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Divergent roles of PD-L1 in
immune regulation during
ischemia–reperfusion injury

Jianheng Luo †, Ke Liu †, Yong Wang* and Hongge Li*

Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, Hubei, China
Ischemia–reperfusion (I/R) injury is a type of pathological injury that commonly

arises in various diseases. Various forms of immune response are involved in the

process of I/R injury. As a member of the B7 costimulatory molecule family,

programmed death 1-ligand 1 (PD-L1) is an important target for immune

regulation. Therefore, PD-L1 may be implicated in the regulation of I/R injury.

This review briefly describes the immune response during I/R injury and how

PD-L1 is involved in its regulation by focusing on findings from various I/R

models. Despite the limited number of studies in this field of research, PD-L1

has shown sufficient potential as a clinical therapeutic target.
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Introduction

Ischemia–reperfusion (I/R) is a heterogeneous pathological condition that is involved

in the injury process of various organs. I/R injury plays an important role in

cardiovascular and cerebrovascular diseases, which are the leading causes of death

worldwide (1, 2). Ischemia is defined as the restriction of blood supply to one or

multiple organs. In general, restoring blood flow is the most effective strategy for treating

ischemia. However, the process of restoring blood flow can also induce injury. I/R injury

is the term used to describe this phenomenon, whereby secondary injury is caused by

blood flow restoration to ischemic tissues (3). The most common cause of I/R injury is

thrombosis. Circulatory system disorders [e.g., circulatory arrest and sickle cell disease

(4)], obstructive sleep apnea (5), and so on can also induce I/R injury.

Although ischemic injury is a relatively simple process to understand, reperfusion

injury is more complex and its underlying mechanisms remain unclear. Typically, the I/R

injury process is subdivided into six participating components, including vascular

leakage, cell death programs, transcriptional reprogramming, autoimmunity, innate

and adaptive immune activation, and the no-reflow phenomenon (6). The immune

response plays an important role in the I/R injury process.
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Programmed death 1 (PD-1)-ligand 1 (PD-L1), also

named B7-H1 or CD274, is the third member of the B7

family, a costimulatory receptor family, which belongs to the

immunoglobulin superfamily. PD-L1 is a type I transmembrane

protein composed of 290 amino acids, with immunoglobulin V-

like and C-like domains, a hydrophobic transmembrane

domain, and a cytoplasmic tail that is 30 amino acids in

length. In humans, PD-L1 is encoded by the CD274 gene

located on chromosome 9 (7, 8).

As the ligand of PD-1, PD-L1 is best known for its role in

immune checkpoint inhibition, which is important in immune

regulation by bidirectional intracellular signaling between

immune cells and target cells. Since its discovery in 1999, PD-

L1 has been extensively researched within the cancer field.

Nowadays, inhibitors of PD-L1, such as durvalumab and

avelumab, are used in targeted cancer immunotherapy in

the clinic.

In addition to tumor immunity, an increasing number of

studies have confirmed that PD-L1 is also involved in

autoimmunity, infection, I/R, and other pathological injuries.

Cancer and cardiovascular and cerebrovascular diseases are the

two leading causes of adult deaths worldwide. The proportion of

patients with cardiovascular and cerebrovascular diseases who

are receiving PD-L1-targeted therapy may increase in the near

future with the widespread application of this form of therapy in
Frontiers in Immunology 02
the clinic. It is therefore imperative to explore the role of PD-L1

in I/R injury. Contrary to its popularity in oncology, only a few

studies of PD-L1 focus on I/R injury even though the immune

mechanisms involved in I/R injury have been confirmed (6).

Thus, in this review, we 1) briefly discuss the current

understanding of the immune response during I/R injury, 2)

summarize the existing research on PD-L1 in this process, and 3)

propose potential directions for future research in this field.
Immune response in ischemia–
reperfusion injury

The immune system in I/R injury is a complex process, and

there are various distinct types of immune response involved. In

this section, we will briefly introduce how three aspects of

immunity are involved in I/R injury (Figure 1).
Innate immune response

It is important to clarify that, except for a few cases, such as

intestinal injury or septic shock, I/R injuries occur in a sterile

environment. This means that during I/R injury, the

inflammatory response is always in the form of sterile
FIGURE 1

The innate and adaptive immune responses and autoimmunity are all involved in ischemia–reperfusion (I/R) injury. Necrotic or apoptotic cells
can directly activate the innate immune response during I/R injury. Different subsets of lymphocytes are involved in the adaptive immune
response in different forms. Meanwhile, neoepitopes are exposed to injured tissues, inducing autoantibody production and complement system
activation.
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inflammation. In the early stages of I/R injury, large numbers of

cells die of necrosis due to hypoxia. Necrotic cells are highly

immunostimulatory and lead to inflammatory cell infiltration

and cytokine production (9). Subsequently, ligands associated

with processes such as cell damage or death, which are termed

“damage-associated molecular patterns” (DAMPs), are released

or upregulated. These DAMPs bind to innate immune receptors

such as Toll-like receptors (TLRs), which activate the innate

immune response (10, 11). This process has many similarities to

that initiated under non-sterile conditions. Meanwhile, oxidative

stress during reperfusion leads to the upregulation of TLR4,

which may be another factor that enhances the innate immune

response during I/R injury (12).

On the other hand, the accumulation of innate immune cells,

which are the main type of infiltrating cells during early injury,

also occurs during I/R. The various types of infiltrating innate

immune cells play important roles in the removal of necrotic

material and tissue repair (13). However, excessive infiltration of

immune cells can further exacerbate inflammation (14, 15).
Adaptive immune response

In contrast to what is known about the immune response in

I/R injury, it is not clear how the adaptive immune response is

activated under sterile conditions. It is likely that both antigen-

specific and antigen-independent mechanisms of activation are

involved (16, 17). Studies of the brain (18, 19), heart (20), liver

(17), and kidney (21) have indicated that adaptive immune cells

infiltrate and participate in the injury process during I/R. The

adaptive immune response is even more complex and

sophisticated than the innate immune response. In adaptive

immunity, diversity arises from different subgroups of immune

cells and the intricate combinations of receptors, ligands, and

signaling molecules. Studies have shown that CD4+ and CD8+ T

cells primarily mediate the detrimental responses in I/R (17, 19–

21), while regulatory T cells (Tregs) offer a protective role (22).
Autoimmunity

In addition to the two branches of immunity described,

autoimmunity should not be ignored. Self-reactive innate

recognition proteins can target the neoepitopes expressed in

ischemic tissues and initiate inflammation (23). Indeed, the

existence of an autoimmune response to I/R injury, mediated

by natural antibodies, has been confirmed in several studies (24,

25). Antibodies can in turn activate the complement system,

further amplifying the inflammation (26). In animal models of I/

R, therapeutic agents targeting the complement system have

shown promise (27).
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Expression and regulation of
programmed death 1-ligand 1

Considering the complexity of PD-L1 and the limitations of

our existing understanding of its function, we will first review

our knowledge on PD-L1 expression and regulation

mechanisms. Unlike PD-1 and PD-1-ligand 2 (PD-L2), which

are only expressed by hematopoietic cells, PD-L1 is also found in

a wide range of non-hematopoietic cells, such as vascular

endothelium, keratinocytes (28), and epithelial tubular cells

(29, 30).

As previously mentioned, PD-L1 is encoded by the CD274

gene, located on chromosome 9p24.1 in humans, which is also

the site of the JAK2 and PDCD1LG2 (encoding PD-L2) genes. It

is worth noting that JAK2 can encode a protein called Janus

kinase 2 (JAK2) that upregulates the expression of PD-L1

mRNA via the JAK2–signal transducer and activator of

transcription (STAT) signaling pathway (31, 32). In addition,

PD-L1 overexpression can be disrupted by Clustered regularly

interspaced short palindromic repeats/CRISPRassociated

protein 9 (CRISPR/Cas9) technology by targeting the 3′-
untranslated region (UTR) of the CD274 gene (33). In

addition to targeting DNA, the modification of histones is

another strategy for regulating PD-L1. Some studies have

already proven that altering the acetylation or methylation of

histones can enhance PD-L1 mRNA expression (34, 35).

MYC, an oncogenic transcription factor, binds the CD274

promoter and triggers the expression of PD-L1 (36). This

phenomenon occurs in many types of tumors. Moreover,

inflammation is also strongly correlated with PD-L1 expression.

Interferon (IFN)-g, a pro-inflammatory cytokine, may be the most

prominent soluble inducer of PD-L1 expression. After binding to

its receptor, IFN-g promotes the expression of PD-L1 via the JAK-

STAT signaling pathway (37). Transforming growth factor (TGF)

b, TLRs, and various interleukins (ILs) are also involved in the

regulation of PD-L1 expression. In addition, there are many other

mechanisms including hypoxia-inducible factor-1 (HIF),

phosphatidylinositol 3-kinase-Akt/mechanistic target of

rapamycin (PI3K-Akt/mTOR), the nuclear factor kB (NF-

kB), and mitogen-activated protein kinase (MAPK)

signaling pathways.

Aside from these better-known mechanisms, recent studies

have discovered new possible mechanisms regulating PD-L1

expression. Liver kinase B1 (LKB1) can increase PD-L1

expression via the Kelch-like ECH-associated protein 1/

Nuclear factor E2-related transcription factor (KEAP1/NRF2)

axis (38). A study on Non-small cell lung cancer (NSCLC)

suggested that AMP-activated protein kinase (AMPK) can

downregulate LKB1 expression to reverse its function. Another

study of lung cancer found that Yes-associated protein (YAP)

and PD-L1 expression were positively correlated (39).
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Furthermore, a study of endometrial cancer used co-

immunoprecipitation to show the direct interaction between

PD-L1 and AMPK (40). These new findings may help further

clarify the mechanism of PD-L1 expression and regulation.

After translation, PD-L1 undergoes several modifications,

including N-linked glycosylation, serine/threonine and tyrosine

phosphorylation, polyubiquitination, and palmitoylation. N-

linked glycosylation is the most notable of the PD-L1

modifications; it has two primary functions: 1) stabilizing PD-

L1 and 2) regulating PD-L1/PD-1 binding (41, 42).

In addition to the membrane-bound forms of PD-L1 (mPD-

L1), PD-L1 can also be secreted in the form of soluble and/or

exosomal proteins (34). Early studies have shown that the

production of soluble forms of PD-L1 (sPD-L1) is related to

the mPD-L1 expression. mPD-L1+ myeloid-derived immune

and tumor cells may be the major source of sPD-L1 (43),

while matrix metalloproteinases (MMPs) might be involved in

the process by which sPD-L1 is produced. MMPs can cleave the

extracellular fraction of mPD-L1, releasing sPD-L1 (43, 44).

Although mPD-L1 can be expressed in activated T cells, the

available evidence suggests that these cells are not involved in the

formation of sPD-L1 (43, 45). Recently, exosomal PD-L1 has

come into the spotlight, as it was found to be expressed by

various cancer types including metastatic melanoma, breast

cancer, and head and neck squamous cell carcinoma (37, 46,
Frontiers in Immunology 04
47). In addition, exosomal PD-L1 can induce osteogenic

differentiation and promote fracture healing through its

immunosuppression ability (48).

The programmed death 1/
programmed death
1-ligand pathway

PD-L1 is one of two ligands that bind PD-1. It is therefore

important to mention the PD-1/PD-L pathway. From the

perspective of structural biology, PD-L2 has a higher affinity

for PD-1 than that of PD-L1 (49). However, the general

abundance of PD-L2 is much lower than that of PD-L1.

Therefore, PD-1/PD-L1 is the dominant signaling pathway.

When PD-1 bind to its ligands, Src homology 2 domain-

containing protein tyrosine phosphatase-2 (SHP-2) is recruited

via the phosphorylated immunoreceptor tyrosine-based

inhibitory motif (ITIM) and immunoreceptor tyrosine-based

switch motif (ITSM) tyrosine motifs of PD-1 (50, 51). This leads

to the attenuation of the PI3K-Akt (52, 53) and Ras-extracellular

signal-related kinases mitogenactivated extracellular signal-

regulated kinase (ERK-MEK) (52) signaling pathways, decrease

in the production of certain cytokines (e.g., IL-2 and IFN-g), and
inhibition of cell cycle progression (Figure 2).
FIGURE 2

The PD-1/PD-L1 pathway. PD-1 ligation inhibits the PI3K-Akt and Ras-MEK-ERK signaling pathways. Coincidentally, the PI3K-Akt and Ras-MEK-
ERK pathways are upstream signals that regulate PD-L1 expression. Moreover, IFN-g can increase the PD-L1 expression via the classical JAK-
STAT pathway during inflammation. However, the potential PD-L-associated downstream signaling pathways are undefined, and they may hold
the key to how the PD-1/PD-L1 pathway regulates the innate immune response. Bcl-xL, B-cell lymphoma-extra large; ERK, extracellular signal-
related kinases; IFN, Interferon; ITIM, immunoreceptor tyrosine-based inhibitory motif; ITSM, immunoreceptor tyrosine-based switch motif; JAK,
Janus kinase; MEK, mitogen-activated extracellular signal-regulated kinase; MHC, major histocompatibility complex; PD-1, Programmed death
1; PD-L1, PD-1-ligand 1; PI3K, phosphatidylinositol 3-kinase; SHP-2, Src homology 2 domain-containing protein tyrosine phosphatase-2; STAT,
JAK2 signal transducer and activator of transcription; TCR, T-cell receptor.
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In contrast, on the other side of the costimulatory pathway,

there is some evidence that PD-Ls can also transmit a

costimulatory signal. For example, in a study using sPD-1, it

can be observed that the phenotypic changes of dendritic cells

(DCs) are related to the activation of the PD-1/PD-L pathway

(54). However, the potential PD-L-associated downstream

signaling pathways have not been fully studied. It should be

noted here that both PD-1 and PD-Ls can be expressed on

antigen-presenting cells (APCs) and lymphocytes. At present,

the role of PD-1 expression on APCs is not clear.

Formerly, it was believed that the PD-1/PD-L pathway was

only involved in the regulation of the adaptive immune

response. However, new research suggests that it is also

implicated in the innate immune response (55–59) and

autoimmunity (54, 60). The PD-1/PD-L signaling pathway can

affect the infiltration of monocytes/macrophages and

neutrophils, as well as regulate the function of DCs and nature

killer (NK) cells. This suggests that the expression of PD-1 and

PD-L1 on APCs may be involved in their regulation of innate

immune response, which is a potential direction for

future research.
Pleiotropic effects of programmed
death 1-ligand 1 in ischemia–
reperfusion injury

There are many links between PD-L1 and I/R injury. Both

sterile inflammation and immune activation are involved in the

I/R injury process. Since PD-L1 serves as an immune checkpoint

molecule and is regulated by markers of inflammation, there is

plenty of reason to assume that PD-L1 plays an important role in

I/R injury (Table 1).
Programmed death 1-ligand 1
expression is associated with ischemia–
reperfusion injury

Changes in PD-L1 expression have been shown to be

correlated with I/R injury in multiple models. A clinical study

on 30 out-of-hospital cardiac arrest (OHCA) patients

indicates that their sPD-L1 plasma levels increased during

cardiopulmonary resuscitation (CPR) and were significantly

higher than those of healthy volunteers (61). Considering that

previous studies have indicated that sPD-L1 is elevated not only

in cancer but also in general inflammation (43, 70, 71), other

inflammatory disturbances were considered in this study.

Although initially thought to be associated with the presence

of pneumonia, the sPD-L1 levels in the OHCA group remained

higher than those in the healthy control group independently of

pneumonia, which is thought to result from I/R injury.
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Meanwhile, the plasma sPD-L1 levels correlated with certain

clinical parameters (e.g., blood urea nitrogen (BUN), estimated

glomerular filtration rate (eGFR), and C-reactive protein) and

disease progression. This suggests that PD-L1 could serve as a

clinical biomarker. Moreover, sPD-L1 levels appeared to

correlate with the severity of organ failure, which was

indicated by the Sequential organ failure asses (SOFA) scores.

Another clinical study involving 70 patients indicated that the

expression of PD-L1 on Tregs was significantly lower in patients

with acute coronary syndrome (ACS) compared with that of the

control group and patients with coronary heart disease (CHD;

including patients with stable angina pectoris, silent myocardial

ischemia, or ischemic heart failure) (62). No significant

difference in Treg-specific PD-L1 expression was observed

between these two latter groups. Although this study excluded

interference from atherosclerosis, a pathological process in

which PD-L1 is known to be involved (72–74), it did not

specify whether changes in PD-L1 expression occurred during

ischemia or possible reperfusion.

In an experimental kidney C57BL/6 mice model of I/R

injury, ischemia was performed for 35 min at 25°C and then

blood flow was restored. PD-L1 expression was induced in early

injury (on days 3 and 7), whereas renal recovery occurred on day

10 (30). However, in an intestinal BALB/c mouse model of I/R,

in which ischemia was induced for 1 h, followed by a 2-h

reperfusion, the PD-L1 expression on Peyer’s patches (PPs)

CD4+ T cells was markedly decreased. Meanwhile, the levels of

protective soluble immunoglobulin A (sIgA) in the lavage fluid

were also decreased. Moreover, a positive correlation was

observed between PD-L1 expression and sIgA levels (65).
Programmed death 1-ligand 1 showed
inconsistent effects in the ischemia–
reperfusion models of different organs

Whether PD-L1 is involved in the progression of I/R injury

and its specific function in this process has not been clarified.

Multiple I/R models of different organs have produced

inconsistent results.

Using a recombinant PD-L1 Fc protein in an intestinal I/R

model further proved that PD-L1 Ig lowered PD-1 expression

and intestinal immune dysfunction via the IL-10/miR-155

pathway (66). However, unlike the anti-IL-10 monoclonal

antibody (mAb), using the miR-155 Agomir did not reverse

the protective effect of PD-L1 Ig, which may suggest that there

are other potential mechanisms downstream of IL-10 aside from

miR-155. This study suggests the possibility of using

recombinant PD-L1 Fc proteins in the clinical treatment of

intestinal I/R injury. It may be used as a prophylactic medication

before intestinal surgery.

In a kidney I/R injury model, PD-L1 also seemed to show a

protective function. Blocking either PD-1 ligand 24 h prior to I/R
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TABLE 1 PD-L1 in I/R models.

Expression The Form of I/R Effects Involved
Immune Cells

Refferences

Up OHCA – Lymphocytes
(Periphral Blood)

(61)

Human ASC** – CD4+CD25+Foxp3
+Tregs

(62)

Up Warm Ischemia(90min)/
Reperfusion(6h)

Prevent hepatocellular damage; T cells, Neutrophils,
Macrophages

(63)

Attenuate lymphocytes infiltration;

Inhibit I/R-induced liver necrosis/apoptosis

Up Cold Ischemia(24h,4℃)/
Reperfusion(1,3,6 or 12h)

Prevent hepatocellular damage; CD8+T Cells (64)

Attenuate lymphocytes infiltration;

Regulate the apoptosis of donor CD8+T cells;

Down-regulate inflammation-related

– Bilateral Renal Ischemia(21,24 or
26min)/Reperfusion(24h)

PD-L1 blocked: CD11b+ Cells*** (29)

Exacerbate renal dysfunction and tissue injury;

Enhance the innate immune response in the kidney;

Lead to increased level of IL-6, CXCL1 and ICAM-1

Up Ischemia(35min)/Reperfusion
(Left)

– – (30)

Down Ischemia(1h)/Reperfusion(2h) – PP CD4+T Cells (65)

Down Ischemia(1h)/Reperfusion(2h) Attenuate intestinal immune dysfunction; PP CD4+T Cells (66)

Promote AID expression via
IL-10/miR-155 pathway

– Ischemia(1h)/Reperfusion(24h) PD-L1 KO: APCs(Spleen), CD8
+CD122+ Tregs

(67)

Ameliorate infarct volume and reduce neurological deficits;

Reduce cerebral cell infiltration and inflammation;

Rescue MCAO-induced splenic atrophy;

Inhibit activation states of splenic lymohpcytes;

Lead to increased expression of PD-1 on T cells and
decreased expression of CD80 on APC in spleens;

Result in loss of suppressor Tcells from spleens

– Ischemia(1h)/Reperfusion(24h) PD-L1 blocked: APCs(Spleen), CD8
+CD122+ Tregs

(68)

Ameliorate infarct volume and reduce neurological deficits;

Reduce cerebral inflammation;

Enhance the accumulation of CD8+ Tregs in the ischemic
hemisphere;

Rescue MCAO-induced splenic atrophy;

Lead to decreased expression of CD80 on APC in spleens;

Increase the expression of regulatory molecules on T cells
in spleens

– Ischemia(1h)/Reperfusion Decrease the neutrophil-derived MMP-9 CD4+CD25+ Tregs,
Neutrophils

(69)

Preserve BBB integrity

Lead to neuroprotection
Frontiers in Immunology
 06
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*These studies are all in the context of organ transplantation.
** Acute coronary syndrome. This research did not make a clear distinction between ischemic injury and reperfusion injury, but clinically, both pathological processes often coexist.
*** CD11b+ is a marker of BMDCs.
APC, antigen-presenting cell; BBB, blood–brain barrier; BMDC, bone marrow–derived cell; I/R, ischemia–reperfusion; IL, interleukin; MCAO, middle cerebral artery occlusion; MMP9,
matrix metalloproteinase 9; OHCA, out-of-hospital cardiac arrest; PD-1, programmed death 1; PD-L1, programmed death 1-ligand 1.
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injury (21-min or 24-min or 26-min ischemia followed by 24-h

reperfusion of bilateral kidneys) increased organ injury,

dysfunction, and inflammation (29). Moreover, blocking both

PD-L1 and PD-L2 further exacerbated I/R injury in comparison

with blocking either one alone. This conclusion was reinforced

in a mild renal I/R injury model using PD-L1 or PD-L2 knock-

out (KO) mice, in which ischemia was induced for 21 min

followed by a 24-h reperfusion. The main infiltrating cells in this

research model were innate immune cells, and blocking of PD-1

ligands showed no effect on CD4+ and CD8+ T-cell infiltration.

Since PD-L1 expression is not restricted to immune cells, the

researchers also investigated the contribution of PD-L1 in the

immune and non-immune compartments by generating bone

marrow (BM) chimeric mice. The result showed that there was

no significant difference in renal function between the wild-type

(WT) recipient (whether they belong to the sham group or I/R

injury group), their BM donor from WT mice, or PD-L1 KO

mice. This means that PD-L1 on non-BM-derived cells

(BMDCs), but not on BMDCs, protects the kidney from the I/

R injury.

The study of the central nervous system (CNS) is further

complicated by the existence of the blood–brain barrier (BBB)

(75). Halina Offner and her team conducted a series of studies on

the role of the PD-1/PD-L1 costimulatory pathway in

experimental stroke (67, 68, 76). In their experimental stroke

model, WT C57BL/6J mice or PD-L1 KOmice were subjected to

60 min of middle cerebral artery occlusion (MCAO), followed by

96 h of reperfusion. Surprisingly, the lack of PD-L1 reduced CNS

inflammation and infarct volume (67). They also observed

decreased total cerebral inflammatory cell infiltration.

Especially, the number of CD8+ T cells significantly increased

not only in the ischemic right hemispheres but also in the non-

ischemic left hemisphere of the brain. Furthermore, the

researchers also observed that PD-L1 knockdown rescued

MCAO-induced splenic atrophy and decreased the expression

of CD80 [also named B7-1, another costimulatory molecule that

interacts with PD-L1 (77–79)] on splenic APCs. Based on these

results, they used an anti-PD-L1 mAb to treat ischemic stroke,

further proving that PD-L1 is a negative factor in ischemic stroke

(68). Not only do these results contradict conventional wisdom,

but they also contradict some other studies. In a previous study,

the researchers discovered that the increased expression of PD-1

limits CNS inflammation (76). In another study, PD-L1 played

an essential role in Treg-afforded protection against BBB

damages after stoke (69). Professor Offner and her team

attribute these disparate results to CD8+CD122+ Tregs (67,

80). Although studies of mouse cell lines deficient in specific

populations of lymphocytes showed that CD8+ T cells have a

detrimental function in the I/R injury of the brain, Tregs are

protective factors (19–21). Their research showed that the

CD8+CD122+ Tregs accumulated in the damaged side of the

brain following stroke. In addition, heterogeneous binding

between costimulatory molecules may be another factor. It
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appears that after MCAO, the absence of PD-L1 causes an

increase in the expression of PD-L2 and a decrease in the

expression of CD80 on splenic APCs. Although these factors

can partly explain the contradictory results, the specific

mechanism has not been systematically elucidated.
Programmed death 1-ligand 1 in
ischemia–reperfusion injury during
organ transplantation

Organ transplantation is a unique case in which the genetic

composition of immune cells and target cells are mismatched.

This means not only that I/R injury during transplantation is

accompanied by a more complex and stronger immune response

but also that the expression of PD-L1 on immune cells (mainly

recipient-derived) and target cells (mainly donor-derived)

during transplantation is different from that under

normal conditions.

It was previously believed that there was no correlation

between the upregulation of PD-L1 expression and I/R injury

during transplantation (81). However, new research contradicts

this conclusion. In the studies of liver transplantation, the

expression of PD-L1 protected the transplanted liver and

limited I/R injury in both the cold I/R model and warm I/R

model (63, 64). In the cold I/R model, a chimeric liver was used

to show that the expression of PD-L1 on hepatocytes and

BMDCs of the donor liver was equally important (64). This

contradicts the results of the renal I/R study we mentioned

earlier (29). In addition, a significant increase in both the host-

derived and graft-derived CD8+ T cells was observed in the cold

I/R model. Meanwhile, neutralization of IL-10 reversed the

protective effect of PD-L1 in the warm I/R model (63). This

evidence suggests that the PD-L1 function is T cell-dependent,

which is consistent with the traditional viewpoint and the

conclusion of the aforementioned intestinal I/R model

study (66).
Programmed death 1 and
programmed death 1-ligand 2 in
ischemia–reperfusion injury

Although PD-L1 is the focus of this review, it is important to

mention PD-1 and PD-L2 in the context of I/R injury, as these

molecules are closely related to PD-L1 function.

A study on renal I/R injury has suggested that the protective

effect of the adenosine 2A receptor in acute kidney injury (AKI)

may be due to the increased expression of PD-1 on Tregs (82).

Two studies on ST-elevation myocardial infarction also

identified a correlation between PD-1 and I/R injury (83, 84).

By analyzing peripheral blood mononuclear cells (PBMCs), they
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observed a sharp increase in PD-1 expression before reperfusion

and a significant decrease after reperfusion. Moreover, the

decrease in PD-1 expression on both PBMCs and in

the infarct areas was associated with extensive infarction. In

the MCAO model, the expression of PD-1 on immune cells also

increased significantly, and PD-1 deficiency exacerbated infarct

volume and inflammation of the CNS (76). These findings

highlight the protective effect of PD-1 in the context of

ischemic stroke. Subsequent research implied that the

protective effect of IL-10 may be partly mediated via the

increase in PD-1 expression on lymphocytes (85).

Less is known about the role of PD-L2 in the pathology of I/

R injury. In the aforementioned study of kidney I/R, the

researchers observed that PD-L2 also showed a protective

effect, alongside PD-L1 (29). In the experimental stroke model,

PD-L2 KO had a similar effect to that of PD-L1 KO (67).

However, the intracranial infiltrating immune cell subsets

differed between the PD-L1 KO and PD-L2 KO mice. Another

study involving vessel transplantation discovered that PD-L2

expression was increased independent of IL-1b and IL-18 levels

(86). Recently, some researchers have shown that the

simultaneous activation of the PD-L2- and Cytotoxic T

Lymphocyte antigen 4 (CTLA-4)-related pathways with a

novel human fusion recombinant protein improved renal

function in both the conventional and allograft models of

renal I/R (87). This may indicate the potential of PD-L2 as a

clinical therapeutic target. However, it should be noted that this

study did not compare the effects of PD-L2 or CTLA-4

activation alone.
Discussion

PD-L1 is a coinhibitory molecule belonging to the B7 family

(7, 28, 88). Studies of I/R models have long suggested that the

immune response plays an important role in the pathology of I/R

injury. However, due to the complexity of the immune system and

the limitations of our existing understanding, it is still unclear

what position PD-L1 holds in I/R injury. PD-L1 is now thought to

be involved not only in the adaptive immune response but also in

the innate immune response (55–59) and autoimmunity (54, 60).

In addition, PD-L1 also has been observed to promote the

immune response in some studies (54, 60). In this review, we

focused on summarizing some studies of PD-L1 in I/R injury.

Although few studies on PD-L1 in the context of I/R exist, their

results are contradictory. For instance, they report that during I/R,

PD-L1: 1) is either upregulated or downregulated, 2) promotes or

limits inflammation, 3) increases or decreases leukocyte

recruitment, and 4) implicates either BMDCs or non-BMDCs

(29, 30, 61–69). Of course, we could attribute these differences to

differences between experimental conditions, materials, methods,

or animal models. For instance, with regard to the renal I/R

models, although both studies used C57BL/6 mice, the durations
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of ischemia induction and reperfusion were different (29, 30). In

addition, one of these models was bilateral, while the other was

performed on the left kidney only. The intestinal I/R model used

BALB/c mice (65, 66), while, in the liver transplantation model,

the induction of warm or cold I/R was the key variable (63, 64). In

the model of ischemic stroke, although the ischemic time was

consistent, the time of reperfusion was not. Moreover, in the renal

models, the infiltrating immune cells were primarily innate

immune cells (29), which could be attributed to the short

reperfusion time. However, it is not rigorous to explain these

discrepancies without considering the diverse experimental

conditions. How the experimental conditions affect PD-L1 has

not been fully explained, which is exactly what we need to

further explore.

One point that we need to be aware of is that the CNS is an

exception to the norm. Although there are many inconsistencies

in the aforementioned studies, it is generally believed that PD-L1

has a protective effect on I/R injury in organs such as the liver,

the kidney, and the intestine. In contrast, the absence of PD-L1

ameliorated the I/R injury in the CNS (67, 68). The

immunologically privileged status of the CNS may explain

these differences in the role of PD-L1 in I/R (89, 90). Stroke is

often accompanied by BBB damage, which has been

demonstrated in several studies (91–94). This damage leads to

the exposure of antigenic determinants, inducing the infiltration

of immune cells. This may partly explain the increased

infiltration of CD8+ T cells into the healthy hemisphere of the

brain. Necrosis at the injured site causes local inflammation,

which leads to the recruitment of more immune cells and

increases the expression of PD-L1, thus obstructing the

infiltration of CD8+CD122+ Tregs. In an earlier study of

experimental autoimmune encephalomyelitis (EAE), it was

discovered that the increased expression of PD-L1 inhibits the

infiltration of CD8+ Tregs and aggravates the inflammatory

response of the CNS, which is consistent with the

phenomenon observed in MCAO (54). Although various

costimulatory molecules are widely expressed by BMDCs, their

expression and function in specific cell subsets are still

inconsistent (28, 29). This may be the reason why PD-L1 has a

more significant effect on CD8+CD122+ Tregs.

In renal models using chimeras, PD-L1 expression on non-

BMDCs but not on BMDCs was observed to play a role in I/R

injury (29). In the liver transplantation model, PD-L1 expression

on graft-derived BMDCs and non-BMDCs in grafts showed

similar effects (64). This was consistent with the conclusion of

the kidney I/R model, considering that the recipient-derived

immune cells are the major factor in this immune response.

Since PD-L1 is extensively expressed on many cell types, it is

worth considering whether the expression of PD-L1 on non-

BMDCs plays a different role from that found on BMDCs.

There are more that should be noted in renal models. The

increased expression of PD-L1 has been observed in many AKI

models aside from the kidney I/R model (30, 95, 96). In all of
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these models, the distribution of PD-L1 had localized effects. In

these AKI models, the increased expression of PD-L1 on tubular

cells was observed in all samples. In contrast, only part of the

samples showed PD-L1 expression within the glomerular and

endothelial compartments. Moreover, PD-L1 expression on

tubular cells positively correlated with serum levels of C-

reactive protein and the severity of AKI (95). This finding is

consistent with the previous view that the expression of PD-L1

on non-BMDCs (but not on BMDCs) in the kidney plays a

protective role. In addition, researchers observed that the

number of PD-L1+ cells in urine samples also positively

correlated with tubular PD-L1 positivity (30), which provided

a theoretical basis for PD-L1 as a potential biomarker for

evaluating AKI. At the same time, the inconsistent expression

of PD-L1 in different compartments of the kidney is also worth

pondering. One possible hypothesis is that the tubules may be

the main site of inflammatory cell infiltration in the kidney.

Moreover, the complement system also regulates the expression

of PD-L1 and the infiltration of immune cells. It is possible that

PD-L1 can be involved in complement-mediated immune cell

infiltration processes.

Another point worth discussing is the nonspecific binding

between costimulatory molecules, which we briefly mentioned

earlier. We have previously described that PD-L1 plays a superior

role to that of PD-L2 in PD-1-mediated signaling. However, on

knocking out PD-L1, the situation changed. After MCAO, the loss
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of PD-L1, together with an increase in PD-L2, leads to the PD-1/

PD-L2 becoming the main negative regulatory signaling pathway.

Alternatively, PD-L1 can also bind to CD80 (77–79), which is

generally regarded as another negative regulatory interaction.

However, a series of recent studies have indicated that the cis-

PD-L1/CD80 interaction could disrupt PD-1/PD-L1 binding and

abrogate the PD-1-mediated inhibitory effects (97–99) (Figure 3).

Meanwhile, decreased CD80 expression on splenic APCs was

observed in PD-L1(-/-) mice, suggesting that the regulation of the

expression of these costimulatory molecules may not be

independent. There may therefore exist a yet unknown

mechanism to coordinate their expression.

In intestinal and experimental stroke models, PD-L1 has

shown its potential in the treatment of I/R injury, although their

treatment strategies are different. Clinically, the use of PD-L1

recombinant Fc protein has not been approved. In contrast, there

are two approved inhibitors of PD-L1. Immune-related adverse

events (iRAEs) are noteworthy when considering clinical

treatment targeting PD-L1. The iRAE of patients using immune

checkpoint inhibitors (ICIs) can involve any organ system (100).

Specifically, the most common iRAE in patients using durvalumab

is pneumonia (101), and thyroid disease is common in patients

receiving avelumab (102). However, it should be noted that these

results are based on clinical cohort studies of cancer patients.

Considering the tumor microenvironment, cancer patients may

have different responses compared with other patients.
FIGURE 3

Interactions between costimulatory molecules on the surface of immune cells. Interactions between costimulatory molecules, which are
expressed on both APCs and activated lymphocytes, form a complex regulatory network. PD-1 can bind to PD-L1 and PD-L2, while PD-L1 can
also bind to CD80. However, the cis-PD-L1/CD80 interactions restrict the PD-1 function.
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In conclusion, our understanding of the effects of PD-L1 in

I/R and even PD-L1 itself is still limited. However, both the

clinical needs and research findings highlight the potential of

PD-L1 as a target in the treatment of I/R injury. Meanwhile, the

in-depth study of diverse roles of PD-L1 in I/R is bound to be an

excellent springboard for us to further understand PD-L1 and

the immune response.
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