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Dengue virus (DENV) transmitted by the Aedes mosquitoes is the etiological

agent of dengue fever, one of the fastest-growing reemerging mosquito-

borne diseases on the planet with a 30-fold surge in the last five decades.

Interestingly, many arthropod-borne pathogens, including DENV type 2, have

been reported to contain an immunogenic glycan galactose-alpha1,3-

galactose (alpha-Gal or aGal). The aGal molecule is a common

oligosaccharide found in many microorganisms and in most mammals,

except for humans and the Old-World primates. The loss of aGal in humans

is considered to be an evolutionary innovation for enabling the production of

specific antibodies against aGal that could be presented on the glycan of

pathogens. The objective of this study was to evaluate different anti-aGal

antibodies (IgM, IgG, IgG1, and IgG2) in people exposed to DENV. We

observed a significant difference in anti-aGal IgG and IgG1 levels among

dengue severity classifications. Furthermore, a significant positive correlation

was observed between the anti-aGal IgG and the number of days with dengue

symptoms in patients. Additionally, both anti-aGal IgM and IgG levels differ

between the two geographical locations of patients. While the anti-aGal IgM

and IgG2 levels were not significantly different according to the dengue severity

levels, age was negatively correlated with anti-aGal IgM and positively

correlated with anti-aGal IgG2. Significant involvement of aGal antibodies in

Dengue infection processes is suggested based on the results. Our results open

the need for further studies on the exact roles and the mechanisms of the aGal

antibodies in Dengue infection.

KEYWORDS

Alpha-gal (a -gal), dengue (DENV), antibodies, flaviviral infection, vector-borne
disease (VBD)
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Introduction

Dengue virus (DENV) from the Flaviviridae family is

transmitted by Aedes (Ae.) mosquitoes – mainly Ae. aegypti and

Ae. albopictus (1). Dengue fever is an infectious disease caused by

any of the four DENV serotypes (DENV-1, DENV-2, DENV-3, and

DENV-4) (2). Dengue fever has become one of the fastest-growing

reemerging mosquito-borne diseases on the planet (3) with a 30-

fold surge in the last five decades. The spread of this disease has

been linked to population increase, urbanization, and climate

change in more than 100 countries in the Asia-Pacific region, the

Americas, the Middle East, and Africa (4–7). In South America,

Colombia is one of the countries with the highest rates of dengue

transmission, with all four serotypes circulating and DENV-1 and

DENV-2 being the most common (8–11). As a result, Colombia is

regarded as being a DENV hyperendemic area.

The most effective control measures for reducing vector-borne

diseases to date have been the use of vector control tools such as

pesticides, physical devices (i.e., bed nets) and Wolbachia-based

mosquito control strategy to reduce both mosquito life span and

pathogen transmission (12, 13). However, the challenge of vector

control sustainability, as well as the inadequacy of this intervention

to reduce dengue infection burden, has prompted the development

of additional disease control strategies such as vaccines (14). Due to

the presence of several dengue serotypes, cross-reactivity with other

flaviviruses, and antibody-dependent enhancement (ADE), the

development of a dengue vaccine has been challenging (15),

thereby making it difficult to control the spread of dengue fever

with vaccination.

A study of N-glycomics of serotype 2 DENV, produced from

mosquito cell, found various glycans including galactose-alpha-1,3-

galactose (alpha-Gal, hereafter, aGal) (16) which is also found in

many important pathogens including several arthropod-borne

pathogens, leishmania (17), Trypanosoma (18, 19), Borrelia (20),

and Plasmodium spp (21). The aGal is a commonly found glycan in

mammals except in old-world primates and human. Loss of alpha

1,3-galactosyltransferase enzyme in humans and old-world

primates, lacking the endogenous terminal carbohydrate linkage

of the aGal trisaccharide (22), allows production of antibodies

against the exogenous aGal presented in the gut microbiota and

often in the pathogens described above. The human immune

system produces aGal-specific natural antibodies, which account

for up to 1-5% of circulating IgM and IgG and 0.1-0.2% of serum

immunoglobulin (23, 24). The roles of aGal antibodies in the

processes of pathogen infections have been studied for infections

of the leishmania, Tripanosoma, and Plasmodium spp (17–21, 25–

27), but is lacking in DENV infection.

We evaluated the association of DENV infection with levels

of anti-aGal IgM, IgG, and two IgG subclasses; IgG1, which plays

a key role in eliciting antibody responses against viral infections,
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and IgG2, responsible for anticarbohydrate IgG responses. Data

from a cohort of 75 febrile patients, recruited in Norte de

Santander, Colombia in 2020 was examined in this study, and

suggests significant roles of anti-aGal in DENV infection.
Materials and methods

Ethical considerations

The protocols and methods for this study were reviewed and

approved by the Kansas State University Ethics Review Board

(IRB#8952, approval date- 10/11/2017). The Cúcuta and Ocaña

Hospital Board also approved the methods and the performance

of the study in their institutions. Before sample collection, each

potential participant (adults, guardians, or parents of minors)

was given a thorough explanation of the study’s objectives, and

written informed consent was obtained from individuals willing

to participate. Blood samples were collected in compliance with

the regulations on ethics of research in human participants for

Colombia and the United States.
Experimental design

The focus of the study was to determine the association between

dengue fever and IgM, IgG, IgG1, and IgG2 antibody responses to

aGal. The variation in aGal antibody titers in participants from a

dengue-endemic area in Norte de Santander were studied in terms

of their infective status detected by dengue IgM testing, location,

days of symptoms, and dengue disease severity classification.
Study participants and
sample preparation

Samples were collected from a total of 75 febrile patients tested

for dengue infection using the DENV [NS1]-based IgM ELISA

(DENV-IgM) and 10 people from the same region who were

asymptomatic (healthy) with unknown dengue status (5 males

and 5 females, age range between 19-42 years old). Dengue

participants were categorized into the patients showing typical

dengue symptom without warning signs, with warning signs, and

severe dengue symptom according to the WHO dengue fever

classifications (5). A questionnaire was used to record participants

demographics such as age, gender, and place of residence. All

patients reported that their cases were the first time being diagnosed

with dengue fever, indicating primary infections.

Five milliliter blood samples were collected in dry tubes from all

volunteers who reported DENV-like symptoms and within 3 to 15
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days of fever seeking medical care at the Hospital Universitario

Erasmo Meoz in Cúcuta and the Hospital of Emiro Quintero

Cañizares in Ocaña (Supplementary Figure 1). Samples were

tested for DENV using either DENV NS1-based IgM ELISA,

(Xerion—IMEX group, Bogota) following manufacturers’

guidelines. Serum was collected and stored at -20°C until it was

shipped to the United States for analysis.
Determination of antibody titers
against aGal

Enzyme linked immunosorbent assay (ELISA) procedures

were optimized using checkerboard titration for standardization

of each antibody including a positive control. The levels of

human anti-aGal antibodies were detected using ELISA high

absorption capacity polystyrene microtiter 96 well plates coated

with 5µg/ml of Gal-alpha 1-3 Gal b1-4 GlcNAC conjugated to

human serum albumin (14 atom spacer, Product Code:

NGP3334) (Dextra, Shinfield, UK) in 100 mL/well in

carbonate-bicarbonate buffer (5mM Na2CO3 (Acros Organics

AC123670010) and 45mM NaHCO3 (Sigma-Aldrich S5761).

After overnight incubation at 4°C, coated plates were washed 3

times with 100 mL/well PBS containing 0.05% Tween 20 (PBST)

(Sigma-Aldrich P3563), blocked with 100 mL/well of 1% bovine

serum albumin (BSA) (ChemCruz Cat# sc-2323) in PBST

(Sigma-Aldrich) overnight at RT and then washed 3 times

with 100 mL/well of PBST. Human serum samples were

diluted 1:50 in PBST with final 1% BSA and 100 mL were

added into the wells of the antigen-coated plates and

incubated overnight at 37°C. Plates were washed 3 times with

PBST and treated with 100 mL/well of detection antibodies; goat

anti-human IgM conjugated to horseradish peroxidase (mu

chain specific, Abcam cat# ab97205), goat anti-human IgG

(IgG (H+L) specific, JacksonImmunoResearch Code# 109-035-

088), mouse anti-human IgG1 (Fc-specific, SouthernBiotech

Cat# 9054-05), or mouse anti-human IgG2 (Fd-specific,

SouthernBiotech Cat# 9080-05). Secondary antibodies diluted

1:10,000 for IgM, 1:1000 for IgG and IgG2, 1:100 for IgG1 v/v in

blocking solution were added and incubated overnight at room

temperature (RT). Plates were washed 3 times with 100 mL/well
of PBST and 100 mL/well of 3,3’, 5,5’-Tetramethyl-Benzidine

substrate solution (Thermo Scientific, 34022) was added and

incubated for IgM (5 min), IgG (15 min), IgG1 (40 min), IgG2

(25 min) at RT. Finally, the reaction was stopped with 100 mL/
well of 1M phosphoric acid (H3PO4) (prepared using Fisher

Scientific Cat# 031101), and the optical density (OD) was

measured in a spectrophotometer at 450 nm.

Antibody levels were expressed as the DOD value: DOD =

ODx-ODb where ODx represents the mean of individual OD in

two technical replications and ODb the mean of the blank wells.
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One spike control on each plate was used for normalization of

plate-to-plate variations. Assay variation among samples (inter

and intra assay) tested in the study was below 20% and it was

only included in the analysis of serum samples with a coefficient

of variation ≤ 20% between duplicates.
Statistical analysis

The ELISA OD values at 450 nm were compared between

dengue IgM results, dengue fever classification, participants location

of residence, and age by pairwise comparisons using the

nonparametric Mann-Whitney U test (p = 0.05). Multiple data

points in aGal antibodies in each Dengue severity level were

compared by two-way ANOVA test, the test known to be highly

tolerant for data sets with violation of normality (28, 29).

Spearman’s rank correlation test was used to assess the strength

and significance of a relationship between two independent

variables. GraphPad Prism, version 9.2.0, (GraphPad Software

Inc., La Jolla, CA) was used for all statistical analyses.
Results

Cohort characteristics

A total of 75 DENV-infected patients who visited two

different levels of Colombia healthcare facility in 2020 were

included in the cohort: 53.3% (40) patients from Cúcuta and 46.7

(35) from Ocaña, two cities in Colombia 201.2 km apart each

other (Supplementary Figure 1). Testing for DENV IgM is a

diagnostic tool for identifying dengue infection in its active

stage.: According to the test, 67.5% (21) of Cucuta patients

were IgM+, and 68.6% (24) of Ocaña patients were IgM+. When

it comes to dengue fever, 42.5% (17) of patients without

warnings, and 57.5% (23) of patients with warnings visited the

Cúcuta health facility, while 31.4% (11) of patients without

warnings, 54.3% (19) of patients with warnings, and 14.3% of

patients exhibiting severe dengue, visited the Ocaña health

facility. The cohort’s age ranged from 0 to 86 years, with a

median age of 14 years. The patients experienced dengue

symptoms for periods ranging from 2 to 15 days with median

day of 6 days (Table 1).
High levels of anti- aGal
immunoglobulins in patients with DENV
positive IgM

Measuring the levels of anti-aGal specific IgM, IgG, IgG1,

and IgG2 in 45 DENV-IgM (IgM+) and 30 DENV-IgM negative
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(IgM-) febrile individuals, we observed that DENV-IgM+

patients had significant higher anti-aGal IgM (p = 0.0386) and

IgG (p = 0.0264) antibodies than those in DENV-IgM- patients.

No significant differences in their anti-aGal IgG1 (p = 0.0757)

and anti-aGal IgG2 (p = 0.1271) titers (Figure 1) were observed

between dengue IgM+ and IgM- patients, although a moderately

higher level of IgG2 in IgM- group was observed in IgM- group

without statistical significance.
Frontiers in Immunology 04
Positive correlation between anti-aGal
IgG and IgG1 levels and Dengue fever
severity classification

We had different categories of dengue severity in our study

sample: 28 patients presented dengue without warning symptoms,

42 patients presented dengue with warning symptoms while only

5 had severe dengue symptoms. We included 10 healthy
TABLE 1 Cohort characteristics by hospital level.

Location
(Hospital level)

Total n DENV IgM Dengue fever classification Age Median
(range)

Symptom daysMedian
(range)

IgM+ IgM- w/o
warnings

w/
warnings

Severe

Cúcuta (3)
Ocaña (2)

40
35

21
24

19
11

17
11

23
19

0
5

14.5 (0-86 years)
13 (3-62 years)

5 (2-15 days)
7 (3-15 days)

Total 75 45
(60%)

30
(40%)

28 (37%) 42 (56%) 5
(6.7%)

14 (0-86 years) 6 (2-15 days)
A B

DC

FIGURE 1

Specific anti- aGal IgM, IgG, IgG1 and IgG2 in dengue patients between Dengue-IgM+ (n=45) and Dengue-IgM- (n=30). (A) Blue color - anti-
aGal IgM antibody levels. (B) Brown color - anti-aGal IgG antibody levels. (C) Purple color - anti-aGal IgG1 antibody levels. (D) Green color -
anti-aGal IgG2 antibody levels. Individual anti-aGal antibody levels are represented by the colored dots and horizontal red lines represent
medians of group individual antibody responses Antibody levels are measured in units of OD (optical density). “p” values were based on the
pairwise non-parametric Mann-Whitney test.
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participants with unknown dengue status in this analysis. We

tested whether the levels of anti-aGal antibodies was different

between the four clinical classifications of dengue (Figure 2). We

observed that the levels of anti-aGal antibodies, anti-aGal IgG and

IgG1, are significantly different depending on the dengue severity

(p <0.0001, df =3, F value = 10.65). Further analysis with Mann-

Whitney test revealed healthy participants with unknown dengue

status had lower anti-aGal IgG than dengue patients without

warnings (p = 0.0337), dengue patients with warnings (p =

0.0001), and severe dengue patients (p = 0.0007). The patients

without warning symptoms had lower levels of anti-aGal IgG

when compared to the with warnings patients (p = 0.0231) or

compared with severe patients (p = 0.0079). Furthermore, anti-

aGal IgG was also lower in with warnings patients when compared

with severe patients (p = 0.0409).

Similar to IgG, anti-aGal IgG1 was also lower in without

warnings patients when compared to the with warnings patients

(p = 0.0196) and severe patients (p = 0.0004), although this trend

between the patients with warnings and severe dengue patients

was not significantly different (p = 0.0732). However, we find that

anti-aGal IgM and IgG2 levels were not significantly different

among the dengue fever classifications and participants with
Frontiers in Immunology 05
unknown dengue status (anti-aGal IgM p = 0.5740, df = 3, F

value = 0.6473; anti-aGal IgG2 p = 0.7249, df = 3, F value =

0.2302) in the two-way ANOVA test. The data for anti-aGal IgG1

in healthy participants with unknown dengue status were not

included due to shortage of these serum samples (Figure 2).
Different anti-aGal IgG and IgG1
antibody levels depending on the
locations with different hospital levels

We compared the patients from two different locations-

Cúcuta and Ocaña (Supplementary Figure 1). The two hospitals

in each region were vary in their levels of patient care. Norte de

Santander’s capital, Cúcuta, has a level 3 hospital where patients

with severe diseases are transferred from level 1 (basic) or level 2

(intermediate) facilities, whereas Ocaña, the department’s

second-most populous city with fewer densely populated areas,

has a level 2 hospital where patients with mild diseases can seek

health care. Significant differences were observed in the anti-

aGal antibodies. Among 40 patients from Cúcuta and 35 patients

from Ocaña, the patients from Ocaña had higher anti-aGal IgG
A B

DC

FIGURE 2

Specific anti-aGal IgM, IgG, IgG1, and IgG2 levels by dengue fever classification; those with unknown dengue status (n-=10), dengue without
warnings (n=28), dengue with warnings (n=42), and severe dengue (n=5). (A) Blue color - anti-aGal IgM antibody levels. (B) Brown color - anti-
aGal IgG antibody levels. (C) Purple color - anti-aGal IgG1 antibody levels. (D) Green color - anti-aGal IgG2 antibody levels. Individual anti-aGal
antibody levels are represented by the colored dots and horizontal black lines represent medians of group individual antibody responses.
Antibody levels were measured in units of OD (optical density). “p” values <0.05 were measured using the two-way ANOVA test.
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(p <0.0001) and IgG1 (p = 0.0343) levels than those from Cúcuta

(Figure 3). In the case of anti-aGal IgM (p = 0.7216) and IgG2 (p

= 0.1050), the levels of antibodies were not significantly different

between the two locations.
Positive correlation between anti-aGal
IgG and days with dengue symptoms

We investigated the levels of anti-aGal antibodies in relation

to the number of days patients presented with dengue symptoms

to provide insight into the possible influence of symptom

duration on anti-aGal IgM, IgG, IgG1, and IgG2 levels

(Figure 4). We observed that IgG anti-aGal antibodies showed

a significant positive correlation with days with dengue

symptoms (Spearman correlation, r = 0.4877; p <0.0001). The

levels of anti-aGal-IgM (p = 0.4571) were not significantly

affected by the number of days with dengue symptoms.

Positive correlations without statistical significance were
Frontiers in Immunology 06
observed in anti-aGal-IgG1 (p = 0.0849) and anti-aGal-IgG2

(p = 0.1470).
Dengue fever patients’ age affects anti-
aGal IgM and IgG2 levels

Anti-aGal IgM was negatively associated with age

(Spearman correlation, r = -0.2491; p = 0.0312), while anti-

aGal IgG2 was positively associated with age (r = 0.4678; p <

0.001), but neither anti-aGal IgG (r = 0.0718; p = 0.5403) nor

anti-aGal IgG1 (r = -0.0711; p = 0.5556) were significantly

correlated to patients age in the non-parametric Spearman

correlation test (Figure 5). Further analysis using the Mann-

Whitney test (right panel) for the data categorized by age

revealed that 0-10 year old patients’ anti-aGal IgM levels were

not significantly different when compared to those aged 11-20

years (p = 0.9910) Additionally, anti-aGal IgM levels in the 11-

20 year old group were also not significantly different when
A B

DC

FIGURE 3

Specific anti-aGal IgM, IgG, IgG1 and IgG2 levels by patient locations with different hospital levels; Cúcuta (n=40) and Ocaña- (n=35). (A) Blue color -
anti-aGal IgM antibody levels. (B) Brown color - anti-aGal IgG antibody levels. (C) Purple color - anti-aGal IgG1 antibody levels. (D) Green color - anti-
aGal IgG2 antibody levels. Individual anti-aGal antibody levels are represented by the colored dots and horizontal black lines represent medians of group
individual antibody responses. Antibody levels are measured in units of OD (optical density). “p” values <0.05 were measured using the pairwise non-
parametric Mann-Whitney test.
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compared with those patients above 20 years (p = 0.1256), but 0-

10 years anti-aGal IgM were significantly higher when compared

with those in above 20 years (p value = 0.0453). In the case of

anti-aGal IgG2, the 0-10 years dengue patients had significantly

lower levels when compared with 11-20 years (p = 0.0062) and

above 20 years (p = 0.0003) but 11-20 years anti-aGal IgG2 was

not significantly different when compared with above 20 years

(p = 0.5202) (Figure 5).
Discussion

Over the decades, dengue has become a major threat to

human life in its endemic countries. Colombia has suffered five

major dengue outbreaks in the years 1998, 2002, 2010, 2013, and

2019 with the 2010 outbreak being the worst dengue epidemic in

the history of the country (11, 30). The DENV envelope protein is

an important component needed for the virus to fuse with the cell

endosomal membrane and delivery of viral genome into the

cytosol (31). Recently, Lei and colleagues identified five types of

N-glycan including mannose, GalNAc, GlcNAc, fucose, and sialic

acid having high mannose-type N-linked oligosaccharides and the
Frontiers in Immunology 07
galactosylation of N-glycans on DENV-2 produced in Ae.

albopictus cell line C6/36 (16). The same study also identified

aGal existing in the glycan profile of DENV-2 (16). The

carbohydrates of DENV, including aGal, may be important in

the process of virus infection and also in the early phase of

immune responses of the host although prevalence of aGal in

different serotypes of DENV is yet unknown.

The aGal in DENV is likely a specific glycan of the virus

produced from the mosquito salivary glands (16), but lacking in

the DENV amplified in the human after the first wave of

infection. The enzyme for production of aGal, alpha 1,3-

galactosyltransferase, has not been identified in arthropod

genomes in the homology-based searches (32–34), while

multiple copies encoding alpha 1,4-galactosyltransferase and

beta 1,4-galactosyltransferase were proposed to be the

functional alpha 1,3-galactosyltransferase for production of

aGal in arthropods (32, 34). Considering that humans have a

pseudogenized alpha 1,3-galactosyltransferase copy and are

unable to produce aGal (22), the importance of aGal in DENV

infection is likely determined by the aGal antibodies induced at

the early DENV infection phase or pre-existing endogenously.

Therefore, aGal antibody may be involved in the initial infection
A B

DC

FIGURE 4

Correlation of specific anti- aGal IgM, IgG, IgG1, and IgG2 antibody levels and days with dengue symptoms in patients. (A) Blue color - anti-aGal
IgM antibody levels. (B) Brown color - anti-aGal IgG antibody levels. (C) Purple color - anti-aGal IgG1 antibody levels. (D) Green color - anti-
aGal IgG2 antibody levels. Regression lines in each graph are shown by solid lines for p<0.05 and dotted lines for non-significant correlations.
Antibody levels are measured in units of OD (optical density). “r” and “p” values were measured using the pairwise non-parametric Spearman
correlation test.
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D
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FIGURE 5

Correlation of specific anti- aGal IgM, IgG, IgG1, and IgG2 antibody levels with dengue patients’ age. (A) Blue color - anti-aGal IgM antibody
levels. (B) Brown color - anti-aGal IgG antibody levels. (C) Purple color - anti-aGal IgG1 antibody levels. (D) Green color - anti-aGal IgG2
antibody levels. The left panel represents a correlation plot of anti-aGal antibodies with age. Regression lines in each graph are shown by solid
lines for p<0.05 and dotted lines for non-significant. Both “r” and “p” values were obtained from the non-parametric Spearman correlation test.
While right panel represent anti-aGal antibody with age distribution (0-10 years (n=32), 11-20 years (n=15), and >20 years (n=28)). Anti-aGal
antibody levels are represented by the colored dots and horizontal black lines represent medians of group individual antibody responses. The “p”
values <0.05 were measured using the non-parametric Mann-Whitney test.
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of DENV injected with mosquito saliva in dermal and epidermal

(keratinocytes and fibroblasts) and skin resident immune cells,

and spillover into the bloodstream (Langerhans cells, dendritic

cells, and macrophages) (35).

We found that dengue IgM positive (+) patients with active

infection presented significantly higher levels of both anti-aGal

IgM and anti-aGal IgG (Figure 2). The anti-aGal IgG and IgG1

levels were correlated with severe symptoms (Figure 3) and anti-

aGal IgG with days after the onset of the symptoms (Figure 5).

Although the data suggests that anti-aGal antibodies play

significant roles in DENV infection, the consequences of anti-

aGal antibody induction by DENV is yet difficult to predict. Two

potential roles of aGal antibody resulting in two opposing effects

could be; the role as the protective antibody against the DENV

infections and the positive role in antibody-dependent

enhancement (ADE) in DENV infection. These potential

opposing roles are not necessarily mutually exclusive because

they could be antibody-titer dependent in the complex infection

processes (36). Concentration-dependent roles of the anti-aGal

antibodies in isolated systems, in addition to the current data

from DENV patients, would be required to draw a conclusion.

A number of studies have shown that anti-aGal antibodies

are neutralization antibodies against pathogens, such as

Plasmodium spp (27) Leishmania spp (17) and Trypanosoma

cruzi (37) with increased aGal antibody levels upon infection.

Moreover, human anti-aGal antibodies were proposed to be the

protective antibody against C-type retroviruses carrying aGal,

derived from animal cells (38). Although the mechanism is not

yet fully understood, aGal immunogen has also shown that it

could act as an adjuvant (39–42). In field studies, patients with

Plasmodium vivax infections had greater anti-aGal IgG and IgM

levels than healthy people (43) like the case of DENV infection

in this study. Trypanosomiasis and Leishmaniasis also have been

associated with elevated anti-gal antibody levels (44). In contrast,

patients with Plasmodium falciparum infections had lower anti-

aGal IgG and IgM levels (21, 45), and patients with

Mycobacterium tuberculosis infections likewise had lower anti-

aGal IgG and IgM levels (45). Although the neutralization

activities of the anti-aGal antibody activities were shown in

cell line studies for the above pathogens (17, 27, 33),

interpretation of population studies for dynamics of anti-aGal

antibodies appear to be more complicated.

In our study, higher levels of anti-aGal IgG levels in patient

exhibiting severe symptoms (Figure 3) and increased levels over

the duration of the symptom (Figure 4) supports that the anti-

aGal IgG could be the antibody induced by the infection with

DENV. This delayed anti aGal IgG productions is likely raised by

the first wave infection of DENV injected through mosquito

saliva, which could carry the immunogenic aGal. Therefore, the

increased anti aGal IgG levels exhibited by the DENV infection

may function as a protective antibody like the cases in infections

of other arthropod borne pathogens, although the host-

dependent aGal production in virus is distinguished from
Frontiers in Immunology 09
autonomous aGal production in other pathogenic organisms.

The delayed anti-aGal antibody induction, increased after the

expected first wave of viremia, suggests that the increased anti-

aGal IgG would function as a protective antibody only against

the DENV transmission through additional mosquito bites,

which is likely common in a Dengue hyperendemic area.

On the other hand, the anti-aGal IgG may function in the

process of ADE in DENV infection. ADE occurs in hosts who

already have antibodies reactive to DENV for enhanced

infection of the virus into host cells through virus-antibody-

Fcg binding and results in severe dengue symptoms (36). The

two opposing roles of the antibodies, neutralization or ADE, are

likely determined by the antibody titer (36), specificity of the

antibody toward certain protein/residues of the virus (46), and

possibly divided roles in different types and subtypes of

immunoglobulin. A study for evaluating titer-dependent roles

of aGal antibodies in dengue infection would require the data for

the anti-aGal immunoglobulin levels in the pre-DENV exposure

of the same subjected patient. Furthermore, the roles in ADE for

different types and subtypes of immunoglobulin need to be

investigated because the significant associations between severe

symptoms and high levels of IgG and IgG1 subtypes, combined

with healthy individuals exhibiting the low levels (Figure 2),

support the roles of anti-aGal IgG and IgG1 for ADE. Our study

involves only patients who are categorized as first infection while

ADE is described for the severe dengue cases in second

infections. Therefore, the enhancement role of aGal antibodies

in initial DENV entry to host cells, if it is the case, could be

determined by pre-exposure to immunogenic aGal through

various routes; tick bites, potentially mosquito bites with or

without pathogens such as malaria plasmodium, and the

microflora and diet in the digestive system and milk.

Geographical differences in anti-aGal antibodies were

observed. Both Cúcuta and Ocaña were among the most

endemic cities for DENV in the country (47) (Supplementary

Figure 1). Cúcuta, the capital of Norte de Santander is the most

urban settlement with a level 3 health facility where severe

patients are referred to from level 1 (basic) or level 2

(intermediate) health care facilities whilst Ocaña is an area

with less urbanization than Cúcuta with a level 2 hospital

where patients with mild disease seek health care (48, 49). It

was interesting that both healthcare facility patients had distinct

levels of anti-aGal IgG and IgG1, albeit the 5 severe cases were all

from the Ocaña healthcare facility. This further strengthens the

assumption that anti-aGal IgG and IgG1 might be associated

with the progression of dengue disease.

Our study indicated that anti-aGal IgM was negatively, and

anti-aGal IgG2 was positively correlated with individuals’ ages

while age had no significant effects on the anti-aGal IgG and IgG1

levels (Figure 5). A previous study described positive associations

of both anti aGal IgM and IgG levels with age in infants and

children, but without age groups comparable to our study (50).

Serum immunoglobulin levels up to 18 years old also showed
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generally increasing patterns of IgM and IgG over time (50, 51).

Interestingly, anti aGal IgE level, the immunoglobulin that is

involved in the alpha-gal syndrome (red-meat allergy) (52, 53),

was found to be negatively correlated to the anti aGal IgG2 level

and positively to that of anti aGal IgG1 (54). Although we do not

have the data for IgE levels in this study, comparisons of the levels

of different immunoglobulin indicate positive correlations

between anti aGal IgM and anti-aGal IgG1, and between anti-

aGal IgG1 and anti-aGal IgG (Supplementary Figure 2), implying

that the levels of anti-aGal IgG2, responsible for anticarbohydrate,

may be independently regulated from the levels of anti-aGal IgG1,

IgM, and possibly IgE.

An innovation in the evolution of the human immune system

includes generation of expanded repertoires of anti-glycan

antibodies, i.e., anti-aGal that is associated with the loss of

endogenous aGal. Escalation of host and pathogen arms race to

involvement of vector in production of aGal on the pathogenic

DENV is the case that we examined in this study. Although we were

unable to draw a solid conclusion for the roles of the aGal

antibodies, whether anti-aGal antibodies are a positive or negative

factor in DENV infection, a significant role in the infection process

is proposed with the population data showing different levels of

anti-aGal antibodies over dengue progressions.
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