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Molecular profiling of core
immune-escape genes
highlights LCK as an immune-
related prognostic biomarker
in melanoma
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The tumor microenvironment is complicated and continuously evolving. This

study was devoted to the identification of potential prognostic biomarkers

based on the tumor microenvironment associated with immunotherapy for

melanoma. This study integrates a couple of melanoma single cell and

transcriptome sequencing datasets and performs a series of silico analyses as

nicely as validation of molecular biology techniques. A core set of immune

escape related genes was identified through Lawson et al. and the ImmPort

portal. The differential proteins were identified through the cBioPortal

database. Regression analysis was used to profile independent prognostic

factors. Correlation with the level of immune cell infiltration was evaluated

bymultiple algorithms. The capacity of LCK to predict response was assessed in

two independent immunotherapy cohorts. High LCK expression is associated

with better prognosis, high levels of TILs and better clinical staging. Pathway

analysis showed that high expression of LCK was significantly associated with

activation of multiple tumor pathways as well as immune-related pathways.

LCK expression tends to be higher in immunotherapy-responsive patients and

those with lower IC50s treated with chemotherapeutic agents. RT-qPCR

detected that LCK expression was significantly upregulated in melanoma cell

lines. Single-cell transcriptome analysis showed that LCKwas specifically highly
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expressed on T cells. CellChat analysis confirmed that LCK in C2

subpopulations and T cell subpopulations exerted immune promotion

between cells by binding to CD8 receptors. In conclusion, LCK is a reliable

biomarker for melanoma and will contribute to its immunotherapy.
KEYWORDS

melanoma, single-cell sequence, TME, oncoPredict, immune escape
Introduction

Melanoma is commonly located on skin, and its major

metastatic sites include mucous membranes and internal organs.

Due to its high aggressiveness and dangerousness, melanoma

accounts for up to 75% of skin cancer deaths, even though it

accounts for only 5% of skin cancers (1). Related data suggest that

there will be approximately 98,000 confirmed cases of melanoma and

7,700 melanoma deaths in the United States in 2022 (2). However,

according to the World Health Organization, the morbidity and

mortality rates of melanoma have shown a decreasing trend every

year (3). Treatment options for melanoma include traditional

surgery, radiation therapy, chemotherapy, and emerging treatments

including immune checkpoint inhibitors and targeted therapies,

among others. The widespread use of new therapeutic approaches

has largely improved the prognosis of melanoma (4). The extremely

high immunogenicity of melanoma and the high mutational load of

its genomemake it highly susceptible to triggering specific antitumor

immune responses (5). Furthermore, melanoma is a classical model

for detecting innovative immunotherapies such as checkpoint

inhibitors, engineered chimeric antigen receptor T cells, among

others (6, 7). Nevertheless, like the suppressive mechanisms that

arise in other cancers, melanoma evades detection by the immune

system in concert with these mechanisms and eventually leads to

metastasis (5).

The immune system plays a crucial role in the development and

treatment of cancer. Adaptive immunity can prevent or constrain

cancer through immune surveillance, while innate immunity and

inflammation often promote tumorigenesis and malignant

development of neoplastic cancers (8). Immunotherapy targeting

tumor microenvironment (TME) in the human immune system

represents a revolutionary approach to cancer treatment, which

enhances anti-tumor immunity by stimulating or mobilizing the

body’s immune system (9). TME significantly affects the

immunotherapeutic response and clinical prognosis of cancer

patients (10–12). As an example, it has been noted that cancer

patients with high CD8+ T-cell infiltration levels generally have a

better prognosis (13, 14). Conversely, poor prognosis in cancer

patients is also thought to be associated with the presence of M2-

polarized macrophages (15–17). The TME consists of stromal cells,
02
fibroblasts, endothelial cells, and innate and adaptive immune cells

(18). Among them, immune cells, cytokines and cell surface

molecules constitute the tumor immune microenvironment,

which is described as the “seventh hallmark feature” of tumors.

The complex regulatory network in the tumor immune

microenvironment plays a key role in tumor progression (19, 20).

The vast majority of tumor cells express antigens that mediate

recognition by host immune cells (21). However, the presence of

tumor immune escape phenomenon makes tumor cells exempt

from immune elimination. Mechanisms of tumor immune escape

include loss of antigenicity and immunogenicity, as well as

coordinat ion of immunosuppress ive effects in the

microenvironment, among others (22). Although immunogenic

antigens are better expressed in tumors, the effect of

immunodetection is also dependent on the antigen-presenting

ability of the peptide-MHC (major histocompatibility complex)

complex (22). However, it has been previously shown that the

expression of MHC class I molecules is downregulated in

approximately 20-60% of common solid malignancies such as

melanoma and lung cancer (23). Tumors that lose MHC

expression or present with defective antigen presentation are

highly susceptible to immune escape (24). CD8+ effector T cells

recognize immune cells through antigens presented by MHC I

molecules and inhibit tumor progression by inducing cytotoxicity of

tumor cells to inhibit tumor progression (25). In recent years, the

wide application of bioinformatics techniques in the field of cancer

immunotherapy has helped us to explore more deeply the

connection between tumor cells and immune cells.

Transcriptome, single cell RNA sequencing, and molecular

biology are all sturdy bridges to study the tumormicroenvironment.

In this study, RNA transcriptome profiles were extracted

from the TCGA database and core immune-related genes were

identified from previous studies. Independent prognostic factors

significantly associated with prognosis were identified by

multiple prognostic analysis methods. The relationship

between independent prognostic factors and TME was

explored by four methods, EPIC (Estimate the Proportion of

Immune and Cancer cells) , TIMER, quanTiseq and

MCPcounter, and the strong association of LCK with immune

components of the tumor microenvironment was confirmed.
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The specific mechanism of action of LCK acting in tumor cells

and immune cells was finally confirmed using single-cell RNA

sequencing technology and its related analytical methods.
Materials and methods

Data collection

A set of melanoma immune escape related genes were

extracted from the Lawson et al. (26) (Supplementary Material

1). Immune-related genes were extracted from the IMMPORT

database (Supplementary Material 1). Gene expression profiles,

clinical follow-up information, and somatic mutation data were

extracted from The Cancer Genome Consortium (TCGA)

database through the ‘TCGAbiolinks’ package. In addition, we

extracted normal control samples from the Genotype-Tissue

Expression Project to compensate for the absence of normal

sample controls in the TCGA cohort. Single cell transcriptome

data as well as external validation datasets were downloaded from

the Gene Expression Omnibus (GEO) and International Cancer

Genome Consortium (ICGC) databases (Table 1). Duplicate genes

are processed by the avereps function of the ‘limma’ package.

Processing of gene expression values into Transcripts Per Kilobase

of exon model per Million mapped reads (TPM) and normalized

by log2. With different batches of GEO datasets we remove the

batch effect by using the combat function of the ‘sva’ package.
Somatic cell mutation analysis

Somatic mutation data in mutation annotation format

(MAF) were visualized through ‘maftools’ R package, which
Frontiers in Immunology 03
provides a large number of analysis and visualization modules

commonly used in cancer genomic studies (27).
Identification of differentially
expressed proteins

cBioPortal provides a Web resource for exploring,

visualizing, and analyzing multidimensional cancer genomics

data (28). Differentially altered proteins (both unphosphorylated

and phosphorylated) associated with immune escape related

genes were identified in cBioPortal by the Reverse Phase

Protein Array (RPPA) module.
Protein-protein interaction

Protein-protein interaction network of protein-coding genes

constructed by STRING database. Minimum required

interaction score 0.4 and disconnected nodes in the network

were hide.
Construction of risk prognostic models

The melanoma patients from TCGA cohort were divided

into a training set (TRS) and a testing set (TES). The TRS was

used to construct a prognostic risk model of melanoma and the

TES was utilized to valid the predictive capability of this model.

ICGC-SKCM-US is used as external dataset validation. Risk

prognostic models were constructed by univariate cox

regression, least absolute shrinkage and selection operator

(LASSO) regression analysis, and multivariate cox regression
TABLE 1 Melanoma External DataSets Summary.

DataSets ID Melanoma Sample Number GPL Platform Total Number
microarray

GSE15605 58 GPL570

GSE19234 44 GPL570

GSE22155 22 GPL6947

GSE3189 45 GPL96

GSE46517 104 GPL96

GSE59455 141 GPL8432

GSE65904 214 GPL10558

628

GSE54467 79 GPL6884

Single-Cell 1 GPL18573 79

GSE72056 3 GPL24676 4

GSE186344

ICGC

SKCM-US 433 NULL 433
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analysis. The risk score for each sample is calculated as follows:

½Risk Score  each patientð Þ
=o

i
Expression(mRNAi)� Coefficient(mRNAi)�

Exploring the diagnostic value of risk scores for 1-year, 3-year,

5-year, 8-year and 10-year survival status with the ‘pROC’ package.
Functional enrichment analysis

‘GSVA’ package was used to explore the signaling pathways

in which the screened protein-coding genes are involved and the

c2.cp.kegg.v7.5.1.entrez.gmt gene sets was used to calculate

differences in enrichment scores for pathways in different

populations in the tow group.
Tumor microenvironment analysis

To explore the role of our screened protein-coding genes and

the tumor microenvironment, we used ESTIMATE, EPIC, TIMER,

quanTiseq and MCPcounter algorithms to calculate the proportion

of various immune factors infiltrating the tumor microenvironment

and explored the correlation between protein-coding gene

expression and immune factor infiltration levels.
Single cell sequencing analysis

Considering that the number of cells in one single cell

dataset is too small, we removed the batch effect and merged

GSE72056 and GSE186344 via the ‘harmony’ package. The

integrated single cell data was then analyzed using the ‘Seurat’

package, including finding highly variable genes, centralization,

PCA downscaling, cell clustering, tSNE (t-Distributed Stochastic

Neighbor Embedding) and UMAP (Uniform Manifold

Approximation and Projection) nonlinear downscaling,

finding differential genes, and cell annotation. To investigate

cell-to-cell interactions and to determine the mechanisms of

communication molecules at single-cell resolution, 8 cell

subgroups were studied using the R package ‘CellChat’.
Frontiers in Immunology 04
Drug sensitivity analysis

To explore the potential of the screened protein-coding

genes as predictive biomarkers for chemotherapy or

immunotherapy, we attempted to assess the correlation

between different expression populations of protein-coding

genes and responsiveness. ‘oncoPredict’ is an R package for

predicting in vivo or cancer patient drug response and

biomarkers from cell line screening data (29). We extracted

immunotherapy cohort (PRJEB23709 and PRJEB25780) from

Tumor Immune Dysfunction and Exclusion (TIDE) to explore

the potential of protein-coding genes as predictors of

immunotherapy response (Supplementary Material 2).
Cell culture

The PIG1 cells (Otwo Biotech, ShenZhen Inc. China), A2058

and SKMEL28 cells (the Chinese Academy of Sciences) were

cultured in the Dulbecco’s modified Eagle’s medium (DMEM)

(Gibco, Thermo Fisher Scientific, Inc.) medium containing 10%

FBS (Gibco; Thermo Fisher Scientific, Inc.) in an incubator at

37˚C, and the air of the incubator consisted of 5% CO2.
RT-qPCR

The cells were cultivated in a 6-well plate at a density of

40×104 cells per well and incubated at 37˚C. Following

collected the cells after the cell’s density reached 80%. Total

RNA was extracted from the 6-well plate using TRIzol reagent

(Thermo Fisher Scientific, Inc.), then subjected to reverse

transcription-quantitative polymerase chain reaction (RT-

qPCR) to detect the mRNA expression of LCK. qPCR was

performed with a SYBR Green Real Time PCR kit (Thermo

Fisher Scientific, Inc.) on CFX96 Touch Real Time PCR System

(BioRad Laboratories, Inc.). The primers used for real-time

PCR were at Table 3 (Table 2). qPCR was performed under the

following conditions: 3 min at 95˚C for 1 cycle, 10 sec at 95˚C,

30 sec at 65˚C for 39 cycles, and 95˚C for 5 sec. Changes in the

expression of target genes were calculated using the 2-

DDCq method.
TABLE 2 The premier sequences.

Gene Symbol Forward Reverse

LCK 5’- TCTGCACAGCTATGAGCCCT -3′ 5’- GAAGGAGCCGTGAGTGTTCC -3′

GAPDH 5’- CTGGGCTACACTGAGCACC -3′ 5’- AAGTGGTCGTTGAGGGCAATG -3′
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Results

Landscape of immune escape related
genes in melanoma

A set of immune-escape related genes and a set of immune-

related genes were extracted from the previous study and from

the IMMPORT website respectively, which contains 182 genes

and 2483 genes respectively in total. Overlapping these two gene

sets, 31 core immune-escape related genes (Table 3) were

determined as the subjects for further analysis (Figure 1A). In

addition, 472 (including 471 tumor samples and 1 normal

sample) and 398 normal samples were obtained from the

TCGA and GTEx databases, respectively. Prognostic Analysis

showed that except CALR, TNFRSF1A, HDAC1, JAK1 and

TFRC, which were not significantly different, and MAPK1,

which was an unfavorable prognostic factor, the rest of all the

core immune-escape genes were favorable prognostic factors,

and all of them were significantly different (Figure 1B).

Expression analysis showed that the expression of all core

immune escape related genes was dysregulated. IFNGR1,

JAK2, SOCS1, IKBKG, JAK1, TNFAIP3, TNFRSF1A, FAS,

IKBKG, TBK1 and TGFBR2 were highly expressed in normal

tissues, while the expression of the remaining genes were

upregulated in tumor tissues, all of the above differential

expression analysis results were significantly different (p-

value< 0.05) (Figure 1C). Genes with significantly different in

both expression difference analysis and prognostic analysis were

initially screened out for inclusion in the next analysis. Somatic

mutation profiles of 467 melanoma patients downloaded from

TCGA database were analyzed and visualized via the ‘maftools’

R package (30). The results showed that they all had low

mutation rates (Figure 1D). In addition, identification of

differentially expressed proteins regulated by primary

screening genes through the RPPA module of the cBioPortal

database and 164 differentially expressed proteins were obtained

in total (Figure 2).
Assessment of risk characteristics
associated with prognosis of melanoma

Through STRING database, protein-protein interaction

network was constructed based on the above differentially
Frontiers in Immunology 05
expressed proteins, including 188 nodes and 3670 edges in

summary. Subsequently, we filtered out the top 60 nodes in

the entire network in terms of connectivity (Figure 3A).

Meanwhile, the melanoma samples were divided into TRS

and TES in a roughly 1:1 ratio (228 samples in TRS and 226

samples in TES). The result of univariate cox regression

analysis of TRS showed that a total of 15 prognostic factors

were determined. Except CDKN1B, LCK, and RICTOR which

were favorable prognostic factors, the rest of these prognostic

factors were associated with reduced overall survival (p-

value< 0.05) (Figure 3B). Immediately, LASSO regression

analysis of prognostic factors was performed and 10

representative protein-coding genes were identified

(Figures 3C, D, Table 4). Multivariate cox regression

analysis was conducted within these 10 representative

protein-coding genes and 4 independent prognostic factors

were finally identified which were related to prognosis in

melanoma (Figure 3E). Overall, all 4 independent prognostic

factors were associated with reduced overall survival, except

for LCK, which was favorable factor (Figure 3E). Overlapping

the top 60 nodes in the protein-protein interaction network in

terms of connectivity and the 4 significant independent

prognostic factors, we obtained 3 key prognostic factors,

respectively KIT, EGFR and LCK (Figure 3F).
Risk-prognosis models constructed by
independent prognostic factors may
prolong overall survival of melanoma

Through analyzing the independent prognostic factors in

TRS, a risk prognostic model was constructed in TRS, using

which the prognosis of patients could be effectively predicted.

To verify the predictive efficacy of the model, the same model

was constructed in TES and the ICGC cohort. The results of the

risk factor analysis showed that the number of patient deaths

clustered significantly as the risk score increased (Figure 4A).

Survival analysis in the high- and low-risk score groups showed

that the high-risk group was associated with lower overall

survival (p-value< 0.05) (Figure 4B). Finally, time-

independent ROC curves were established to verify the

accuracy of the model. The AUC values of the ROC curves

for the three cohorts indicate that the model has good

accuracy (Figure 4C).
TABLE 3 A list of core immune-escape related genes.

Gene Symbol

ADAR, B2M, BECN1, CALR, ERAP1, FAS, HDAC1, IFNAR1, IFNAR2, IRF1, IRF9, IFNGR1, IFNGR2, IKBKG, IKBKB, JAK1, JAK2, MAPK1, PDLA3, PSMB8, SOCS1,
STAT1, TAP1, TAP2, TAPBP, TBK1, TFRC, TGFBR2, TNFAIP3, TNFRSF1A, TNFRSF1B
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D

A B

C

FIGURE 1

Core immune escape related genes are favorable prognostic factors for melanoma and are significantly upregulated in tumor tissue. (A) 31 core
immune-escape related genes were identified as shown in Venn diagram. (B) Prognostic analysis of core immune-escape related genes. Green dots
represent favorable prognostic factors, red dots represent unfavorable prognostic factors, and grey dots represent genes that are not significantly
different in the Kaplan-Meier survival curve. The bigger the dot is, the smaller the P value is. The line between the different dots represents the
correlation between them. The red line indicates a positive correlation between them, the blue line indicates a negative correlation between them;
the grey line indicates that the two are not related. P value calculated by log-rank test and the correlation coefficient between the core immune-
escape related genes were evaluated using Spearman’s correlation analysis. (C) Expression analysis of core immune escape-related genes. Blue and
yellow half-violins represented normal and tumor samples, respectively. (D) Waterfall plot of detailed mutation information of 26 genes after initial
screening in each sample, with various color annotations to distinguish different mutation types. *P < 0.05, ***P < 0.001.
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FIGURE 2

Volcano plots of the differentially expressed proteins of 26 genes after initial screening. The circles with green, gray and blue represent
significantly down-regulated, no significant change and significantly up-regulated differentially expressed proteins, respectively.
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LCK is a promising indicator for
remodeling the tumor microenvironment
of melanoma

The infiltration level of immune cell was calculated for each

sample of melanoma using four methods, EPIC, TIMER,
Frontiers in Immunology 08
quanTiseq and MCPcounter, respectively. Focusing on the

three key independent prognostic factors mentioned above, we

found that samples with high LCK expression were accompanied

by higher levels of immune infiltration (Figure 5A). Therefore,

we suggest that LCK may affect prognosis by altering the tumor

microenvironment of melanoma and thereby. Survival analysis
D

E F

A B

C

FIGURE 3

KIT, EGFR and LCK may serve as key independent prognostic factors for melanoma. (A) Circular bar plot of the top 60 nodes in the protein-
protein interaction network in terms of connectivity. (B) Forest plot of the results of univariate COX regression analysis of 164 differentially
expressed proteins. Different colors indicate differentially expressed proteins. (C, D) The LASSO regression analysis for the 15 prognostic factors.
The coefficient profile plot (D) was generated against the log (lambda) sequence (C). (E) Forest plots of 6 independent prognostic factors in
multivariate COX regression analysis. Red represents unfavorable prognosis and blue represents favorable prognosis. (F) Venn diagram of the
results of the overlapping protein-protein interaction network analysis and multifactor COX regression analysis. 3 key independent prognostic
factors were identified, namely KIT, EGFR, and LCK.
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in both the TCGA cohort and the GSE54467 cohort of

melanoma showed that the group with high LCK expression

levels was associated with prolonged overall survival (p-value<

0.05) (Figure 5B). In normal and tumor tissues, differential

expression analysis based on TCGA cohort and GTEX cohort

showed that LCK was highly expressed in tumor tissues (p-

value< 0.05) (Figure 5C). To verify the expression pattern of

LCK, RT-qPCR was used to detect the mRNA expression of
Frontiers in Immunology 09
LCK. The results showed that the expression level of LCK was

significantly higher in melanoma cell lines (A2058, SKMEL28)

than in normal skin cell lines (PIG1, p-value< 0.05) (Figure 5D).

We then analyzed the correlation between LCK expression levels

and four clinical parameters, including tumor status, metastasis,

pathological stage, and the extent and size of the primary tumor.

The results indicated that the expression level of LCK was

significantly downregulated as melanoma progressed clinically

(p-value< 0.05) (Figure 5E). Subsequently, gene set enrichment

analyses (GSEA) were carried out in the TCGA cohort and the

GEO cohort. The GEO cohort we use here was integrated from 7

separate data, including GSE15605, GSE19234, GSE22155,

GSE3189 , GSE46517 , GSE59455 and GSE65904

(Supplementary Figure 1). The results of the enrichment

analysis showed that the gene set in the LCK high expression
A

B

C

FIGURE 4

Low-risk group in prognostic risk model associated with longer overall survival. (A) Risk factor analysis of the three cohorts, with samples divided
into two groups of high and low risk based on risk scores, with green dots representing surviving samples and red dots representing dead
samples. As the risk score increases, the number of dead samples increases. (B) Survival curves for high and low risk scores for the three
cohorts. In all cohorts, low-risk scores were associated with improved overall survival. (C) Time-dependent ROC curves for the three cohorts.
Curves with different colors indicate different time points. The AUC values above 0.6 at different time nodes demonstrate the accuracy of the
prognostic model.
TABLE 4 The results of LASSO regression analysis.

Gene Symbol

FOXM1, KIT, BRD4, EGFR, RAB25, CCNE1, LCK, SMAD1, KDR, RICTOR
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FIGURE 5

LCK is the most critical independent prognostic factor that may reshape the tumor microenvironment. (A) Heat map of the level of immune cell
infiltration for each sample of melanoma. The four modules in the rows represent the level of immune cell infiltration calculated by the four algorithms.
Columns represent samples of melanoma under three genetic groupings. The heat map from blue to red indicates the infiltration level from low to
high. (B) Kaplan-Meier survival analysis for high and low expression levels of LCK in the TCGA cohort and the GSE54467 cohort. (C) Differential
expression analysis of LCK in tumor and normal samples. (D) RT-qPCR of LCK in PIG1, A2058 and SKMEL28 cell lines. (E) Box plot of the correlation of
LCK expression levels with clinical parameters. (F) GSEA was performed based on LCK high and low expression in the TCGA cohort and the integrated
GEO cohort. **P < 0.01, ***P < 0.001.
Frontiers in Immunology frontiersin.org10

https://doi.org/10.3389/fimmu.2022.1024931
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.1024931
group was significantly enriched in cancer progression-related

pathways and immune component-related pathways

(Figure 5F). The above results illustrate that LCK plays an

important role in remodeling the tumor microenvironment

of melanoma.
In melanoma, LCK is highly correlated
with immunity and can predict response
to immunotherapy

To explore the specific role played by LCK in the tumor

microenvironment of melanoma, we analyzed the immune

landscape of LCK in melanoma. To begin, we focused on

single-cell sequencing data from melanoma. We integrated

single-cell sequencing data from two melanoma cases and

further completed the dimensional reduction clustering and

annotation (Supplementary Figures 2A–D, Figure 6A). We

then found that LCK was significantly highly expressed in T

cells and could be further used as a marker for T cells

(Figure 6B). Subsequently, we calculated the ESTIMATE score

for each sample in the TCGA cohort through the ESTIMATE

algorithm. We further found that ESTIMATE scores were

significantly higher in the group with high LCK expression

levels than in the group with low LCK expression levels (p-

value< 0.05) (Figure 6C). Protein-protein interaction network

constructed based on LCK showed that LCK plays a key role in

the T-cell antigen receptor-linked signal transduction pathway

(Figure 6D). Immediately after, we classified the samples in the

TCGA cohort of melanoma into cold and hot tumors based on

the 12 genes extracted from the study of Chunyu Dong et al.

(Supplementary Figure 3). We found that LCK expression levels

were higher in hot tumors (Figure 6E).

Immunotherapy such as immune checkpoint inhibitors have

wide application in some solid tumors such as melanoma.

However, the issue of patient responsiveness is an obstacle to

their effective application. Here, we analyzed the relationship

between the expression levels of LCK and the expression levels of

the 9 immune checkpoints. The correlation analysis showed that

LCK showed a significant positive correlation with immune

checkpoints (Figure 6F). That is to say, patients with high

LCK expression tend to have better immunotherapeutic

responses due to high levels of ICPs [31]. Thus, to verify the

relationship between LCK and immunotherapy response, we

examined the expression levels of LCK in the immunotherapy

cohort. Based on 2 immunotherapy cohorts extracted from the

TIDE database, we observed that LCK expression levels were

higher in the immunotherapy response group (Figure 6G).

Collectively, in melanoma, LCK is closely linked to the

immune components of its microenvironment and is effective

in predicting immunotherapeutic response.
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LCK promotes T cell activation and
suppresses immune escape of melanoma
cells by binding to the CD8 receptor

We found that LCK, a marker of T cells, plays a crucial role

in the immunotherapy of melanoma. Thus, we tried to elucidate

the specific mechanism by which LCK acts through cellular

interactions. Based on the previously annotated single cell

sequencing data, we extracted the melanoma cells and T cells

separately. By further dimensional reduction clustering, we

obtained 14 subgroups (Supplementary Figures 4A, B). Based

on the differential expression of genes, we classified melanoma

cells into 4 categories (Supplementary Figure 4C, Figure 7A).

Meanwhile, we classified T cells into Naive CD4+ T cells, Naive

CD8+ T cells, Effector CD8+ T cells and Memory CD8+ T cells

according to the specific expression of CD4, CD8 (CD8A), CD45

(PTPRC), CD197 (CCR7), CD25 (IL2RA) (Supplementary

Figure 4D, Figure 7A). Subsequently, cell-cell communication

was inferred by the ‘CellChat’ package on the basis of the

subgroup we annotated. The results showed that there was a

strong interaction between melanoma cells and T cells

(Supplementary Figures 4E, F). Subsequently, we selected

LCK-related ligand-receptor pairs left for further analysis. The

results suggest that LCK as a ligand acts between the C2

subgroup of melanoma cells and T cell subgroups by binding

to the CD8 receptor (Figures 7B–D). The binding of LCK to the

CD8 receptor drives CD8 close to the TCR and ultimately

stabilizes the TCR-MHCp interaction (31). TCR-MHCP

interactions promote T cell activation (32). The activation of T

cells further increases the response of T cells to pathogens or

malignant cells (33). Therefore, we propose that LCK inhibits

immune escape of melanoma cells in melanoma by promoting

the activation of T cells. Finally, we examined the correlation

between the expression levels of LCK and the IC50 of commonly

used antitumor drugs. The results showed that the group with

high expression of LCK had a lower IC50 (Figure 7E). This

means that LCK can effectively enhance the inhibitory effect of

antitumor drugs.
Discussion

Although immunotherapy has been used extensively in

melanoma, its annual mortality rate is not encouraging. Our

findings suggest that LCK may be a novel potential biomarker

for predicting immunotherapy in melanoma. The findings show

that in melanoma, patients with high LCK expression have a

higher degree of immune cell infiltration in vivo (Figure 5A),

which also corresponds to a higher overall survival (Figure 5B).

LCK (lymphocyte-specific protein tyrosine kinase) belongs to

the SRC family of tyrosine kinases and has been best studied in
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1024931
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.1024931
D E

F G

A B

C

FIGURE 6

LCK is highly correlated with immunity and can predict response to immunotherapy. (A) A tSNE view of 18690 single cells, colour-coded by
assigned cell type. (B) Violin plots of the expression levels of LCK in different cell types. LCK was specifically expressed in T cells. (C) Scatter plot
of ESTIMATE scores in LCK high and low expression subgroups. The ESTIMATE scores were higher in the group with high LCK expression levels.
(D) Protein-protein interaction network plot constructed based on LCK. (E) The grdotplot of LCK expression levels in melanoma samples under
cold and hot tumor groupings. (F) Scatter density plot of the correlation analysis between the expression levels of LCK and the expression levels
of the 9 immune checkpoints. The expression level of LCK showed a significant positive correlation with the expression level of immune
checkpoints. (G) Violin plot of the differential expression analysis of LCK in two immunotherapy cohorts. CR/PR and SD/PD represent the
response and non-response groups to immunotherapy, respectively.
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the context of T-cell function and signaling as well as

lymphocytic leukemia of the B-cell lineage (14). LCK is mainly

expressed in T cells, NK cells, B cells. In the present study, based

on single-cell RNA sequencing technology, we observed specific

expression of LCK on T cells (Figure 6B). In addition, a growing

number of studies have shown that LCK is also expressed in
Frontiers in Immunology 13
brain and tumor cells, where it is actively involved in the

regulation of cellular functions such as proliferation and

survival (14, 34, 35). LCK is highly expressed in most cancers,

including breast cancer, colorectal cancer and glioma (36–39).

We found that the expression level of LCK was significantly

higher in melanoma tumor tissues than in normal tissues
E

A B

DC

FIGURE 7

LCK promotes antitumor immune responses by binding to CD8 receptors and is associated with a lower IC50 for antitumor drugs. (A) The tSNE
plot of 14760 single cells for melanoma cells and T cells, colour-coded by assigned cell type. (B) Circle plots of LCK-CD8 receptor interactions
in CellChat analysis of melanoma cell subgroups and T cell subgroups. The thickness of the line represents the magnitude of the action
intensity; the arrow represents the action direction. (C) Bubble plots of LCK-CD8 receptor interactions in CellChat analysis of melanoma cell
subgroups and T cell subgroups. (D) Violin plots of the expression levels of LCK, CD8A and CD8B in melanoma cell subgroups and T cell
subgroups. (E) Drug sensitivity analysis based on the expression level of LCK. The IC50 values of the six antitumor drugs were lower in the group
with high LCK expression levels.
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(Figure 5C). Moreover, the results of RT-qPCR showed that LCK

expression was significantly upregulated in melanoma cell lines

compared to normal skin cell lines (Figure 5D). In addition, LCK

was detected in the C2 subgroup of melanoma cells (Figure 6D).

LCK plays a vital role in various cellular processes such as

cell cycle control, cell adhesion, motility, proliferation and

differentiation (40). This encoded protein is a key signaling

molecule for selection and maturation during T cell

development (41). In recent years, it is reported that LCK has

been determined as one of the key molecules regulating T cell

function, and studies using knockout LCK mice or LCK-

deficient T cell lines surface that LCK regulates signal

initiation, T cell development and T cell homeostasis and also

can enhance or inhibit BCR signaling (35, 42). Patients with LCK

deficiency frequently present with immune dysregulation and

autoimmunity. Overexpression of LCK contributes to a large

number of other diseases such as cancer, systemic lupus

erythematosus and organ transplant rejection (43). It has been

reported that knockdown of LCK significantly inhibits cell

proliferation and cell invasion in Oral squamous cell

carcinoma (OSCC) (44). Another report stated that inhibition

or downregulation of LCK led to apoptosis in Chronic

Lymphocytic Leukemia (CLL) cell lines (45). Therefore, the

application of LCK inhibitors could be an important strategy

for the treatment of certain cancers (46). However, it has also

been reported that high expression of LCK is associated with

increased cumulative survival in melanoma patients (37). This is

consistent with the results of our study. In an in vivo study of

mice with LCK-deficient CLL disease model, it was found that

LCK-KO group mice had a significantly shorter median survival

compared to wild-type healthy mice over an observation period

of 350 days (47).

LCK functions primarily in lymphocytes and is involved in

transduction from the T-cell receptor complex to the nucleus,

and this specific expression and function in immune cells may

partially explain the phenomenon that high LCK expression is

often associated with extended overall survival. Interestingly, we

found that LCK in melanoma cells and T cells facilitates the

interaction between the two cells by binding to the CD8 receptor.

Previous studies have shown that the binding of LCK to the CD8

receptor drives CD8 close to the TCR and ultimately stabilizes

the TCR-MHCp interaction, which then further promotes the

activation of T cells (31, 32). The activated state of T cells

enhances the responsiveness to pathogens or malignant cells,

while further inhibiting tumor progression (33, 48). Therefore,

since LCK plays a role in cancer cell signaling as well as in T-cell

function, it will be necessary to define therapeutic strategies to

selectively target LCK in tumor cells without impairing the

responses of tumor infiltration lymphocytes. This is a critical

issue common to other kinase inhibitors targeting signaling
Frontiers in Immunology 14
molecules expressed in both cancer and immune cells (e.g.,

BRAF, AKT, mTOR inhibitors) (35).
Conclusion

In this study, through bioinformatic analysis of core immune

escape related genes, we conclusively identified LCK as a

prognostic biomarker that could remodel TME. LCK is

associated with prolonged overall survival and is predictive of

response to immunotherapy. In addition, LCK in melanoma

cells and T cells further activates T cells by binding to CD8

receptors, promoting anti-tumor response of T cells and

suppressing immune escape phenomenon. Notably,

therapeutic approaches that target LCK in tumor cells may

offer a new perspective for the treatment of melanoma.
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