodeficiency characterized by micro

thrombocytopenia, autoimmunity, and hematological

malignancies (28). The disease is caused by various mutations

in theWAS protein gene. Generation of WAS-specific iPSCs and

subsequent differentiation to megakaryocytes and platelets

contributed to understanding the disease and identifying the

responsible molecular and cellular players. More specifically,

WAS-iPSC-derived megakaryocytes showed an abnormal

pattern of F-actin distribution with abnormal pro-platelet

processes, indicating dysregulated cytoskeletal protein
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TABLE 1 An overview of the latest studies using iPSC-derived cells to study IEI.

Disease Gene Studied cell type
(iPSC or iPSC-derived)

Application Reference

Combined immunodeficiencies SCID RAG2 T cells Gene Editing (36)

RAG2 T cells; NK cells Disease Modeling (37)

RAG1 T cells Disease Modeling (38)

JAK3 T cells Disease Modeling/Gene
editing

(39)

SCID-X1 IL-2RG NK cells Gene Editing (40)

Reticular
dysgenesis

AK2 Myeloid; erythroid precursors; myeloid cells Disease Modeling (41)

XLF
deficiency

NHEJ1 Hematopoietic progenitors Disease Modeling (42)

ADA
deficiency

ADA Hematopoietic progenitors; neutrophils Disease Modeling (43)

Combined immunodeficiencies
with syndromic features

AT ATM TREX1
RNASEH2B IFIH1

iPSCs Drug Screening (44)

ATM iPSCs Gene Editing (45)

WAS WAS Hematopoietic progenitors; T cells; NK cells Disease Modeling/Gene
Editing

(46)

WAS megakaryocytes Disease Modeling (47)

Predominantly antibody
deficiencies

Hoffman
syndrome

TOP2B NK cells Disease Modeling (48)

Diseases of immune dysregulation APECED AIRE iPSCs Disease Modeling (49)

VEO-IBD IL10RA
IL10RB STAT3

Macrophages Disease Modeling/Gene
Editing/Drug Screening

(50)

Congenital defects of phagocytes SDS SBDS Hemoangiogenic progenitors; neutrophils;
endothelial cells

Disease Modeling (51)

SBDS Pancreatic progenitors; mature pancreatic
acinar cells; hematopoietic cells

Disease Modeling (52)

SCN G6PC3 Granulocytes; neutrophils; monocytes/
macrophages

Disease Modeling/Gene
Editing/Drug Screening

(53)

ELANE Granulocytes Disease Modeling (54)

HAX1 Myeloid progenitors; neutrophils; monocytes Disease Modeling/Gene
Editing

(55)

CF CFTR Lung progenitor cultures Disease Modeling/Drug
Screening

(56)

CFTR iPSCs Disease Modeling/Gene
Editing

(57)

CFTR Intestinal epithelia Gene editing/Drug Screening (58)

GATA2
deficiency

GATA2 Hemogenic endothelial precursors;
hematopoietic progenitors; NK cells

Disease Modeling (59)

PAP CSF2RA Macrophages Gene Editing (60)

CSF2RA Monocytes; macrophages Gene Editing (61)

CGD NCF1 Granulocytes; macrophages Gene Editing (62)

CYBB Granulocytes Gene Editing (63)

CYBB Neutrophils Gene Editing (64)

CYBB Monocytes; macrophages Gene Editing (65)

CYBB Granulocytes Gene Editing (66)

CYBA
NCF2

Neutrophils; macrophages Disease Modeling (67)

Defects in intrinsic and innate
immunity

MYD88
deficiency

MYD88 Macrophages Disease Modeling (68)

MSMD IFNGR2 IFNGR1
STAT1

Macrophages Disease Modeling (69)

(Continued)
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rearrangement during pro-platelet formation (47). In this case,

the use of patient-derived iPSCs could highlight the importance

of the WAS protein for normal platelet production. Similar to

the SCID studies, overexpression of the healthy WAS protein in

patient- derived iPSCs could rescue the phenotype, paving the

way for new therapeutic options. Similarly, Laskowski et al.

restored the WAS protein function in patient-derived iPSCs

using zinc finger nucleases technology and the differentiated

hematopoietic lineages were restored (46). Of note, while

differentiation of both healthy and WAS-iPSCs towards non-

lymphoid cells was sufficient, a clear reduction in the generation

of CD4/CD8 double positive T cells and NK cells was observed,

which could be restored upon targeted correction of the WAS

gene locus.
Diseases of immune dysregulation

Genetic forms of inflammatory bowel disease (IBD) are

caused by mutations in genes that are involved in the IL-10

signaling pathway (88). IBD is characterized by severe bowel

inflammation and is developed within the first 6 years of life (89).

Many of the patients do not respond to anti-inflammatory and

immunosuppressive treatments. To study the pathophysiology of

IBD and contribute to novel therapeutic strategies, KO iPSC

models for the genes IL10R, IL10RB, STAT1, and STAT3 were

generated using sgRNA-directed CRISPR-Cas9 lentiviral vectors
Frontiers in Immunology 06
(50). Using macrophages derived from these KO-iPSC lines these

studies could show that defects in any of the IL10R chains or in

STAT3 result in absence of BCL3 expression and reduced

secretion of defined IL-10R-/STAT3-dependent cytokines (50).

Of note, the phenotype of the KO-iPSC-derived macrophages

could however be restored (reduced pro-inflammatory cytokines)

using lentiviral vectors overexpressing the IL-10R gene. Using the

same iPSC-macrophage system, small anti-inflammatory agents

(SB202190 and Filgotinib) were tested and could confirm their

anti-inflammatory effect by the reduction of TNF-a, IL-6, and
CCL5, while no negative impact could be observed on iPSC-

derived macrophages with respect to cell viability (50).
Congenital defects of phagocytes

Chronic granulomatous disease (CGD) is characterized by

severe, recurrent, and life-threatening bacterial and fungal

infections due to defects in the oxidative burst in phagocytes. Its

prevalence is 1/250,000 individuals. CGD can be caused by

mutations in any of the four components of the NADPH

oxidase complex. The most common mutation is found in the

CYBB gene, which encodes for the gp91phox subunit and is X-

linked. To date, the only available treatment is allogeneic or

autologous (genetic corrected) HSCT. To elaborate on new

treatments for X-CGD patients, several studies have used X-

CGD-patient-specific iPSCs to genetically modify the cells using
TABLE 1 Continued

Disease Gene Studied cell type
(iPSC or iPSC-derived)

Application Reference

IFNGR1 Macrophages Disease Modeling (70)

TLR3
deficiency

TLR3 Trigeminal ganglion neurons Disease Modeling (71)

TLR3
UNC93B

Neural stem cells; neurons; astrocytes;
oligodendrocytes

Disease Modeling (72)

Auto-inflammatory diseases NOMID NLRP3 Monocytes Drug Screening (73)

NLRP3 Chondrocytes Disease Modeling (74)

Blau
syndrome

NOD2 Macrophages Disease Modeling (75)

NOD2 Macrophages Disease Modeling/Gene
Editing

(76)

Bone marrow failure FA FANCA iPSCs; hematopoietic progenitor cells Disease Modeling (77)

FANCA Hemoangiogenic progenitors Disease Modeling (78)

FANCA iPSCs; hematopoietic progenitor cells;
mesenchymal stem cells

Disease Modeling/Drug
Screening

(79)

FA-like
BMFS

ADH5 ALDH2 iPSCs Disease Modeling (80)

Phenocopies of IEI NOMID-like
disease

NLRC4 Macrophages Disease Modeling (81)

NLRP3 Macrophages Disease Modeling/Drug
Screening

(82)
fro
Diseases, affected genes, studied iPSC-derived cell types and application (Disease Modeling, Gene Editing, Drug Screening) are summarized. SCID, severe combined immunodeficiency;
XLF, XRCC4-like factor; ADA, adenosine deaminase; AT, ataxia-telangiectasia; WAS, Wiskott-Aldrich syndrome; APECED, autoimmune polyendocrinopathy candidiasis ectodermal
dystrophy; VEO-IBD, very early onset inflammatory bowel disease; SDS, Shwachman-Diamond syndrome; SCN, severe congenital neutropenia; CF, cystic fibrosis; PAP, pulmonary alveolar
proteinosis; CGD, chronic granulomatous disease; MSMD, mendelian susceptibility to mycobacterial disease; NOMID, neonatal-onset multisystem inflammatory disease; FA, Fanconi
anemia; FA-like BMFS, Fanconi anemia-like bone marrow failure syndrome.
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zing finger nuclease-mediated gene targeting (90), transcription

activator-like effector nucleases (TALENs) (66) or bacterial

artificial chromosomes (BAC) transgenesis (64), respectively. In

all iPSC-based studies, the CYBB function was successfully

restored, leading to sufficient oxidative activity and ROS

production in iPSC-derived granulocytes, proven the suitability

of gene therapy to restore the anti-microbial function in immune

cells. In a completely different approach, the NADPH oxidase

activity of X-CGD iPSC-derived macrophages was restored using

NOX2/p22phox proteoliposomes, which were transported into the

macrophages (91). The combination of patient-specific iPSC-

derived cells with recombinant therapeutic proteoliposomes

could in the future lead to the development of alternative

antibacterial or antifungal therapies for patients with IEI.

Similar to the aforementioned approaches, the iPSC system has

also been used to establish and test gene correction of p47phox

deficiency. Introducing a functional NCF1 minigene into the

intron 1 of the NCF1 gene using CRISPR/Cas9 (62) or targeted

correction of the mutation (GT deletion in NCF1 pseudogenes)

using zinc-finger nucleases (92) into p47-CGD iPSCs could

restore oxidase function in iPSC-derived immune cells,

highlighting the suitability of the iPSC system to test novel gene

therapy concepts.
Defects in intrinsic and
innate immunity

Mendelian susceptibility to mycobacterial disease (MSMD)

is characterized by increased susceptibility to weakly virulent

mycobacteria (e.g. Mycobacterium bovis Bacillus Calmette-

Guerin; BCG). The genetic etiology of MSMD is complex,

with a variety of genes and mutations involved, which all affect

the sufficient breakdown of mycobacteria. Mutations can affect

either T cells (e.g. IL12RB1, IL12RB2, TYK2) or macrophages

(e.g. IFNGR1, INFGR2, IRF8, CYBB, NEMO), which lead to an

impaired crosstalk of these two cell types. As an example, the

clinical phenotype can be severe, as seen in patients with

complete IFN-gamma receptor 1 or 2 deficiency (IFNGR1/2).

In contrast, the clinical phenotype can also be mild to moderate,

as seen in patients suffering from STAT1, IL-12/IL-23 receptor,

or tyrosine kinase 2 deficiency. Of note, clinical symptoms and

the impaired function of e.g. macrophages can be improved by

treating patients with high dose IFNg therapy. However, this

kind of treatment is unsuitable for patients who suffer from

complete IFNGR1 or IFNGR2 deficiency. The generation of

iPSCs from patients harboring mutations in genes involved in

the IFNg signaling, such as IFNGR1, IFNGR2, and also STAT1

were able to demonstrate in detail the impact of IFNg on

macrophages and the importance of this cell type in the onset

and progression of mycobacterial susceptibility (69, 70). These

studies revealed iPSC-derived macrophages with an impaired

type II IFN system showing normal macrophage differentiation
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and phenotype but severely impaired intracellular killing activity

for BCG (69, 70).
Autoinflammatory diseases

Neonatal-onset multisystem inflammatory disease

(NOMID), also known as chronic infantile neurologic

cutaneous articular syndrome (CINCA), is a rare genetic

disease present from birth and caused by mutations mainly in

the NLRP3 locus. It is inherited in an autosomal dominant way,

and the patients suffer from uncontrolled inflammation in

several systems of the body, such as skin, joints, and central

nervous system. The clinical phenotype varies and includes

urticarial-like skin rash, arthritis, and chronic meningitis,

which increases the risk of neurological problems. So far, anti-

IL-1b treatment (e.g. Anakinra) using specific inhibitors is the

preferable therapeutic option. However, its effectiveness is highly

dependent on the severity of the disease phenotype. In addition,

the complete IL-1b blockade involves the risk of uncontrolled

immunosuppression. For this reason, selective NLRP3 inhibitors

would be more beneficial as therapeutic option and several

NLRP3 inhibitors have already entered clinical trials (93).

However, given the different mutations observed in NOMID

patients, it is possible that some NLRP3 mutants escape an

efficient inhibition from already known inhibitors (94).

Therefore, discovery of novel NLRP3 inhibitors is necessary.

To test and screen for new therapeutic compounds, patient-

specific NOMID-iPSCs could be used as a screening platform.

Seki et al. generated iPSC-derived immortalized myeloid cell

lines from wild-type and NLRP3-mutated iPSC clones and

subsequently differentiated these into macrophages (73).

Generated macrophages were further used for developing a

high throughput system to identify compounds that show

inhibitory effects specifically against the secretion of IL-1b and

the activation of mutant NLRP3 (73). Out of almost 5,000 tested

compounds, seven candidates were sufficiently blocking the IL-

1b secretion. Interestingly those were already introduced in

previous studies as NLRP3 inhibitors, indicating the

effectiveness of the system (73).
Complement deficiencies

In addition to increased susceptibility and recurrent bacterial

infections, deficiencies in the complement pathway have been

linked to age-related macular degeneration (AMD). AMD is an

ideal example underlining the interconnection of IEI with

various tissues and organs of the body. Thus, using iPSCs

generated from patients with AMD or from healthy

individuals shed light on the mechanisms involved in the

disease and showed the impact of an IEI in a complement

protein on the progression of AMD. In this case, retinal pigment
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epithelium derived from AMD-derived iPSCs was used to show

impaired mitochondrial function under stress conditions and its

link to the presence of the high-risk allele for the complement

factor H (CFH locus) (95). More generated iPSC lines from three

patients carrying the rare variants in the CFH locus and suffering

from AMD are available tools for further cellular studies and the

development of novel treatments (96).
Bone marrow failure

Fanconi anemia (FA) is an inherited condition diagnosed

usually in children between the age of 3 and 14, and it is

characterized, among other symptoms, by failure of bone

marrow function. It is caused by mutations in at least 22

different genes, which are involved in the FA pathway,

responsible for the DNA repair process, with the genes

FANCA, FANCC, and FANCG to be utmost affected. The only

curative treatment so far is HSCT, with gene therapy on the

horizon (97). Given the difficulty that exists in recapitulating FA

pathophysiology using mouse models, further understanding of

the disease pathogenesis was accomplished using FA patient-

specific iPSCs for disease modelling (77, 79). Marion et al.

revealed that activation of the p53-p21 axis leads to

accelerated erythroid differentiation in FANCA-deficient

HPCs. Use of exogenous recombinant human GAS6 resulted

in restored hematopoiesis, providing alternative options for

improving therapy of FA in the future (77). In contrast,

another study utilized the iPSC technology to screen and

evaluate novel compounds, discovering that Tremulacin was

able to rescue the hematopoietic defects of FA patient by

suppressing the transcription of the inflammatory cytokine

TNFa (79), which impressively shows the potential of the

iPSC technology.
Current limitations and
future perspectives

The numerous studies that have used iPSC-derived cells for

disease modeling and drug screening for several IEI-related

conditions could lay the foundation for developing novel

therapies. The reason for this success is the unique potential of

iPSCs to differentiate into almost all cells of the hematopoietic

system and beyond. Although established protocols for the

differentiation of a plethora of iPSC-derived immune cells

exist, still the lack of protocols for a robust generation of T or

B lymphocytes that resemble their in vivo counterparts as much

as possible, is currently a limitation of the technology and must

be confronted in the coming years.
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While most of the aforementioned reports have used iPSCs

as a disease modeling platform, the use of iPSC-based platforms

for establishing drug screening, drug toxicology, and drug-drug

interactions in the context of IEI is highly warranted and will

accelerate the progress of personalized medicine further. Along

this line, several studies used iPSC-derived cells for targeted drug

testing or screening (44, 50, 53, 56, 58, 79). However, these

attempts did not result in developing a widely accepted drug so

far. Consequently, researchers have not fully exploited the full

potential of iPSCs until now, and novel approaches are currently

underway to solve this issue. Besides drug discovery in the

context of IEI, the further improvement of existing

differentiation protocols from feeder-based GMP-incompatible

systems to xeno-free and GMP-compatible protocols, drove

iPSC-derived cells to the first clinical trials. In 2021, 19

therapeutic clinical studies were globally ongoing (98).

Interestingly, none of them was related to IEI, highlighting the

effort that should be invested in the next years to bring the

undoubtable benefits that we can gain from the iPSC technology

closer to the clinic. One of the main challenges in using iPSC-

derived cells as a cell-based therapeutic intervention are the

immunohistocompatibility issues arising from the use of

allogeneic cells. Most clinical trials currently use allogeneic

cells since the generation of autologous iPSCs is time-

consuming, which becomes a particular issue when the

recipient urgently needs cell therapy. Therefore several studies

have tried to elaborate alternative options, either by developing

cell banks with homozygous iPSC lines or by generating

immunocompatible iPSCs through genetic manipulation

(99–101).

Given the very young age of most patients with IEI, the

elimination of the possible tumorigenicity of iPSCs and iPSC-

derived cells, should be highly warranted, before the use of

iPSC-derived cells for the treatment of children suffering from

IEI. In order to diminish the impact of the integrating vectors

on the iPSCs genetic stability and to provide a reliable tool to

generate novel therapies against IEI, different reprogramming

strategies have been developed, such as the use of non-

integrating vectors, synthetic mRNAs, or integrating vectors

that can be excised. Establishing a universal and highly

standardized procedure for confirming the genetic stability

and purity of iPSCs to get approved for clinical use, could be

very beneficial. Usage of Next Generation Sequencing analysis

should also be considered to guarantee the detection of all

possible genetic anomalies and to ensure the production of

high-quality iPSCs with limited risk for tumorigenicity (102).

To further minimize the tumorigenic risk, in the last two

decades, several systems have been developed for the

elimination of aberrant cells using suicide gene technology

(103–108). Most recently, immunodepletion has also been used

to selectively deplete contaminating iPSCs with the help of

monoclonal antibodies (109, 110) or chimerized monoclonal

antibodies (111). Further optimization of these tools will
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significantly assist in facilitating the safe use of iPSC-derived

cells in the clinical setting in the future.

While iPSC and thereof derived cells are used frequently for

modeling IEI the clinical translation of cells to treat IEI is more

in the future.
Authors contribution

EN, JR, GH, and NL designed, wrote and approved the

manuscript. All authors contributed to the article and approved

the submitted version.
Funding

This project has received funding from the European

Research Council (ERC) under the European Union’s Horizon

2020 research and innovation program (grant agreement No.

852178). The work is also funded by the Deutsche

Forschungsgemeinschaft (DFG, German Research Foundation)

under Germany’s Excellence Strategy - EXC 2155 - project

number 390874280 and REBIRTH Research Center for

Translational Regenerative Medicine “Förderung aus Mitteln

des Niedersächsischen Vorab” (grant: ZN3340).
Frontiers in Immunology 09
Acknowledgments

We thank Shifaa Abdin and Mania Ackermann for critical

review of the manuscript. The figure has been created

with BioRender.com.
Conflict of interest

NL filed and licensed patents in the field of iPSC-derived

macrophages outside of the MS. NL is a consultant for

CATALENT outside of the MS.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Picard C, Bobby Gaspar H, Al-Herz W, Bousfiha A, Casanova JL, Chatila T,
et al. International union of immunological societies: 2017 primary
immunodeficiency diseases committee report on inborn errors of immunity. J
Clin Immunol (2018) 38(1):96–128. doi: 10.1007/s10875-017-0464-9

2. Bousfiha A, Moundir A, Tangye SG, Picard C, Jeddane L, Al-Herz W, et al.
The 2022 update of IUIS phenotypical classification for human inborn errors of
immunity. J Clin Immunol (2022). doi: 10.1007/s10875-022-01352-z

3. Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL,
Holland SM, et al. Human inborn errors of immunity: 2022 update on the
classification from the international union of immunological societies expert
committee. J Clin Immunol Published online June 2022, 1–35. doi: 10.1007/
s10875-022-01289-3

4. Bousfiha A, Jeddane L, Picard C, Al-Herz W, Ailal F, Chatila T, et al. Human
inborn errors of immunity: 2019 update of the IUIS phenotypical classification. J
Clin Immunol (2020) 40(1):66–81. doi: 10.1007/s10875-020-00758-x

5. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C,
Etzioni A, et al. Human inborn errors of immunity: 2019 update on the
classification from the international union of immunological societies expert
committee. J Clin Immunol (2020) 40(1):24–64. doi: 10.1007/s10875-019-
00737-x

6. Pai S-Y, Logan BR, Griffith LM, Buckley RH, Parrott RE, Dvorak CC, et al.
Transplantation outcomes for severe combined immunodeficiency, 2000-2009. N
Engl J Med (2014) 371(5):434–46. doi: 10.1056/NEJMoa1401177

7. Speckmann C, Doerken S, Aiuti A, Albert MH, Al-Herz W, Allende LM, et al.
A prospective study on the natural history of patients with profound combined
immunodeficiency: An interim analysis. J Allergy Clin Immunol (2017) 139
(4):1302–10.e4. doi: 10.1016/j.jaci.2016.07.040

8. Ye Z, Chou B-K, Cheng L. Promise and challenges of human iPSC-based
hematologic disease modeling and treatment. Int J Hematol (2012) 95(6):601–9.
doi: 10.1007/s12185-012-1095-9
9. Parekh C, Crooks GM. Critical differences in hematopoiesis and lymphoid
development between humans and mice. J Clin Immunol (2013) 33(4):711–5.
doi: 10.1007/s10875-012-9844-3

10. Monkley S, Krishnaswamy JK, Göransson M, Clausen M, Meuller J, Thörn
K, et al. Optimised generation of iPSC-derived macrophages and dendritic cells
that are functionally and transcriptionally similar to their primary counterparts.
PloS One (2020) 15(12):e0243807. doi: 10.1371/journal.pone.0243807

11. van Wilgenburg B, Browne C, Vowles J, Cowley SA. Efficient, long term
production of monocyte-derived macrophages from human pluripotent stem cells
under partly-defined and fully-defined conditions. PloS One (2013) 8(8):e71098.
doi: 10.1371/journal.pone.0071098

12. AckermannM, Kempf H, Hetzel M, Hesse C, Hashtchin AR, Brinkert K, et al.
Bioreactor-based mass production of human iPSC-derived macrophages enables
immunotherapies against bacterial airway infections. Nat Commun (2018) 9
(1):5088. doi: 10.1038/s41467-018-07570-7

13. Lyadova I, Gerasimova T, Nenasheva T. Macrophages derived from human
induced pluripotent stem cells: The diversity of protocols, future prospects, and
outstanding questions. Front Cell Dev Biol (2021) 9:640703. doi: 10.3389/
fcell.2021.640703

14. Zhang H, Xue C, Shah R, Bermingham K, Hinkle CC, Li W, et al. Functional
analysis and transcriptomic profiling of iPSC-derived macrophages and their
application in modeling mendelian disease. Circ Res (2015) 117(1):17–28.
doi: 10.1161/CIRCRESAHA.117.305860

15. Buchrieser J, James W, Moore MD. Human induced pluripotent stem cell-
derived macrophages share ontogeny with MYB-independent tissue-resident
macrophages. Stem Cell Rep (2017) 8(2):334–45. doi: 10.1016/j.stemcr.2016.12.020

16. Vaughan-Jackson A, Stodolak S, Ebrahimi KH, Browne C, Reardon PK,
Pires E, et al. Differentiation of human induced pluripotent stem cells to authentic
macrophages using a defined, serum-free, open-source medium. Stem Cell Rep
(2021) 16(7):1735–48. doi: 10.1016/j.stemcr.2021.05.018
frontiersin.org

http://BioRender.com
https://doi.org/10.1007/s10875-017-0464-9
https://doi.org/10.1007/s10875-022-01352-z
https://doi.org/10.1007/s10875-022-01289-3
https://doi.org/10.1007/s10875-022-01289-3
https://doi.org/10.1007/s10875-020-00758-x
https://doi.org/10.1007/s10875-019-00737-x
https://doi.org/10.1007/s10875-019-00737-x
https://doi.org/10.1056/NEJMoa1401177
https://doi.org/10.1016/j.jaci.2016.07.040
https://doi.org/10.1007/s12185-012-1095-9
https://doi.org/10.1007/s10875-012-9844-3
https://doi.org/10.1371/journal.pone.0243807
https://doi.org/10.1371/journal.pone.0071098
https://doi.org/10.1038/s41467-018-07570-7
https://doi.org/10.3389/fcell.2021.640703
https://doi.org/10.3389/fcell.2021.640703
https://doi.org/10.1161/CIRCRESAHA.117.305860
https://doi.org/10.1016/j.stemcr.2016.12.020
https://doi.org/10.1016/j.stemcr.2021.05.018
https://doi.org/10.3389/fimmu.2022.1024935
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nikolouli et al. 10.3389/fimmu.2022.1024935
17. Ni Z, Knorr DA, Clouser CL, Hexum MK, Southern P, Mansky LM, et al.
Human pluripotent stem cells produce natural killer cells that mediate anti-HIV-1
activity by utilizing diverse cellular mechanisms. J Virol (2011) 85(1):43–50.
doi: 10.1128/JVI.01774-10

18. Knorr DA, Ni Z, Hermanson D, HexumMK, Bendzick L, Cooper LJN, et al.
Clinical-scale derivation of natural killer cells from human pluripotent stem cells
for cancer therapy. Stem Cells Transl Med (2013) 2(4):274–83. doi: 10.5966/
sctm.2012-0084
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